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Abstract

We give a simple characterization of which functions can be computed deterministically by
anonymous processes in dynamic networks, depending on the number of leaders in the network.
In addition, we provide efficient distributed algorithms for computing all such functions assuming
minimal or no knowledge about the network. Each of our algorithms comes in two versions: one
that terminates with the correct output and a faster one that stabilizes on the correct output
without explicit termination. Notably, these are the first deterministic algorithms whose running
times scale linearly with both the number of processes and a parameter of the network which we
call dynamic disconnectivity (meaning that our dynamic networks do not necessarily have to be
connected at all times). We also provide matching lower bounds, showing that all our algorithms
are asymptotically optimal for any fixed number of leaders.

While most of the existing literature on anonymous dynamic networks relies on classical
mass-distribution techniques, our work makes use of a recently introduced combinatorial structure
called history tree, also developing its theory in new directions. Among other contributions,
our results make definitive progress on two popular fundamental problems for anonymous
dynamic networks: leaderless Average Consensus (i.e., computing the mean value of input
numbers distributed among the processes) and multi-leader Counting (i.e., determining the
exact number of processes in the network). In fact, our approach unifies and improves upon
several independent lines of research on anonymous networks, including Nedić et al., IEEE
Trans. Automat. Contr. 2009; Olshevsky, SIAM J. Control Optim. 2017; Kowalski–Mosteiro,
ICALP 2019, SPAA 2021; Di Luna–Viglietta, FOCS 2022.
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1 Introduction

Dynamic networks. An increasingly prominent area of distributed computing focuses on algorith-
mic aspects of dynamic networks, motivated by novel technologies such as wireless sensors networks,
software-defined networks, networks of smart devices, and other networks with a continuously
changing topology [10, 38, 41]. Typically, a network is modeled by a system of n processes that
communicate in synchronous rounds; at each round, the network’s topology changes unpredictably.

Disconnected networks. In the dynamic setting, a common assumption is that the network is
1-interval-connected, i.e., connected at all rounds [36, 44]. However, this is not a suitable model
for many real systems, due to the very nature of dynamic entities (think of P2P networks of smart
devices moving unpredictably) or due to transient communication failures, which may compromise
the network’s connectivity. A weaker assumption is that the union of all the network’s links across
any T consecutive rounds induces a connected graph on the processes [34, 46]. We say that such a
network is T -union-connected, and we call T ≥ 1 its dynamic disconnectivity.1

Anonymous processes. Several works have focused on processes with unique IDs, which allow
for efficient algorithms for many different tasks [9, 35, 36, 37, 41, 44]. However, unique IDs may
not be available due to operational limitations [44] or to protect user privacy: A famous example
are COVID-19 tracking apps, where assigning temporary random IDs to users was not enough to
eliminate privacy concerns [50]. Systems where processes are indistinguishable are called anonymous.
The study of static anonymous networks has a long history, as well [7, 8, 12, 13, 14, 27, 49, 52].

Networks with leaders. It is known that several fundamental problems for anonymous networks
(a notable example being the Counting problem, i.e., determining the total number of processes n)
cannot be solved without additional “symmetry-breaking” assumptions. The most typical choice is
the presence of a single distinguished process called leader [2, 3, 4, 5, 23, 27, 29, 31, 40, 48, 53] or,
less commonly, a subset of several leaders (and knowledge of their number2) [30, 32, 33, 34].

Apart from the theoretical importance of generalizing the usual single-leader scenario, studying
networks with multiple leaders also has a practical impact in terms of privacy. Indeed, while the
communications of a single leader can be traced, the addition of more leaders provides differential
privacy for each of them.

Leaderless networks. In some networks, the presence of reliable leaders may not always be
guaranteed: For example, in a mobile sensor network deployed by an aircraft, the leaders may be
destroyed as a result of a bad landing; also, the leaders may malfunction during the system’s lifetime.
This justifies the extensive existing literature on networks with no leaders [16, 17, 42, 43, 45, 51, 54].
Notably, a large portion of works on leaderless networks have focused on the Average Consensus
problem, where the goal is to compute the mean of a list of numbers distributed among the
processes [6, 15, 16, 26, 46, 47].

1.1 Our Contributions

Summary. Focusing on anonymous dynamic networks, in this paper we completely elucidate the
relationship between leaderless networks and networks with (multiple) leaders, as well as the impact

1We use the term “disconnected” to refer to T -union-connected networks in the sense that they may not be
connected at any round. It is worth noting that non-trivial (terminating) computation requires some conditions on
temporal connectivity to be met, such as a finite dynamic disconnectivity and its knowledge by all processes (refer to
Proposition 2.2).

2It is easy to see that a network with an unknown number of leaders is equivalent to a network with no leaders at
all. Also, if the leaders are distinguishable from each other, then any one of them can be elected as a unique leader.
Hence, the only genuinely interesting multi-leader case is the one with a known number of indistinguishable leaders.
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of the dynamic disconnectivity T on the efficiency of distributed algorithms. We remark that only a
minority of existing works consider networks that are not necessarily connected at all times.

Computability. We give an exact characterization of which functions can be computed in
anonymous dynamic networks with and without leaders, respectively. Namely, with at least one
leader, all the so-calledmulti-aggregate functions are computable;3 with no leaders, only the frequency-
based multi-aggregate functions are computable4 (see Section 2 for definitions). Interestingly,
computability is independent of the dynamic disconnectivity T . Our contribution considerably
generalizes a recent result on the functions computable with exactly one leader and with T = 1 [24].

Complete problems. While computing the so-called Generalized Counting function FGC was
already known to be a complete problem for the class of multi-aggregate functions [24], in this
work we expand the picture by identifying a complete problem for the class of frequency-based
multi-aggregate functions, as well: the Frequency function FR (both FGC and FR are defined in
Section 2). By “complete problem” we mean that computing such a function allows the immediate
computation of any other function in the class with no overhead in terms of communication rounds.

Algorithms. We give efficient deterministic algorithms5 for computing the Frequency function
(Section 3) and the Generalized Counting function (Section 4). Since the two problems are complete,
we automatically obtain efficient algorithms for computing all functions in the respective classes.

For each problem, we give two algorithms: a terminating version, where each process is required
to commit on its output and never change it, and a stabilizing version, where processes are allowed
to modify their outputs, provided that they eventually stabilize on the correct output.

The stabilizing algorithms for both problems run in 2Tn rounds regardless of the number of
leaders, and do not require any knowledge of the dynamic disconnectivity T or the number of
processes n. Our terminating algorithm for leaderless networks runs in T (n + N) rounds with
knowledge of T and an upper bound N ≥ n; the terminating algorithm for ℓ ≥ 1 leaders runs in
(ℓ2 + ℓ + 1)Tn rounds6 with no knowledge about n. The latter running time is reasonable (i.e.,
linear) in most applications, as ℓ is typically a constant or very small compared to n.

Negative results. Some of our algorithms assume processes to have a-priori knowledge of some
parameters of the network; in Section 5 we show that all of these assumptions are necessary. We
also provide lower bounds that asymptotically match our algorithms’ running times, assuming that
the number of leaders ℓ is constant (which is a realistic assumption in most applications).

Multigraphs. All of our results hold more generally if networks are modeled as multigraphs,
as opposed to the simple graphs traditionally encountered in nearly all of the literature. This
is relevant in many applications: in radio communication, for instance, multiple links between
processes naturally appear due to the multi-path propagation of radio waves.

1.2 Technical Advances

Our approach departs radically from the mass-distribution techniques traditionally adopted by most
previous works on anonymous dynamic networks [18, 19, 20, 21, 32, 33, 34]; instead, we build upon
history trees, a combinatorial structure recently introduced in [24]. Each node in a history tree
represents a set of processes that are “indistinguishable” at a certain point in time; the number of

3Another way of stating this result is that it is sufficient to know the size of any subset of distinguished processes
in order to compute all multi-aggregate functions.

4A similar result, limited to static leaderless networks, was obtained in [28].
5An advantage of using randomization would be the possibility of choosing unique IDs with high probability, but

this would not achieve an asymptotic improvement on the running times of our algorithms; see [36].
6Note that the case where all processes are leaders is not equivalent to the case with no leaders, because processes

do not have the information that ℓ = n, and have to “discover” that there are no non-leader processes in the network.
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such processes is the anonymity of the node (see Section 2 for a proper definition of history tree).
The theory presented in [24] leads to an optimal solution to the Generalized Counting problem for
always connected networks with a unique leader. In this paper we extend the theory to leaderless
and multi-leader disconnected dynamic networks thanks to the following technical breakthroughs.

� Main contribution. We succeed in generalizing the theory in [24] to networks with more
than one leader (Section 4.2). This is an especially challenging task because there is no obvious
way of adapting the counting algorithm from [24], which critically assumes the existence
of a single node in the history tree representing the leader, as well as the exact knowledge
of its anonymity. In contrast, in the history tree of a multi-leader network there may be
multiple nodes representing leaders, and the only information available is that the sum of
their anonymities is ℓ.

To work around this difficulty, we develop an approximate counting procedure which repeatedly
makes “hypotheses” on the anonymity of a selected leader node. Starting from a given
hypothesis, we show how to derive conditional anonymities for other nodes in the history tree,
until we are able to estimate the network’s size. Furthermore, we show that the correctness
of an estimate can be verified efficiently; if the estimate is incorrect, we proceed with a new
hypothesis on the anonymity of a leader’s node, and so on. If carefully implemented, this
strategy leads to a correct counting algorithm for multi-leader networks (Theorem 4.3).

� Secondary contribution. We introduce a novel technique to transform a history tree into a
system of independent linear equations on anonymities (Lemma 3.1). This technique is the
basis for a variety of optimal algorithms: It yields a stabilizing algorithm for the Frequency
function in leaderless networks (Section 3.1), which can be converted into a terminating
algorithm if a bound on the propagation time of information is known (Section 3.2), as well as
a stabilizing counting algorithm for multi-leader networks (Section 4.1).

� Additional contribution. All of our algorithms and techniques apply to multigraphs, i.e.,
networks that may have multiple parallel links between pairs of processes.7 This turns out to
be a remarkably powerful feature in light of Proposition 2.3, which establishes a relationship
between multigraphs and T -union-connected networks. This finding single-handedly allows
us to generalize our algorithms to disconnected networks at the cost of a mere factor of T in
their running times, which is worst-case optimal. This significantly improves upon previous
counting algorithms for disconnected networks, which had an exponential dependence on T
(see, e.g., [33]).

1.3 Impact on Fundamental Problems and State of the Art

As a byproduct of the results mentioned in Section 1.1, we are able to optimally solve two popular
fundamental problems: Generalized Counting for multi-leader networks (because it is a multi-
aggregate function) and Average Consensus for leaderless networks (because the mean is a frequency-
based multi-aggregate function). As summarized in Table 1 and as discussed below, our results
improve upon the state of the art on both problems in terms of (i) running time, (ii) assumptions
on the network and the processes’ knowledge, and (iii) quality of the solution. Altogether, we settle

7The original design of history trees is general enough to be applied to networks modeled as multigraphs [24].
However, this fact alone does not automatically imply that any algorithm that utilizes history trees should work for
any network that can be modeled as a multigraph. There are tasks that can only be carried out on networks with no
parallel links which can still benefit from a formulation in terms of history trees. In fact, a history tree is just an
alternative way of representing a network, and making good use of this representation is entirely up to the algorithm.
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open problems from ICALP 2019 [30], SPAA 2021 [32], and FOCS 2022 [24]. For a more thorough
discussion and a comprehensive survey of related literature, refer to Appendix B.

Average Consensus. This problem has been studied for decades by the distributed control and
distributed computing communities [6, 15, 16, 17, 32, 42, 45, 47, 51, 54]. In the following, we argue
that our results directly improve upon the current state of the art on this problem. A more detailed
discussion can be found in the surveys [26, 43, 46] and in Appendix B.

A convergent algorithm with a running time of O
(
Tn3 log(1/ϵ)

)
is given in [42]. The algorithm

works in T -union-connected networks with no knowledge of T , but it rests on the assumption that
the degree of each process in the network has a known upper bound. Assuming an always connected
network, [16] gives an algorithm that converges in O

(
n4 log(n/ϵ)

)
rounds. We remark that both

algorithms are only ϵ-convergent; therefore, not only does our stabilizing algorithm improve upon
their running times, but it solves a more difficult problem under weaker assumptions.8

The algorithm in [15] stabilizes to the actual average in a linear number of rounds, but it is a
randomized Monte Carlo algorithm and requires the network to be connected at each round. In
contrast, our linear-time stabilizing algorithm is deterministic and works in disconnected networks.

As for terminating algorithms, the one in [32] terminates in O
(
n5 log3(n)/ℓ

)
rounds assuming

the presence of a known number ℓ of leaders and an always connected network. Since the number of
leaders is known, our terminating algorithm for Generalized Counting also solves Average Consensus
with a running time that improves upon [32] and does not require the network to be connected. We
remark that our algorithm terminates in linear time when ℓ is constant.

Generalized Counting. Our results on this problem are direct generalizations of [24] to the
case of multiple leaders and disconnected networks. The best previous counting algorithm with
multiple known leaders is the one in [34], which terminates in O

(
n4 log3(n)/ℓ

)
rounds and assumes

the network to be connected at each round. In the same setting, our stabilizing and terminating
algorithms have running times of 2n rounds and (ℓ2 + ℓ+ 1)n rounds, respectively.

The only other result for disconnected networks is the recent preprint [33], which gives an
algorithm that terminates in Õ

(
n2T+3/ℓ

)
rounds using O(log n)-sized messages. Our terminating

algorithm has a linear dependence on both n and T , which is an exponential improvement upon the
running time of [33], but it requires polynomial-sized messages.

2 Definitions and Preliminaries

We will give preliminary definitions and results, and recall some properties of history trees from [24].

Processes and networks. A dynamic network is modeled by an infinite sequence G = (Gt)t≥1,
where Gt = (V,Et) is an undirected multigraph whose vertex set V = {p1, p2, . . . , pn} is a system of
n anonymous processes and Et is a multiset of edges representing links between processes.

Each process pi starts with an input λ(pi), which is assigned to it at round 0. It also has an
internal state, which is initially determined by λ(pi). At each round t ≥ 1, every process composes
a message (depending on its internal state) and broadcasts it to its neighbors in Gt through all its
incident links.9 By the end of round t, each process reads all messages coming from its neighbors

8More generally, averaging algorithms based on Metropolis rules cannot be applied to our model, because they
require all processes to know their out-degree before the broadcast phase of each round. This was noted by Charron-
Bost et al. in [16]: “Unfortunately, local algorithms cannot implement the Metropolis rule over dynamic networks.
[...] an agent’s next estimate xi(t) depends on information present within distance 2 of agent i in the communication
graph G(t), which is not local enough when the network is subject to change”.

9In order to model wireless radio communication, it is natural to assume that each process in a dynamic network
broadcasts its messages to all its neighbors (a message is received by anyone within communication range). The
network’s anonymity prevents processes from specifying single destinations.
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Problem Reference Leaders Disconn. Term. Notes Running time

Average
Consensus

[42] ℓ = 0 ✓
ϵ-convergence, T unknown, upper bound
on processes’ degrees known

O(Tn3 log(1/ϵ))

[16] ℓ = 0 ϵ-convergence O(n4 log(n/ϵ))

[15] ℓ = 0 randomized Monte Carlo O(n)

[32] ℓ ≥ 1 ✓ ℓ known O(n5 log3(n)/ℓ)

this work
ℓ = 0 ✓ T unknown 2Tn

ℓ = 0 ✓ ✓ T and N ≥ n known T (n+N)

(Generalized)
Counting

[24]
ℓ = 1 2n− 2

ℓ = 1 ✓ 3n− 2

[34] ℓ ≥ 1 ✓ ℓ known O(n4 log3(n)/ℓ)

[33] ℓ ≥ 1 ✓ ✓ ℓ and T known, O(logn)-size messages Õ(n2T+3/ℓ)

this work
ℓ ≥ 1 ✓ ℓ known, T unknown 2Tn

ℓ ≥ 1 ✓ ✓ ℓ and T known (ℓ2 + ℓ+ 1)Tn

Table 1: Comparing results for Average Consensus and Counting in anonymous dynamic networks.
For algorithms that support disconnected networks, T indicates the dynamic disconnectivity.

and updates its internal state according to a local algorithm A. Note that A is deterministic and is
the same for all processes.10 The input of each process also includes a leader flag. The processes
whose leader flag is set are called leaders (or supervisors). We will denote the number of leaders as
ℓ.

Each process also returns an output at the end of each round, which is determined by its current
internal state. A system is said to stabilize if the outputs of all its processes remain constant from a
certain round onward; note that a process’ internal state may still change even when its output is
constant. A process may also decide to explicitly terminate and no longer update its internal state.
When all processes have terminated, the system is said to terminate, as well.

We say that A computes a function F if, whenever the processes are assigned inputs λ(p1), λ(p2),
. . . , λ(pn) and all processes execute the local algorithm A at every round, the system eventually
stabilizes with each process pi giving the desired output F (pi, λ).

11 A stronger notion of computation
requires the system to not only stabilize but also to explicitly terminate with the correct output.
The (worst-case) running time of A, as a function of n, is the maximum number of rounds it takes
for the system to stabilize (and optionally terminate), taken across all possible dynamic networks of
size n and all possible input assignments.

Classes of functions. Let µλ = {(z1,m1), (z2,m2), . . . , (zk,mk)} be the multiset of all processes’
inputs. That is, for all 1 ≤ i ≤ k, there are exactly mi processes pj1 , pj2 , . . . , pjmi

whose input is

zi = λ(pj1) = λ(pj2) = · · · = λ(pjmi
); note that n =

∑k
i=1mi. A multi-aggregate function is defined

as a function F of the form F (pi, λ) = ψ(λ(pi), µλ), i.e., such that the output of each process
depends only on its own input and the multiset of all processes’ inputs.

The special multi-aggregate functions FC(pi, λ) = n and FGC(pi, λ) = µλ are called the Counting
function and the Generalized Counting function, respectively. It is known that, if a system can
compute the Generalized Counting function FGC , then it can compute any multi-aggregate function

10This network model bears some similarities with Population Protocols, although there are radical differences
in the way symmetry is handled. The point-to-point communication model of Population Protocols automatically
breaks the symmetry between communicating agents, greatly simplifying problems such as Leader Election, Average
Consensus, etc.

11Formally, a function computed by a system of n processes maps n-tuples of input values to n-tuples of output
values. Writing such a function as F (pi, λ) emphasizes that the output of a process may depend on all processes’
inputs, as well as on the process itself. That is, different processes may give different outputs.
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in the same number of rounds: thus, FGC is complete for the class of multi-aggregate functions [24].
For any α ∈ R+, we define α · µλ as {(z1, α ·m1), (z2, α ·m2), . . . , (zk, α ·mk)}. We say that a

multi-aggregate function F (pi, λ) = ψ(λ(pi), µλ) is frequency-based if ψ(z, µλ) = ψ(z, α ·µλ) for every
positive integer α and every input z (see [28]). That is, F depends only on the “frequency” of each
input in the system, rather than on their actual multiplicities. Notable examples include statistical
functions such as mean, variance, maximum, median, mode, etc. The problem of computing the
mean of all input values is called Average Consensus [6, 15, 16, 17, 26, 32, 42, 43, 45, 46, 47, 51, 54].

The frequency-based multi-aggregate function FR(pi, λ) =
1
n · µλ is called Frequency function,

and is complete for the class of frequency-based multi-aggregate functions, as shown below.

Proposition 2.1. If FR can be computed (with termination), then all frequency-based multi-aggregate
functions can be computed (with termination) in the same number of rounds, as well.

Proof. Suppose that a process pi has determined 1
n · µλ = {(z1,m1/n), (z2,m2/n), . . . , (zk,mk/n)}.

Then it can immediately find the smallest integer d > 0 such that d · (mi/n) is an integer for all
1 ≤ i ≤ k. Note that d

n · µλ is a multiset. Hence, in the same round, pi can compute any desired

function ψ(λ(pi),
d
n · µλ), and thus any frequency-based multi-aggregate function, by definition.

History trees. History trees were introduced in [24] as a tool of investigation for anonymous
dynamic networks; an example is found in Figure 1. A history tree is a representation of a dynamic
network given some inputs to the processes. It is an infinite graph whose nodes are partitioned into
levels Lt, with t ≥ −1; each node in Lt represents a class of processes that are indistinguishable
at the end of round t (with the exception of L−1, which contains a single node r representing all
processes). The definition of distinguishability is inductive: at the end of round 0, two processes are
distinguishable if and only if they have different inputs. At the end of round t ≥ 1, two processes
are distinguishable if and only if they were already distinguishable at round t− 1 or if they have
received different multisets of messages at round t.

Each node in level L0 has a label indicating the input of the processes it represents. There are
also two types of edges connecting nodes in adjacent levels. The black edges induce an infinite tree
rooted at node r ∈ L−1 which spans all nodes. The presence of a black edge {v, v′}, with v ∈ Lt

and v′ ∈ Lt+1, indicates that the child node v′ represents a subset of the processes represented by
the parent node v. The red multi-edges represent communications between processes. The presence
of a red edge {v, v′} with multiplicity m, with v ∈ Lt and v

′ ∈ Lt+1, indicates that, at round t+ 1,
each process represented by v′ receives m (identical) messages from processes represented by v.

As time progresses and processes exchange messages, they are able to locally construct finite
portions of the history tree. In [24], it is shown that there is a local algorithm A∗ that allows each
process to locally construct and update its own view of the history tree at every round. The view of
a process p at round t ≥ 0 is the subgraph of the history tree which is spanned by all the shortest
paths (using black and red edges indifferently) from the root r to the node in Lt representing p
(see Figure 1). As proved in [24, Theorem 3.1], the view of a process at round t contains all the
information that the process may be able to use at that round. This justifies the convention that
all processes always execute A∗, constructing their local view of the history tree and broadcasting
(a representation of) it at every round, regardless of their task. Then, they simply compute their
task-dependent outputs as a function of their respective views.

We define the anonymity of a node v of the history tree as the number of processes that v
represents, and we denote it as a(v). It follows that

∑
v∈Lt

a(v) = n for all t ≥ −1, and that the
anonymity of a node is equal to the sum of the anonymities of its children. Naturally, a process is
not aware of the anonymities of the nodes in its view of the history tree, unless it can somehow
infer them from the view’s structure itself. In fact, computing the Generalized Counting function is
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Figure 1: The first rounds of a dynamic network with n = 9 processes and the corresponding levels of
the history tree. Level Lt consists of all nodes at distance t+1 from the root r. The multiplicities of
the red multi-edges of the history tree are explicitly indicated only when greater than 1. The letters
A, B, C denote processes’ inputs; all other labels have been added for the reader’s convenience, and
indicate classes of indistinguishable processes (non-trivial classes are also indicated by dashed blue
lines). Note that the two processes in b4 are still indistinguishable at the end of round 2, although
they are linked to the distinguishable processes b5 and b6. This is because such processes were in
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equivalent to determining the anonymities of all the nodes in L0. Similarly, computing the Frequency
function corresponds to determining the value a(v)/n for all v ∈ L0.

Computation in disconnected networks. Although the network Gt at each individual round
may be disconnected, we assume the dynamic network to be T -union-connected. That is, there is a
dynamic disconnectivity parameter T ≥ 1 such that the sum of any T consecutive Gt’s is a connected

multigraph.12 Thus, for all i ≥ 1, the multigraph
(
V,

⋃i+T−1
t=i Et

)
is connected (we remark that a

union of multisets adds together the multiplicities of equal elements).13

Proposition 2.2. Any non-trivial function is impossible to compute with termination unless the
processes have some knowledge about T . (A function is “trivial” if it can be computed locally.)

Proof. A function F (pi, λ) is trivial if and only if it is of the form F (pi, λ) = ψ(λ(pi)), i.e., the
output of any process pi depends only on its input λ(pi), and not on the inputs of other processes.
Assume for a contradiction that a non-trivial function F (pi, λ) is computed with termination by an
algorithm A with no knowledge of T .

Since F is non-trivial, there is an input value z and two distinct output values y and y′ with the
following properties. (i) If p1 is the only process in a network (i.e., n = 1), and p1 is assigned input
z and executes A, it terminates in t rounds with output y. (ii) There exists a network size ñ > 1
and an input assignment λ with λ(p1) = z such that, whenever the processes in a network of size ñ
are assigned input λ and execute A, the process p1 eventually terminates with output y′ ̸= y.

Let us now consider a dynamic network of ñ processes, where p1 is kept disconnected from all
other processes for the first t rounds (hence T > t). Assign input λ to the processes, and let them
execute algorithm A. Due to property (i), since p1 is isolated for t rounds and has no knowledge
of T , it terminates in t rounds with output y. This contradicts property (ii), which states that p1
should terminate with output y′ ̸= y.

Proposition 2.3. A function F can be computed (with termination) within f(n) rounds in any
dynamic network with T = 1 if and only if F can be computed (with termination) within T · f(n)
rounds in any dynamic network with T ≥ 1, assuming that T is known to all processes.

Proof. Subdivide time into blocks of T consecutive rounds, and consider the following algorithm.
Each process collects and stores all messages it receives within a same block, and updates its state
all at once at the end of the block. This reduces any T -union-connected network G = ((V,Et))t≥1

to a 1-union-connected network G′ = ((V,E′
t))t≥1, where E

′
t =

⋃tT
i=(t−1)T+1Ei. Thus, if F can be

computed within f(n) rounds in all 1-union-connected networks (which include G′), then F can be
computed within Tf(n) rounds in the original network G.14

Conversely, consider a 1-union-connected network G, and construct a T -union-connected network
G′ by inserting T − 1 empty rounds (i.e., rounds with no links at all) between every two consecutive
rounds of G. Since no information circulates during the empty rounds, if F cannot be computed
within f(n) rounds in G, then F cannot be computed within Tf(n) rounds in G′ (recall that running
times are measured in the worst case across all possible networks).

12By definition, the sum of (multi-)graphs is obtained by adding together their adjacency matrices.
13Our T -union-connected networks should not be confused with the T -interval-connected networks from [36]. In

those networks, the intersection (as opposed to the union) of any T consecutive Et’s induces a connected (multi)graph.
In particular, a T -interval-connected network is connected at every round, while a T -union-connected network may
not be, unless T = 1. Incidentally, a network is 1-interval-connected if and only if it is 1-union-connected.

14Note that this argument is correct because algorithms are required to work for all multigraphs, as opposed to
simple graphs only. Indeed, since a process pi may receive multiple messages from the same process pj within a same
block, the resulting network G′ may have multiple links between pi and pj in a same round, even if G does not.

10



Relationship with the dynamic diameter. A concept closely related to the dynamic disconnec-
tivity T of a network is its dynamic diameter (or temporal diameter) D, which is defined as the
maximum number of rounds it may take for information to travel from any process to any other
process at any point in time [10, 38]. It is a simple observation that T ≤ D ≤ T (n− 1).

We chose to use T , as opposed to D, to measure the running times of our algorithms for several
reasons. Firstly, T is well defined (i.e., finite) if and only if D is; however, T has a simpler definition,
and is arguably easier to directly estimate or enforce in a real network. Secondly, Proposition 2.3,
as well as all of our theorems, remain valid if we replace T with D; nonetheless, stating the running
times of our algorithms in terms of T is better, because T ≤ D.

3 Computation in Leaderless Networks

We will give a stabilizing and a terminating algorithm that efficiently compute the Frequency
function FR in all leaderless networks with finite dynamic disconnectivity T . As a consequence, all
frequency-based multi-aggregate functions are efficiently computable as well, due to Proposition 2.1.
Moreover, Proposition 5.1 states that no other functions are computable in leaderless networks, and
Proposition 5.2 shows that our algorithms are asymptotically optimal.

3.1 Stabilizing Algorithm

We will use the procedure in Listing 1 as a subroutine in some of our algorithms. Its purpose is to
construct a homogeneous system of k − 1 independent linear equations15 involving the anonymities
of all the k nodes in a level of a process’ view. We will first give some definitions.

In (a view of) a history tree, if a node v ∈ Lt has exactly one child (i.e., there is exactly one
node v′ ∈ Lt+1 such that {v, v′} is a black edge), we say that v is non-branching. We say that
two non-branching nodes v1, v2 ∈ Lt, whose respective children are v′1, v

′
2 ∈ Lt+1, are exposed with

multiplicity (m1,m2) if the red edges {v′1, v2} and {v′2, v1} are present with multiplicities m1 ≥ 1
and m2 ≥ 1, respectively. A strand is a path (w1, w2, . . . , wk) in (a view of) a history tree consisting
of non-branching nodes such that, for all 1 ≤ i < k, the node wi is the parent of wi+1. We say that
two strands P1 and P2 are exposed if there are two exposed nodes v1 ∈ P1 and v2 ∈ P2.

Intuitively, the procedure in Listing 1 searches for a long-enough sequence of levels in the given
view V , say from Ls to Lt, where all nodes are non-branching. That is, the nodes in Ls∪Ls+1∪· · ·∪Lt

can be partitioned into k = |Ls| = |Lt| strands. Then the procedure searches for pairs of exposed
strands, each of which yields a linear equation involving the anonymities of some nodes of Lt, until
it obtains k − 1 linearly independent equations.16 Note that the search may fail (in which case
Listing 1 returns t = −1) or it may produce incorrect equations. The following lemma specifies
sufficient conditions for Listing 1 to return a correct and non-trivial system of equations for some
t ≥ 0.

Lemma 3.1. Let V be the view of a process in a T -union-connected network of size n taken at
round t′, and let Listing 1 return (t, S) on input V. Assume that one of the following conditions
holds:

1. t ≥ 0 and t′ ≥ t+ Tn, or

2. t′ ≥ 2Tn.

15A linear system is homogeneous if all its constant terms are zero.
16The reason why we have to consider strands spanning several levels of the history tree (as opposed to looking at a

single level) is that the dynamic disconnectivity T is not known, and thus Proposition 2.3 cannot be applied directly.
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Listing 1: Constructing a system of equations in the anonymities of some nodes in a view.

1 # Input: a view V with levels L−1, L0, L1, . . ., Lh

2 # Output: (t, S), where t is an integer and S is a system of linear equations

3
4 Assign s := 0
5 For t := 0 to h
6 If Lt contains a node with no children , return (−1, ∅)
7 If Lt contains a node with more than one child , assign s := t+ 1
8 Else

9 Let k = |Ls| = |Lt| and let ui be the ith node in Lt

10 Let Pi be the strand starting in Ls and ending in ui ∈ Lt

11 Let P = {P1, P2, . . . , Pk}
12 Let G be the graph on P whose edges are pairs of exposed strands

13 If G is connected

14 Let G′ ⊆ G be any spanning tree of G
15 Assign S := ∅
16 For each edge {Pi, Pj} of G′

17 Find any two exposed nodes v1 ∈ Pi and v2 ∈ Pj

18 Let (m1,m2) be the multiplicity of the exposed pair (v1, v2)
19 Add to S the equation m1xi = m2xj
20 Return (t, S)

Then, 0 ≤ t ≤ Tn, and S is a homogeneous system of k − 1 independent linear equations (with
integer coefficients) in k = |Lt| variables x1, x2, . . . , xk. Moreover, S is satisfied by assigning to xi
the anonymity of the ith node of Lt, for all 1 ≤ i ≤ k.

Proof. It is well known that, if T = 1, information takes less than n rounds to travel from a process
to any other process [36]. Thus, if T ≥ 1, it takes less than Tn rounds (cf. Proposition 2.3). Since
V is a view taken at round 2Tn (or after), all levels of V up to Lt′−Tn+1 are complete, i.e., all nodes
in the first t′ − Tn+ 1 levels of the network’s history tree also appear in the view V.

Assume Condition 2 first. Since t′ ≥ 2Tn, all levels of V up to LTn+1 are complete. Since the
anonymity of the root of V is n, there must be less than n branching nodes in V. Therefore, the
first Tn levels contain an interval of at least T consecutive levels, say from Lr to Lr+T−1, where all
nodes are non-branching and can be partitioned into |Lr| = |Lr+T−1| strands Pi.

Note that a link between two processes at any round r′ in the interval [r + 1, r + T ] determines
a pair of exposed nodes in Lr′−1. Thus, by definition of T -union-connected network, the graph of
exposed strands between Lr and Lr+T−1 (constructed as G in Line 12) is connected. It follows
that the execution of Listing 1 terminates at Line 20 (as opposed to Line 6), at the latest when
t = r + T − 1. Thus, the procedure returns a pair (t, S) with 0 ≤ t ≤ r + T − 1 ≤ Tn. In particular,
all levels of V up to Lt+1 are complete.

Now assume Condition 1. Since t′ ≥ t + Tn, all levels of V up to Lt+1 are complete in this
case, as well. Since t ≥ 0 by assumption, the execution of Listing 1 terminates at Line 20. The
termination condition is met when long-enough strands are found; as proved above, this must
happen while t ≤ Tn.

We have proved that, in both cases, the inequalities 0 ≤ t ≤ Tn hold, and all levels of V up
to Lt+1 are complete. Let us now examine the linear system S. Observe that S is homogeneous
because it consists of homogeneous linear equations (cf. Line 19). Also, since the spanning tree
G′ constructed in Line 14 has k − 1 edges, S contains k − 1 equations. We will prove that they
are linearly independent by induction on k. If k = 1, there is nothing to prove. Otherwise, let Pi
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be a leaf of G′, and let {Pi, Pj} be its incident edge. Then, S contains an equation Q of the form
m1xi = m2xj with m1m2 ̸= 0. Let S′ be the system obtained by removing Q from S; equivalently,
S′ corresponds to the tree obtained by removing the leaf Pi from G′. By the inductive hypothesis,
no linear combination of equations in S′ yields 0 = 0. On the other hand, if Q is involved in a linear
combination with a non-zero coefficient, then the variable xi cannot vanish, because it only appears
in Q. Therefore, the equations in S are independent.

It remains to prove that a solution to S is given by the anonymities of the nodes of Lt. It was
shown in [24, Lemma 4.1] that, if v1 and v2 are exposed in V , as well as in the history tree containing
V, with multiplicity (m1,m2), then m1a(v1) = m2a(v2).

17 To conclude our proof, it is sufficient to
note that, since the nodes of a strand Pi are non-branching in V as well as in the underlying history
tree (recall that all levels of V up to Lt+1 are complete), they all have the same anonymity, which is
the anonymity of the ending node wi ∈ Lt.

Theorem 3.2. There is an algorithm that computes FR in all T -union-connected anonymous
networks with no leader and stabilizes in at most 2Tn rounds, assuming no knowledge of T or n.

Proof. Our local algorithm is as follows. Run Listing 1 on the process’ view V, obtaining a pair
(t, S). If t = −1 or S is not a homogeneous system of k − 1 independent linear equations in k
variables, output “Unknown”. Otherwise, since the rank of the coefficient matrix of S is k − 1, the
general solution to S has exactly one free parameter, due to the Rouché–Capelli theorem. Therefore,
by Gaussian elimination, it is possible to express every variable xi as a rational multiple of x1, i.e.,
xi = αix1 for some αi ∈ Q+ (note that the coefficients of S are integers). Let Lt = {w1, w2, . . . , wk}
and L0 = {v1, v2, . . . , vk′}. For every node vi ∈ L0, define βi ∈ Q+ as βi =

∑
wj∈Lt descendant of vi

αj ,

and let β =
∑

i βi. Then, output

{(label(v1), β1/β), (label(v2), β2/β), . . . , (label(vk′), βk′/β)}.

The correctness and stabilization time of the above algorithm directly follow from Lemma 3.1.
Specifically, at any round t′ ≥ 2Tn, Condition 2 of Lemma 3.1 is met, and the system S is satisfied
by the anonymities of the nodes in Lt. Thus, a(vi) = αia(v1) for all vi ∈ L0, and therefore
βi/β = a(vi)/n. We conclude that, for any input assignment λ, the algorithm stabilizes on the
correct output 1

n · µλ within 2Tn rounds.

3.2 Terminating Algorithm

We will now give a certificate of correctness that can be used to turn the stabilizing algorithm
of Theorem 3.2 into a terminating algorithm. The certificate relies on a-priori knowledge of the
dynamic disconnectivity T and an upper bound N on the size of the network n; these assumptions
are justified by Proposition 2.2 and Proposition 5.3, respectively.

Theorem 3.3. There is an algorithm that computes FR in all T -union-connected anonymous
networks with no leader and terminates in at most T (n+N) rounds, assuming that T and an upper
bound N ≥ n are known to all processes.18

Proof. Our terminating algorithm is as follows. Run Listing 1 on the process’ view V, obtaining a
pair (t, S), and then do the same computations as in the algorithm in Theorem 3.2. If t ≥ 0 and the
current round t′ satisfies t′ ≥ t+ TN , then the output is correct, and the process terminates.

17If v1 and v2 are exposed in V but not in the underlying history tree, then they have some children not in V, and
therefore the equation may not hold.

18If the dynamic diameter D of the network is known, the termination time improves to Tn+D rounds.
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The correctness of this algorithm is a direct consequence of Lemma 3.1. Indeed, the algorithm
only terminates when t ≥ 0 and t′ ≥ t+TN ≥ t+Tn, and hence it gives the correct output because
Condition 1 of Lemma 3.1 is met. As for the running time, assume that t′ = T (n + N) ≥ 2Tn.
Since Condition 2 of Lemma 3.1 is met, we have 0 ≤ t ≤ Tn. Thus, t′ = T (n+N) ≥ t+ Tn, and
the algorithm terminates at round t′.

4 Computation in Networks with Leaders

We will give a stabilizing and a terminating algorithm that efficiently compute the Generalized
Counting function FGC in all networks with ℓ ≥ 1 leaders and finite dynamic disconnectivity T .
Therefore, all multi-aggregate functions are efficiently computable as well, due to [24, Theorem 2.1].
Moreover, Proposition 5.4 states that no other functions are computable in networks with leaders,
and Proposition 5.6 shows that our algorithms are asymptotically optimal for any fixed ℓ ≥ 1.

4.1 Stabilizing Algorithm

We will once again make use of the subroutine in Listing 1, this time assuming that the number of
leaders ℓ ≥ 1 is known to all processes. This assumption is justified by Proposition 5.5.

Theorem 4.1. There is an algorithm that computes FGC in all T -union-connected anonymous
networks with ℓ ≥ 1 leaders and stabilizes in at most 2Tn rounds, assuming that ℓ is known to all
processes, but assuming no knowledge of T or n.

Proof. The algorithm proceeds as in Theorem 3.2. When the fractions β1, β2, . . . , βk′ have
been computed, as well as their sum β, we perform the following additional steps. Let L0 =
{v1, v2, . . . , vk′}, and let {vj1 , vj2 , . . . , vjl} ⊆ L0 be the set of nodes in L0 representing leader

processes,19 i.e., such that label(vji) has the leader flag set for all 1 ≤ i ≤ l. Compute β′ =
∑l

i=1 βji
and γi = ℓβi/β

′ for all 1 ≤ i ≤ k′, and output

{(label(v1), γ1), (label(v2), γ2), . . . , (label(vk′), γk′)}.

The correctness follows from the fact that, as shown in Theorem 3.2, at any round ≥ 2Tn we
have βi/β = a(vi)/n for all 1 ≤ i ≤ k′. Adding up these equations for all i ∈ {j1, j2, . . . , jl}, we
obtain β′/β = ℓ/n, and therefore n = ℓβ/β′. We conclude that

γi =
ℓβi
β′

=
ℓββi
β′β

=
nβi
β

= a(vi).

Thus, within 2Tn rounds, the algorithm stably outputs the anonymities of all nodes in L0. As
observed in Section 2, this is equivalent to computing the Generalized Counting function FGC .

4.2 Terminating Algorithm

We will now present the main result of this paper. As already remarked, giving an efficient certificate
of correctness for the (Generalized) Counting problem with multiple leaders is a highly non-trivial
task for which a radically different approach is required. Note that it is not possible to simply adapt
the single-leader algorithm in [24] by setting the anonymity of the leader node in the history tree
to ℓ instead of 1. Indeed, as soon as some leaders get disambiguated, the leader node splits into

19In general we have l ≤ ℓ, because some nodes of L0 may represent more than one leader.
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several children nodes whose anonymities are unknown (we only know that their sum is ℓ). There is
no way around this difficulty other than developing a new technique.

The subroutine ApproxCount. We first introduce the subroutine ApproxCount, whose formal
description and proof of correctness are found in Appendix A. The purpose of ApproxCount is to
compute an approximation n′ of the total number of processes n (or report various types of failure).
It takes as input a view V of a process, the number of leaders ℓ, and two integer parameters s and
x, representing the index of a level of V and the anonymity of a leader node in Ls, respectively.

Discrepancy δ. Suppose that ApproxCount is invoked with arguments V , s, x, ℓ, where 1 ≤ x ≤ ℓ,
and let τ be the first leader node in level Ls of V (if τ does not exist, the procedure immediately
returns the error code n′ = −1). We define the discrepancy δ as the ratio x/a(τ). Clearly, δ ≤ ℓ.
Note that, since a(τ) is not a-priori known by the process executing ApproxCount, then neither is δ.

Conditional anonymities. ApproxCount starts by assuming that the anonymity of τ is x, and
makes deductions on other anonymities based on this assumption. Thus, we will distinguish between
the actual anonymity of a node a(v) and the conditional anonymity a′(v) = δa(v) that ApproxCount
may compute under the initial assumption that a′(τ) = x = δa(τ).

Overview of ApproxCount. The procedure ApproxCount scans the levels of V starting from Ls,
making “guesses” on the conditional anonymities of nodes based on already known conditional
anonymities. Generalizing some lemmas from [24], we develop a criterion to determine when a guess
is correct. This yields more nodes with known conditional anonymities, and therefore more guesses
(the details are in Appendix A). As soon as it has obtained enough information, the procedure
stops and returns (n′, t), where Lt is the level scanned thus far. If the information gathered satisfies
certain criteria, then n′ is an approximation of n. Otherwise, n′ is an error code, as detailed below.

Error codes. If Ls contains no leader nodes, the procedure returns the error code n′ = −1.
If, before gathering enough information on n, the procedure encounters a descendant of τ with
more than one child in V, it returns the error code n′ = −2. If it determines that the conditional
anonymity of a node is not an integer, it returns the error code n′ = −3. Finally, if it determines
that the sum ℓ′ of the conditional anonymities of the leader nodes is not ℓ, it returns n′ = −1 if
ℓ′ < ℓ and n′ = −3 if ℓ′ > ℓ.

Correctness of ApproxCount. The following lemma gives some conditions that guarantee that
ApproxCount has the expected behavior; it also gives some bounds on the number of rounds it takes
for ApproxCount to produce an approximation n′ of n, as well as a criterion to determine if n′ = n.
The lemma’s proof is rather lengthy and technical, and is deferred to Appendix A.

Lemma 4.2. Let ApproxCount(V, s, x, ℓ) return (n′, t). Assume that τ exists and x ≥ a(τ). Let τ ′

be the (unique) descendant of τ in V at level Lt, and let Lt′ be the last level of V. Then:

(i) If x = a(τ) = a(τ ′), then n′ ̸= −3.

(ii) If n′ > 0 and t′ ≥ t+ n′ and a(τ) = a(τ ′), then n′ = n.

(iii) If t′ ≥ s+ (ℓ+2)n− 1, then s ≤ t ≤ s+ (ℓ+1)n− 1 and n′ ≠ −1. Moreover, if n′ = −2, then
Lt contains a leader node with at least two children in V.

Our terminating algorithm assumes that all processes know the number of leaders ℓ ≥ 1 and the
dynamic disconnectivity T . Again, this is justified by Proposition 5.5 and Proposition 2.2.

Theorem 4.3. There is an algorithm that computes FGC in all T -union-connected anonymous
networks with ℓ ≥ 1 leaders and terminates in at most (ℓ2 + ℓ+ 1)Tn rounds, assuming that ℓ and
T are known to all processes, but assuming no knowledge of n.
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Listing 2: Solving the Counting problem with ℓ ≥ 1 leaders.

1 # Input: a view V and a positive integer ℓ
2 # Output: either a positive integer n or "Unknown"

3
4 Assign n∗ := −1 and s := 0 and c := 0
5 Let b be the number of leader branches in V
6 While c ≤ ℓ− b
7 Assign t∗ := −1
8 For x := ℓ downto 1
9 Assign (n′, t) := ApproxCount(V, s, x, ℓ) # see Listing 3 in Appendix A

10 Assign t∗ := max{t∗, t}
11 If n′ = −1, return "Unknown"

12 If n′ = −2, break out of the for loop

13 If n′ > 0
14 If n∗ = −1, assign n∗ := n′

15 Else if n∗ ̸= n′, return "Unknown"

16 Assign c := c+ 1 and break out of the for loop

17 Assign s := t∗ + 1
18 Let Lt′ be the last level of V
19 If t′ ≥ t∗ + n∗, return n∗

20 Else return "Unknown"

Proof. Due to Proposition 2.3, since T is known and appears as a factor in the claimed running
time, we can assume that T = 1 without loss of generality. Also, note that determining n is enough
to compute FGC . Indeed, if a process determines n at round t′, it can wait until round max{t′, 2Tn}
and run the algorithm in Theorem 4.1, which is guaranteed to give the correct output by that time.

In order to determine n assuming that T = 1, we let each process run the algorithm in Listing 2
with input (V, ℓ), where V is the view of the process at the current round t′. We will prove that this
algorithm returns a positive integer (as opposed to “Unknown”) within (ℓ2 + ℓ+ 1)n rounds, and
the returned number is indeed the correct size of the system n.

Algorithm description. Let b be the number of branches in V representing leader processes
(Line 5). The initial goal of the algorithm is to compute ℓ− b+ 1 approximations of n using the
information found in as many disjoint intervals L1, L2, . . . , Lℓ−b+1 of levels of V (Lines 6–17).

If there are not enough levels in V to compute the desired number of approximations, or if the
approximations are not all equal, the algorithm returns “Unknown” (Lines 11 and 15).

In order to compute an approximation of n, say in an interval of levels Li starting at Ls, the
algorithm goes through at most ℓ phases (Lines 8–16). The first phase begins by calling ApproxCount
with starting level Ls and x = ℓ, i.e., the maximum possible value for the anonymity of a leader
node (Line 9). Specifically, ApproxCount chooses a leader node in τ ∈ Ls and tries to estimate n
using as few levels as possible.

Let (n′, t) be the pair of values returned by ApproxCount. If n′ = −1, this is evidence that V
is still missing some relevant nodes, and therefore “Unknown” is immediately returned (Line 11).
If n′ = −2, then a descendant of τ with multiple children in V was found, say at level Lt, before
an approximation of n could be determined. As this is an undesirable event, the algorithm moves
Li after Lt and tries again to estimate n (Line 12). If n′ = −3, then x may not be the correct
anonymity of the leader node τ (see the description of ApproxCount), and therefore the algorithm
calls ApproxCount again, with the same starting level Ls, but now with x = ℓ − 1. If n′ = −3 is
returned again, then x = ℓ − 2 is tried, and so on. After all possible assignments down to x = 1
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have failed, the algorithm just moves Li forward and tries again from x = ℓ.
As soon as n′ > 0, this approximation of n is stored in the variable n∗. If it is different from the

previous approximations, then “Unknown” is returned (Line 15). Otherwise, the algorithm proceeds
with the next approximation in a new interval of levels Li+1, and so on.

Finally, when ℓ − b + 1 approximations of n (all equal to n∗) have been found, a correctness
check is performed: the algorithm takes the last level Lt∗ visited thus far; if the current round t′

satisfies t′ ≥ t∗ + n∗, then n∗ is accepted as correct; otherwise “Unknown” is returned (Lines 18–20).

Correctness and running time. We will prove that, if the output of Listing 2 is not “Unknown”,
then it is indeed the number of processes, i.e., n∗ = n. Since the ℓ − b + 1 approximations of n
have been computed on disjoint intervals of levels, there is at least one such interval, say Lj , where
no leader node in the history tree has more than one child (because there can be at most ℓ leader
branches). With the notation of Lemma 4.2, this implies that a(τ) = a(τ ′) whenever ApproxCount
is called in Lj . Also, since the option x = ℓ is tried first, the assumption x ≥ a(τ) of Lemma 4.2
is initially satisfied. Note that ApproxCount cannot return n′ = −1 or n′ = −2, or else Lj would
not yield any approximation of n. Moreover, by statement (ii) and by the terminating condition
(Line 19), if n′ > 0 while x ≥ a(τ), then n∗ = n′ = n. On the other hand, by statement (i), we
necessarily have n′ > 0 by the time x = a(τ).

It remains to prove that Listing 2 actually gives an output other than “Unknown” within the
claimed number of rounds; it suffices to show that it does so if it is executed at round t′ = (ℓ2+ℓ+1)n.
It is known that all nodes in the first t′−n = ℓ(ℓ+1)n levels of the history tree are contained in the
view V at round t′ (cf. [24, Corollary 4.3]). Also, it is straightforward to prove by induction that the
assumption of statement (iii) of Lemma 4.2 holds every time ApproxCount is invoked. Indeed, in
any interval of (ℓ+1)n levels, either a branching leader node is found or a new approximation of n is
computed. Since there can be at most ℓ leader branches, at least one approximation of n is computed
within ℓ(ℓ+1)n levels. Because all nodes in these levels must appear in V , the condition a(τ) = a(τ ′)
of Lemma 4.2 is satisfied in all intervals L1, L2, . . . , Lℓ−b+1. Reasoning as in the previous paragraph,
we conclude that all such intervals must yield the correct approximation of n. So, every time Line 15
is executed, we have n∗ = n′, and the algorithm cannot return “Unknown”.

5 Negative Results

In this section we provide simple proofs of several negative results and counterexamples, some of
which are well known (in particular, Proposition 5.1 is implied by [28, Theorem III.1]). The purpose
is to justify all of the assumptions made in Sections 3 and 4.

5.1 Leaderless Networks

Proposition 5.1. No function other than the frequency-based multi-aggregate functions can be
computed with no leader, even when restricted to simple connected static networks.

Proof. Let m1, m2, . . . , mk be integers greater than 2 with gcd(m1,m2, . . . ,mk) = 1, and let B be
the complete k-partite graph with partite sets V1, V2, . . . , Vk of sizes m1, m2, . . . , mk, respectively.
For any positive integer α, construct the static network Gα consisting of α disjoint copies of B,
augmented with k cycles C1, C2, . . . , Ck such that, for each 1 ≤ i ≤ k, the cycle Ci spans all the
αmi processes in the α copies of Vi. Clearly, Gα is a simple connected static network.

Let the function λα assign input zi to all processes in the α copies of Vi in Gα, and let λ = λ1.
As a result, µλα = {(z1, αm1), (z2, αm2), . . . , (zk, αmk)} = α · µλ for all α ≥ 1. Moreover, all the
networks Gα have isomorphic history trees. This is because, at every round, each process in any of
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the copies of Vi receives exactly two messages from other processes in copies of Vi and exactly mj

messages from processes in copies of Vj , for all j ̸= i. Thus, it can be proved by induction that all
processes in the copies of Vi have isomorphic views, regardless of α.

Due to the fundamental theorem of history trees [24, Theorem 3.1], all the processes with input
zi must give the same output ψ(zi, µλ) = ψ(zi, µλα) = ψ(zi, α · µλ), regardless of α. Hence, by
definition, only frequency-based multi-aggregate functions can be computed in these networks.

Proposition 5.2. No algorithm can solve the Average Consensus problem in a T -union-connected
leaderless network in less than 2Tn−O(T ) rounds (with or without termination).

Proof. According to [24, Theorem 5.2], the number of processes n in a network with ℓ = 1 and T = 1
cannot be determined in less than 2n−O(1) rounds (with or without termination). We can reduce
this problem to Average Consensus with ℓ = 0 and T = 1 as follows. In any given network with
ℓ = T = 1, assign input 1 to the leader and clear its leader flag; assign input 0 to all other processes.
If the processes can compute the mean input value, 1/n, they can invert it to obtain n in the same
number of rounds. It follows that Average Consensus with ℓ = 0 and T = 1 cannot be solved in less
than 2n−O(1) rounds; this immediately generalizes to an arbitrary T by Proposition 2.3.

Proposition 5.3. No algorithm can solve the leaderless Average Consensus problem with explicit
termination if nothing is known about the size of the network, even when restricted to simple
connected static networks.

Proof. Assume for a contradiction that there is such an algorithm A. Let G be a static network
consisting of three processes forming a cycle, and assign input 0 to all of them. If the processes
execute A, they eventually output the mean value 0 and terminate, say in t rounds.

Now construct a static network G′ consisting of a cycle of 2t + 2 processes p1, p2, . . . , p2t+2;
assign input 1 to p1 and input 0 to all other processes. It is easy to see that, from round 0 to
round t, the view of the process pt+1 is isomorphic to the view of any process in G. Therefore, if
pt+1 executes A, it terminates in t rounds with the incorrect output 0. Thus, A is incorrect.

5.2 Networks with Leaders

Proposition 5.4. No function other than the multi-aggregate functions can be computed (with or
without termination), even when restricted to simple connected static networks with a known number
of leaders.

Proof. It is sufficient to construct a static network where all processes with the same input are
indistinguishable at every round. Such is, for example, the complete graph Kn, where the output of a
process can only depend on its input and the multiset of all processes’ inputs [24, Theorem 5.1]. This
is the definition of a multi-aggregate function, and thus no other functions can be computed.

Proposition 5.5. No algorithm can compute the Counting function FC (with or without termination)
with no knowledge about ℓ, even when restricted to simple connected static networks with a known
and arbitrarily small ratio ℓ/n.

Proof. Let us fix a positive integer k; we will construct an infinite class of networks whose ratio
ℓ/n is 1/k as follows. For every i ≥ 3, let Gi be the static network consisting of a cycle of ni = k · i
processes of which ℓi = i are leaders, such that the leaders are evenly spaced among the non-leaders.
Assume that all processes get the same input (apart from their leader flags). Then, at any round,
all the leaders in all of these networks have isomorphic views, which are independent of i. It follows
that, if nothing is known about ℓi (other than the ratio ℓi/ni, which is fixed), all the leaders in all
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the networks Gi always give equal outputs. Since the number of processes ni depends on i, it follows
that at most one of these networks can stabilize on the correct output ni.

Proposition 5.6. For any ℓ ≥ 1, no algorithm can compute the Counting function FC (with
or without termination) in all simple T -union-connected networks with ℓ leaders in less than
T (2n− ℓ)−O(T ) rounds.

Proof. It was shown in [24, Theorem 5.2] that there is a family of simple 1-union-connected networks
Gn, with n ≥ 1, with the following properties. Gn has ℓ = 1 leader and n processes in total; moreover,
up to round 2n−O(1), the leaders of Gn and Gn+1 have isomorphic views.

Let us fix ℓ ≥ 1, and let us construct G′
n, for n ≥ ℓ, by attaching a chain of ℓ−1 additional leaders

p1, p2, . . . , pℓ−1 to the single leader pℓ of Gn−ℓ+1 at every round. Note that G′
n has n processes in

total and a stable subpath (p1, p2, . . . , pℓ) which is attached to the rest of the network via pℓ.
It is straightforward to see that the process pℓ in G′

n and the process pℓ in G′
n+1, which correspond

to the leaders of Gn−ℓ+1 and Gn−ℓ+2 respectively, have isomorphic views up to round 2(n− ℓ)−O(1).
Since the view of p1 is completely determined by the view of pℓ, and it takes ℓ− 1 rounds for any
information to travel from pℓ to p1, we conclude that the process p1 in G′

n and the process p1 in
G′
n+1 have isomorphic views up to round 2n− ℓ−O(1).
Thus, up to that round, the two processes must give an equal output, implying that they cannot

both output the number of processes in their respective networks. It follows that the Counting
function with ℓ ≥ 1 leaders and T = 1 cannot be computed in less than 2n− ℓ−O(1) rounds, which
generalizes to an arbitrary T by Proposition 2.3.

6 Conclusions

We have shown that anonymous processes in disconnected dynamic networks can compute all the
multi-aggregate functions and no other functions, provided that the network contains a known
number of leaders ℓ ≥ 1. If there are no leaders or the number of leaders is unknown, the
class of computable functions reduces to the frequency-based multi-aggregate functions. We have
also identified the functions FGC and FR as the complete problems for each class. Notably, the
network’s dynamic disconnectivity T does not affect the computability of functions, but only makes
computation slower.

Moreover, we gave efficient stabilizing and terminating algorithms for computing all the afore-
mentioned functions. Some of our algorithms make assumptions on the processes’ a-priori knowledge
about the network; we proved that such assumptions are actually necessary. All our algorithms
have optimal linear running times in terms of T and the size of the network n.

In one case, there is still a small gap in terms of the number of leaders ℓ. Namely, for terminating
computation with ℓ ≥ 1 leaders, we have a lower bound of T (2n− ℓ)−O(T ) rounds (Proposition 5.6)
and an upper bound of (ℓ2+ ℓ+1)Tn rounds (Theorem 4.3). Although these bounds asymptotically
match if the number of leaders ℓ is constant (which is a realistic assumption in most applications),
optimizing them with respect to ℓ is left as an open problem.

Observe that our stabilizing algorithms use an unbounded amount of memory, as processes keep
adding nodes to their view at every round. This can be avoided if the dynamic disconnectivity T
(as well as an upper bound on n, in case of a leaderless network) is known: In this case, processes
can run the stabilizing and the terminating version of the relevant algorithm in parallel, and stop
adding nodes to their views when the terminating algorithm halts. It is an open problem whether a
stabilizing algorithm for FGC or FR can use a finite amount of memory with no knowledge of T .
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Our algorithms require processes to send each other explicit representations of their history
trees, which have cubic size in the worst case [24]. It would be interesting to develop algorithms
that only send messages of logarithmic size, possibly with a trade-off in terms of running time. We
are currently able to do so for leaderless networks and networks with a unique leader, but not for
networks with more than one leader [25].

We also wonder if our results hold more generally for networks where communications are not
necessarily synchronous. We conjecture that our algorithms can be generalized to networks where
messages may be delayed by a bounded number of rounds or processes may be inactive for some
rounds (provided that a “global fairness” condition is met).

20



APPENDIX

A The Subroutine ApproxCount and Its Correctness

In this section we define the subroutine ApproxCount(V, s, x, ℓ) introduced in Section 4.2 and invoked
in Listing 2. Its starting point is the algorithm in [24, Section 4.2], with the added difficulty that
here we have a strand of leader nodes in the view V hanging from the first leader node τ in level Ls,
where the anonymity a(τ) is an unknown number not greater than ℓ (as opposed to a(τ) = 1, which
is assumed in [24]). The algorithm begins by assuming that a(τ) is the given parameter x, and then
it makes deductions on the anonymities of other nodes until it is able to make an estimate n′ > 0
on the total number of processes, or report failure in the form of an error code n′ ∈ {−1,−2,−3}.
In particular, since the algorithm requires the existence of a long-enough strand hanging from τ ,
it reports failure if some descendants of τ (in the relevant levels of V) have more than one child.
Another important difficulty that is unique to the multi-leader case is that, even if V contains a
long-enough strand of leader nodes, some nodes in the strand may still be branching in the history
tree (that is, the chain of leader nodes is branching, but only one branch appears in V). We will
first revisit and generalize [24, Section 4.2] in order to formally state our new subroutine and prove
its correctness and running time. We will conclude this section with a proof of Lemma 4.2.

We remark that ApproxCount assumes that the network is 1-union-connected, as this is sufficient
for the main result of Section 4.2 to hold for any T -union-connected network (see the proof of
Theorem 4.3).

Discrepancy δ. Suppose that ApproxCount is invoked with arguments V , s, x, ℓ, where 1 ≤ x ≤ ℓ,
and let τ be the first leader node in level Ls of V (if τ does not exist, the procedure immediately
returns the error code n′ = −1). We define the discrepancy δ as the ratio x/a(τ). Clearly,
1/ℓ ≤ δ ≤ ℓ. Note that, since a(τ) is not a-priori known by the process executing ApproxCount,
then neither is δ.

Conditional anonymity. ApproxCount starts by assuming that the anonymity of τ is x, and
makes deductions on other anonymities based on this assumption. Thus, we will distinguish between
the actual anonymity of a node a(v) and the conditional anonymity a′(v) = δa(v) that ApproxCount
may compute under the initial assumption that a′(τ) = x = δa(τ).

Guessing conditional anonymities. Let u be a node of a history tree, and assume that the
conditional anonymities of all its children u1, u2, . . . , uk have been computed: such a node u is
called a guesser. If v is not among the children of u but it is at their same level, and the red edge
{v, u} is present with multiplicity m ≥ 1, we say that v is guessable by u. In this case, we can make
a guess g(v) on the conditional anonymity a′(v):

g(v) =
a′(u1) ·m1 + a′(u2) ·m2 + · · ·+ a′(uk) ·mk

m
, (1)

where mi is the multiplicity of the red edge {ui, v′} for all 1 ≤ i ≤ k, and v′ is the parent of v
(possibly, mi = 0). Note that g(v) may not be an integer. Although a guess may be inaccurate, it
never underestimates the conditional anonymity:

Lemma A.1. If v is guessable, then g(v) ≥ a′(v). Moreover, if v has no siblings, g(v) = a′(v).

Proof. Let u, v′ ∈ Lt, and let P1 and P2 be the sets of processes represented by u and v′, respectively.
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By counting the links between P1 and P2 in Gt+1 in two ways, we have∑
i

a(ui)mi =
∑
i

a(vi)m
′
i ≥ a(v)m,

where the two sums range over all children of u and v′, respectively (note that v = vj for some j),
and m′

i is the multiplicity of the red edge {vi, u} (so, m = m′
j). Our lemma now easily follows from

the above equation and from the definition of conditional anonymity.

Heavy nodes. As the algorithm in [24], also our subroutine ApproxCount assigns guesses in a
well-spread fashion, i.e., in such a way that at most one node per level is assigned a guess.

Suppose now that a node v has been assigned a guess. We define its weight w(v) as the number
of nodes in the subtree hanging from v that have been assigned a guess (this includes v itself).
Recall that subtrees are determined by black edges only. We say that v is heavy if w(v) ≥ ⌊g(v)⌋.

Lemma A.2. Assume that δ ≥ 1. In a well-spread assignment of guesses, if w(v) > a′(v), then
some descendants of v are heavy (the descendants of v are the nodes in the subtree hanging from v
other than v itself).

Proof. Our proof is by well-founded induction on w(v). Assume for a contradiction that no
descendants of v are heavy. Let v1, v2, . . . , vk be the “immediate” descendants of v that have
been assigned guesses. That is, for all 1 ≤ i ≤ k, no internal nodes of the black path with
endpoints v and vi have been assigned guesses (observe that k ≥ 1 because, by assumption,
w(v) > a′(v) = δa(v) ≥ a(v) ≥ 1).

By the basic properties of history trees, a(v) ≥
∑

i a(vi), and therefore a′(v) ≥
∑

i a
′(vi). Also,

the induction hypothesis implies that w(vi) ≤ a′(vi) for all 1 ≤ i ≤ k, or else one of the vi’s would
have a heavy descendant. Therefore,

w(v)− 1 =
∑
i

w(vi) ≤
∑
i

a′(vi) ≤ a′(v) < w(v).

Observe that all the terms in this chain of inequalities are between the two consecutive integers
w(v)− 1 and w(v). It follows that

w(vi) ≤ a′(vi) < w(vi) + 1

for all 1 ≤ i ≤ k. Also,

a′(v)− 1 <
∑
i

a′(vi) ≤ a′(v).

However, since every conditional anonymity is an integer multiple of the discrepancy δ ≥ 1, we
conclude that a′(v) =

∑
i a

′(vi). Hence, a(v) =
∑

i a(vi).
Let vd be the deepest of the vi’s, which is unique, since the assignment of guesses is well spread.

Note that vd has no siblings at all, otherwise we would have a(v) >
∑

i a(vi). Due to Lemma A.1,
we have g(vd) = a′(vd). Thus,

w(vd) ≤ a′(vd) = g(vd) < w(vd) + 1,

which implies that ⌊g(vd)⌋ = w(vd), and so vd is heavy.

Correct guesses. We say that a node v has a correct guess if v has been assigned a guess and
g(v) = a′(v). The next lemma gives a criterion to determine if a guess is correct.
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Lemma A.3. Assume that δ ≥ 1. In a well-spread assignment of guesses, if a node v is heavy and
no descendant of v is heavy, then v has a correct guess or the guess on v is not an integer.

Proof. If g(v) is not an integer, there is nothing to prove. Otherwise, because v is heavy, g(v) =
⌊g(v)⌋ ≤ w(v). Since v has no heavy descendants, Lemma A.2 implies w(v) ≤ a′(v). Also, by
Lemma A.1, a′(v) ≤ g(v). We conclude that

g(v) ≤ w(v) ≤ a′(v) ≤ g(v).

Therefore g(v) = a′(v), and v has a correct guess.

When the criterion in Lemma A.3 applies to a node v, we say that v has been counted. So,
counted nodes are nodes that have been assigned a guess, which was then confirmed to be the
correct conditional anonymity.

Cuts and isles. Fix a view V of a history tree H. A set of nodes C in V is said to be a cut for a
node v /∈ C of V if two conditions hold: (i) for every leaf v′ of V that lies in the subtree hanging
from v, the black path from v to v′ contains a node of C, and (ii) no proper subset of C satisfies
condition (i). A cut for the root r whose nodes are all counted is said to be a counting cut.

Let s be a counted node in V, and let F be a cut for v whose nodes are all counted. Then, the
set of nodes spanned by the black paths from s to the nodes of F is called isle; s is the root of the
isle, while each node in F is a leaf of the isle. The nodes in an isle other than the root and the
leaves are called internal. An isle is said to be trivial if it has no internal nodes.

If s is an isle’s root and F is its set of leaves, we have a(s) ≥
∑

v∈F a(v), because s may have
some descendants in the history tree H that do not appear in the view V. This is equivalent to
a′(s) ≥

∑
v∈F a

′(v). If equality holds, then the isle is said to be complete; in this case, we can easily
compute the conditional anonymities of all the internal nodes by adding them up starting from the
nodes in F and working our way up to s.

Overview of ApproxCount. Our subroutine ApproxCount is found in Listing 3. It repeatedly
assigns guesses to nodes based on known conditional anonymities, starting from τ and its descendants.
Eventually some nodes become heavy, and the criterion in Lemma A.3 causes the deepest of them
to become counted. In turn, counted nodes eventually form isles; the internal nodes of complete
isles are marked as counted, which gives rise to more guessers, and so on. In the end, if a counting
cut is created, the algorithm checks whether the conditional anonymities of the leader nodes in the
cut add up to ℓ.

Algorithmic details of ApproxCount. The algorithm ApproxCount uses flags to mark nodes as
“guessed” or “counted”; initially, no node is marked. Thanks to these flags, we can check if a node
u ∈ V is a guesser: let u1, u2, . . . , uk be the children of u that are also in V (recall that a view does
not contain all nodes of a history tree); u is a guesser if and only if it is marked as counted, all
the ui’s are marked as counted, and a′(u) =

∑
i a

′(ui) (which implies a(u) =
∑

i a(ui), and thus no
children of u are missing from V).

ApproxCount will ensure that nodes marked as guessed are well-spread at all times; if a level of
V contains a guessed node, it is said to be locked. A level Lt is guessable if it is not locked and has
a non-counted node v that is guessable, i.e., there is a guesser u in Lt−1 and the red edge {v, u} is
present in V with positive multiplicity.

The algorithm starts by assigning a conditional anonymity a′(τ) = x to the first leader node
τ ∈ Ls. (If no leader node exists in Ls, it immediately returns the error code −1, Line 6.) It also
finds the longest strand Pτ hanging from τ , assigns the same conditional anonymity x to all of its
nodes (including the unique child of the last node of Pτ ) and marks them as counted (Lines 7–11).
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Listing 3: The subroutine ApproxCount invoked in Listing 2

1 # Input: a view V and three integers s, x, ℓ
2 # Output: a pair of integers (n′, t)
3
4 Let L−1, L0, L1, . . . be the levels of V
5 Assign t := s
6 If Ls does not contain any leader nodes , return (−1, t)
7 Let τ be the first leader node in Ls

8 Mark all nodes in V as not guessed and not counted

9 Assign u := τ ; assign a′(u) := x; mark u as counted

10 While u has a unique child u′ in V
11 Assign u := u′; assign a′(u) := x; mark u as counted

12 While there are guessable levels and a counting cut has not been found

13 Let v be a guessable non -counted node of smallest depth in V
14 Let Lt′ be the level of v; assign t := max{t, t′}
15 Assign a guess g(v) to v as in Equation (1); mark v as guessed

16 Let Pv be the black path from v to its ancestor in Ls

17 If there is a heavy node in Pv

18 Let v′ be the heavy node in Pv of maximum depth

19 If g(v′) is not an integer , return (−3, t)
20 Assign a′(v′) := g(v′); mark v′ as counted and not guessed

21 If v′ is the root or a leaf of a non -trivial complete isle I
22 For each internal node w of I
23 Assign a′(w) :=

∑
w′ leaf of I and descendant of w a

′(w′)
24 Mark w as counted and not guessed

25 If no counting cut has been found , return (−2, t)
26 Else

27 Let C be a counting cut between Ls and Lt

28 Let n′ =
∑

v∈C a
′(v)

29 Let ℓ′ =
∑

v leader node in C a
′(v)

30 If ℓ′ < ℓ, return (−1, t)
31 If ℓ′ > ℓ, return (−3, t)
32 Return (n′, t)
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Then, as long as there are guessable levels and no counting cut has been found yet, the algorithm
keeps assigning guesses to non-counted nodes (Line 12).

When a guess is made on a node v, some nodes in the path from v to its ancestor in Ls may
become heavy; if so, let v′ be the deepest heavy node. If g(v′) is not an integer, the algorithm
returns the error code −3 (Line 19). (As we will prove later, this can only happen if δ ̸= 1 or some
nodes in the strand Pτ have children that are not in the view V.) Otherwise, if g(v′) is an integer,
the algorithm marks v′ as counted (Line 20), in accordance with Lemma A.3. Furthermore, if the
newly counted node v′ is the root or a leaf of a complete isle I, then the conditional anonymities of
all the internal nodes of I are determined, and such nodes are marked as counted; this also unlocks
their levels if such nodes were marked as guessed (Lines 21–24).

In the end, the algorithm performs a “reality check” and possibly returns an estimate n′ of
n, as follows. If no counting cut was found, the algorithm returns the error code −2 (Line 25).
Otherwise, a counting cut C has been found. The algorithm computes n′ (respectively, ℓ′) as the
sum of the conditional anonymities of all nodes (respectively, all leader nodes) in C. If ℓ′ = ℓ, then
the algorithm returns n′ (Line 32). Otherwise, it returns the error code −1 if ℓ′ < ℓ (Line 30) or the
error code −3 if ℓ′ > ℓ (Line 31). In all cases, the algorithm also returns the maximum depth t of a
guessed or counted node (excluding τ and its descendants), or s if no such node exists.

Consistency condition. In order for our algorithm to work properly, a condition has to be satisfied
whenever a new guess is made. Indeed, note that all of our previous lemmas on guesses rest on the
assumption that the conditional anonymities of a guesser and all of its children are known. However,
while the node τ has a known conditional anonymity (by definition, a′(τ) = x), the same is not
necessarily true of the descendants of τ and all other nodes that are eventually marked as counted
by the algorithm. This justifies the following definition.

Condition 1. During the execution of ApproxCount, if a guess is made on a node v at level Lt′ of
V, then τ has a (unique) descendant τ ′ ∈ Lt′ and a(τ) = a(τ ′).

As we will prove next, as long as Condition 1 is satisfied during the execution of ApproxCount,
all of the nodes between levels Ls and Lt that are marked as counted do have correct guesses
(i.e., their guesses coincide with their conditional anonymities). Note that in general there is no
guarantee that Condition 1 will be satisfied at any point; it is the job of our main counting algorithm
in Section 4.2 to ensure that the condition is satisfied often enough for our computations to be
successful.

Correctness. In order to prove the correctness of ApproxCount, it is convenient to show that it
also maintains some invariants, i.e., properties that are always satisfied as long as some conditions
are met.

Lemma A.4. Assume that δ ≥ 1. Then, as long as Condition 1 is satisfied, the following hold.

(i) The nodes marked as guessed are always well spread.

(ii) Whenever Line 13 is reached, there are no heavy nodes.

(iii) Whenever Line 13 is reached, all complete isles are trivial.

(iv) The conditional anonymity of any node between Ls and Lt that is marked as counted has been
correctly computed.

Proof. Statement (i) is true by design with no additional assumptions, because the algorithm always
makes a new guess in a guessable level, which is not locked by definition. Thus, no two nodes
marked as guessed are ever in the same level, and so they are well spread.
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All other statements can be proved collectively by induction. They certainly hold the first time
Line 13 is ever reached. Indeed, the only nodes marked as counted up to this point are τ and
some of its descendants, which are assigned the conditional anonymity x. Since s = t and τ has
conditional anonymity x by definition, statement (iv) is satisfied. Note that some descendants of
τ that are marked as counted may not have been assigned their correct conditional anonymities,
because some branches of the history tree may not appear in V. However, no guesses have been
made yet, and therefore no nodes are heavy; thus, statement (ii) is satisfied. Moreover, the only
isles are formed by τ and its descendants, and are obviously all trivial; so, statement (iii) is satisfied.

Now assume that statements (ii), (iii), and (iv) are all satisfied up to some point in the execution
of the algorithm. In particular, due to statement (iv), all nodes that have been identified as guessers
by the algorithm up to this point were in fact guessers according to our definitions. For this reason,
all guesses have been computed as expected, and all of our lemmas on guesses apply (because δ ≥ 1).

The next guess on a new node v is performed properly, as well. Indeed, Condition 1 states that
τ has a descendant τ ′ at the same level as v such that a(τ ′) = a(τ), and therefore a′(τ ′) = a′(τ) = x;
so, τ ′ has the correct conditional anonymity. Thus, regardless of what the guesser of v is (either the
parent of τ ′ or some other counted node), the guess at Line 15 is computed properly.

Hence, if a node is identified as heavy at Lines 17–18, it is indeed heavy according to our
definitions. Because statement (ii) held before making the guess on v, it follows that any heavy
node must have been created after the guess, and therefore should be on the path Pv, defined as in
Line 16. If no heavy nodes are found on the path, then nothing is done and statements (ii), (iii),
and (iv) keep being true.

Otherwise, by Lemma A.3, the deepest heavy node v′ on Pv has a correct guess and can be
marked as counted, provided that the guess is an integer. Thus, statement (iv) is still true after
Line 20. At this point, there are no heavy nodes left, because v′ is no longer guessed and all of its
ancestors along Pv end up having the same weight they had before the guess on v was made.

Now, because statement (iii) held before marking v′ as counted, there can be at most one non-
trivial complete isle, and v′ must be its root or one of its leaves. Note that, due to statement (iv),
any isle I identified as complete at Line 21 is indeed complete according to our definitions. Since I
is complete, computing the conditional anonymities of its internal nodes as in Line 23 is correct, and
therefore statement (iv) is still true after Line 24. Also, the unique non-trivial isle I gets partitioned
into non-trivial isles, and statement (iii) holds again. Finally, since Lines 21–24 may only cause
weights to decrease, statement (ii) keeps being true.

Running time. We will now study the running time of ApproxCount. We will prove two lemmas
that allow us to give an upper bound on the number of rounds it takes for the algorithm to return
an output, provided that some conditions are satisfied.

Lemma A.5. Assume that δ ≥ 1. Then, as long as Condition 1 holds, whenever Line 13 is reached,
at most δn levels are locked.

Proof. Note that the assumptions of Lemma A.4 are satisfied, and therefore all the conditional
anonymities and weights assigned to nodes up to this point are correct according to our definitions.

We will begin by proving that, if the subtree hanging from a node v of V contains more than a′(v)
nodes marked as guessed, then it contains a node v′ marked as guessed such that w(v′) > a′(v′).
The proof is by well-founded induction based on the subtree relation in V. If v is guessed, then we
can take v′ = v. Otherwise, by the pigeonhole principle, v has at least one child u whose hanging
subtree contains more than a′(u) guessed nodes. Thus, v′ is found in this subtree by the induction
hypothesis.
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Assume for a contradiction that more than δn levels of V are locked; hence, V contains more
than δn nodes marked as guessed. Since the conditional anonymity of the root r of V is δn, by the
above paragraph we know that V contains a guessed node v′ such that w(v′) > a′(v′). Since δ ≥ 1
and Lemma A.4 (i) holds, we can apply Lemma A.2 to v′, which implies that there exist heavy
nodes. In turn, this contradicts Lemma A.4 (ii). We conclude that at most δn levels are locked.

We say that a node v of the history tree H is missing from level Li of the view V if v is at the
level of H corresponding to Li but does not appear in V. Clearly, if a level of V has no missing
nodes, all previous levels also have no missing nodes.

Lemma A.6. Assume that δ ≥ 1. Then, as long as level Lt of V is not missing any nodes (where t
is defined and updated as in ApproxCount), whenever Line 13 is reached, there are at most n− 2
levels in the range from Ls+1 to Lt that lack a guessable non-counted node.

Proof. By definition of t, either t = s or the algorithm has performed at least one guess on a node
at level Lt with a guesser at level Lt−1. It is easy to prove by induction that the first guesser to
perform a guess on this level must be the unique descendant τ ′ ∈ Lt−1 of the selected leader node
τ ∈ Ls. Moreover, both τ ′ and its unique child in V have been assigned conditional anonymity x at
Lines 9–11, and the same is true of all nodes in the black path Pτ from τ to τ ′, which is a strand in
V. Since level Lt is not missing any nodes, then each of the nodes in Pτ has a unique child in the
history tree, as well. It follows that all descendants of τ up to level Lt have the same anonymity as
τ . Also, by definition of t and the way it is updated (Line 14), no guesses have been made on nodes
at levels deeper than Lt, and hence Condition 1 is satisfied up to this point. Thus, Lemma A.4
applies.

Observe that there are no counting cuts, or Line 13 would not be reachable. Due to Lines 9–11,
all of the nodes in Pτ initially become guessers. Hence, all levels between Ls and Lt−1 must have
a non-empty set of guessers at all times. Consider any level Li with s < i ≤ t such that all the
guessable nodes in Li are already counted. Let S be the set of guessers in Li−1; note that not all
nodes in Li−1 are guessers, or else they would give rise to a counting cut. Since the network is
1-union-connected, there is a red edge {u, v} (with positive multiplicity) such that u ∈ S and the
parent of v is not in S. By definition, the node v is guessable; therefore, it is counted. Also, since
the parent of v is not a guesser, v must have a non-counted parent or a non-counted sibling; note
that such a non-counted node is in V.

We have proved that every level between Ls+1 and Lt lacking a guessable non-counted node
contains a counted node v having a parent or a sibling that is not counted: we call such a node v a
bad node. To conclude the proof, it suffices to show that there are at most n− 2 bad nodes between
Ls+1 and Lt. Observe that no nodes in Pτ can be bad.

We will prove by induction that, if a subtree W of V contains the root r, the leader node τ , no
counting cuts, and no non-trivial isles, then W contains at most f − 1 bad nodes, where f is the
number of leaves of W not in the subtree hanging from τ . The case f = 0 is impossible, because
the single node τ yields a counting cut. Thus, the base case is f = 1, which holds because any bad
node v in W and not in Pτ gives rise to the counting cut {τ, v} (recall that a bad node is counted
by definition).

For the induction step, let v be a bad node of maximum depth in W . Let (v1, v2, . . . , vk) be the
black path from v1 = v to the root vk = r, and let 1 < i ≤ k be the smallest index such that vi
has more than one child in W (i must exist, because this path eventually joins the black path from
τ to r). Let W ′ be the tree obtained by deleting the black edge {vi−1, vi} from W, as well as the
subtree hanging from it. Notice that the induction hypothesis applies to W ′: since v1 is counted,
and each of the nodes v2, . . . , vi−1 has a unique child in W , the removal of {vi−1, vi} does not create
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counting cuts or non-trivial isles. Also, v2 is not counted (unless perhaps v2 = vi), because v1 is
bad. Furthermore, none of the nodes v3, . . . , vi−1 is counted, or else v2 would be an internal node
of a (non-trivial) isle in W. Therefore, W ′ has exactly one less bad node than W and one less leaf;
the induction hypothesis now implies that W contains at most f − 1 bad nodes.

Observe that the subtree V ′ of V formed by all levels up to Lt satisfies all of the above conditions,
as it contains τ ∈ Ls, the root r, and has no counting cuts, because a counting cut for V ′ would be
a counting cut for V, as well (recall that V has no counting cuts). Also, Lemma A.4 (iii) ensures
that V ′ contains no non-trivial complete isles. However, since no nodes are missing from the levels
of V ′, all isles in V ′ are complete, and thus must be trivial. We conclude that, if V ′ has f leaves
not in the subtree hanging from τ , it contains at most f − 1 bad nodes. Since such leaves induce a
partition of the at most n− 1 processes not represented by τ , we have f ≤ n− 1, implying that the
number of bad nodes up to Lt is at most n− 2.

Main lemma. We are now ready to prove Lemma 4.2.

Lemma A.7. Let ApproxCount(V, s, x, ℓ) return (n′, t). Assume that τ exists and x ≥ a(τ). Let τ ′

be the (unique) descendant of τ in V at level Lt, and let Lt′ be the last level of V. Then:

(i) If x = a(τ) = a(τ ′), then n′ ̸= −3.

(ii) If n′ > 0 and t′ ≥ t+ n′ and a(τ) = a(τ ′), then n′ = n.

(iii) If t′ ≥ s+ (ℓ+2)n− 1, then s ≤ t ≤ s+ (ℓ+1)n− 1 and n′ ≠ −1. Moreover, if n′ = −2, then
Lt contains a leader node with at least two children in V.

Proof. Note that τ ′ is well defined, because the returned pair is (n′, t), which means that either
t = s, and thus τ = τ ′, or t > s, and hence some guesses have been made on level Lt, the first of
which must have had the parent of τ ′ as the guesser.

Let us prove statement (i). The assumption x = a(τ) implies δ = 1. Moreover, since a(τ) = a(τ ′),
Condition 1 is satisfied whenever a guess is made (this is a straightforward induction). Therefore,
by Lemma A.4 (iv), all nodes marked as counted up to Lt indeed have the correct guesses. So, the
conditional anonymity that is computed for any node is equal to its anonymity (a′(v) = δa(v) = a(v)),
and hence is an integer. This implies that ApproxCount cannot return the error code −3 at Line 19.
Also, either ℓ′ = ℓ if all leader processes have been counted, or ℓ′ < ℓ if some leader nodes are
missing from the view. Either way, ApproxCount cannot return the error code −3 at Line 31. We
conclude that n′ ̸= −3.

Let us prove statement (ii). Again, because a(τ) = a(τ ′), Condition 1 is satisfied, and all nodes
marked as counted have correct guesses. Also, x ≥ a(τ) is equivalent to δ ≥ 1. By assumption,
ApproxCount returns (n′, t) with n′ > 0 and t′ ≥ t+ n′. Since n′ > 0, a counting cut C was found
whose nodes are within levels up to Lt, and n′ is the sum of the conditional anonymities of all
nodes in C. Let SC be the set of processes represented by the nodes of C; note that n′ ≥ |SC |,
because δ ≥ 1. We will prove that SC includes all processes in the system. Assume the contrary;
[24, Lemma 4.2] implies that, since t′ ≥ t+ n′ ≥ t+ |SC |, there is a node z ∈ Lt representing some
process not in SC . Thus, the black path from z to the root r does not contain any node of C,
contradicting the fact that C is a counting cut with no nodes after Lt. Therefore, |SC | = n, i.e., the
nodes in C represent all processes in the system. Since ApproxCount returns n′ > 0, the “reality
check” ℓ′ = ℓ succeeds (Lines 30–32). However, ℓ′ is the sum of the conditional anonymities of all
leader nodes in C, and hence ℓ′ = δℓ, implying that δ = 1. Thus, n′ = δn = n, as claimed.

Let us prove statement (iii). Once again, x ≥ a(τ) is equivalent to δ ≥ 1. By [24, Corollary 4.3],
if Lt′ is the last level of V, then no nodes are missing from level Lt′−n. In particular, since
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t′ − n ≤ (ℓ+ 1)n− 1, no nodes are missing from any level up to L(ℓ+1)n−1. Let τ
′′ be the deepest

descendant of τ that is marked as counted at Lines 9–11, and let Lp be the level of τ ′′. By
construction, either all children of τ ′′ are missing from Lp+1 or at least two children of τ ′′ are in
Lp+1. Also note that τ ′ must be an ancestor of τ ′′, and so t ≤ p.

Assume that p < s+ (ℓ+ 1)n− 1. This implies that no nodes are missing from level Lp+1, and
therefore τ ′′ must have at least two children in Lp+1. Since t ≤ p, we have t < s+ (ℓ+ 1)n− 1, as
desired. Now assume that n′ = −2, which implies that the algorithm was unable to find a counting
cut. We claim that in this case t = p. So, assume for a contradiction that t ≤ p− 1. It follows that
τ ′ ∈ Lt is a guesser. Recall that Lt and Lt+1 are not missing any nodes, because t ≤ p. Since the
network is connected at round t+ 1, there is at least one node in Lt+1 that is guessable by τ ′, and
so Lt+1 is a guessable level. However, the algorithm cannot return n′ = −2 as long as there are
guessable levels (Line 12). Thus, t = p, which means that τ ′ = τ ′′, and hence τ ′ has at least two
children in V, as desired.

Assume now that p ≥ s+ (ℓ+1)n− 1, and recall that no nodes are missing from the levels up to
L(ℓ+1)n−1. In particular, since δ ≤ ℓ, no nodes are missing from the levels in the interval L, which
consists of the (δ + 1)n− 1 levels from Ls+1 to Ls+(δ+1)n−1. Thus, by definition of p, as long as no
guesses are made outside of L, Condition 1 holds, and therefore Lemmas A.5 and A.6 apply. Hence,
as long as no guesses are made outside of L, at most δn levels of L are locked (Lemma A.5) and
at most n − 2 levels of L lack a guessable non-counted node (Lemma A.6). We conclude that L
always contains at least one guessable level, and no guesses are ever made outside of L until either
a counting cut is found or n′ = −3 is returned at Line 19. In both cases, n′ = −2 is not returned,
and moreover t ≤ s+ (δ + 1)n− 1 ≤ s+ (ℓ+ 1)n− 1, as desired.

It remains to prove that n′ ̸= −1. Since τ exists by assumption, the error code −1 cannot be
returned at Line 6, and can only be returned at Line 30. In turn, this can only occur if a counting
cut has been found and ℓ′ < ℓ. However, we have already proved that no level up to Lt is missing
any nodes, which implies that the counting cut contains nodes representing all processes, and in
particular ℓ′ = δℓ. Since δ ≥ 1, we have ℓ′ ≥ ℓ, and the condition at Line 30 is not satisfied.

B Survey of Related Work

We examine related work on Counting and Average Consensus, distinguishing between the case of
dynamic networks with unique IDs, the case of static anonymous networks, and the case of dynamic
anonymous networks.

B.1 Dynamic Networks with IDs

The problem of counting the size of a dynamic network has been first studied by the peer-to-peer
systems community [39]. In this case having an exact count of the network at a given time is
impossible, as processes may join or leave in an unrestricted way. Therefore, their algorithms mainly
focus on providing estimates on the network size with some guarantees. The most related is the work
that introduced 1-union-connected networks [36]. They show a counting algorithm that terminates
in at most n+ 1 rounds when messages are unrestricted and in O(n2) rounds when the message
size is O(log n) bits. The techniques used heavily rely on the presence of unique IDs and cannot be
extended to our settings.
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B.2 Anonymous Static Networks

The study of computability on anonymous networks has been pioneered by Angluin in [1] and it
has been a fruitful research topics for the last 30 years [1, 7, 12, 13, 14, 27, 49, 52]. A key concept
in anonymous networks is the symmetry of the system; informally, it is the indistinguishability of
processes that have the same view of the network. As an example, in an anonymous static ring
topology, all processes will have the exact same view of the system, and such a view does not
change between rings of different size. Therefore, non-trivial computations including counting are
impossible on rings, and some symmetry-breaking assumption is needed (such as a leader [27]). The
situation changes if we consider topologies that are asymmetric. As an example, on a wheel graph
the central process has a view that is unique, and this allows for the election of a leader and the
possibility, among other tasks, of counting the size of the network.

Several tools have been developed to characterize what can be computed on a given network
topology (examples are views [52] or fibrations [8]). Unfortunately, these techniques are usable only
in the static case and are not defined for highly dynamic systems like the ones studied in our work.
Regarding the counting problem in anonymous static networks with a leader, [40] gives a counting
algorithm that terminates in at most 2n rounds.

B.3 Counting in Anonymous Interval-Connected Networks

The papers that studied counting in anonymous dynamic networks can be divided into two periods.
A first series of works [11, 20, 21, 40] gave solutions for the counting problem assuming some initial
knowledge on the possible degree of a process. As a matter of fact [40] conjectured that some
kind of knowledge was necessary to have a terminating counting algorithm. A second series of
works [18, 24, 29, 31, 32, 34, 33] has first shown that counting was possible without such knowledge,
and then has proposed increasingly faster solutions, culminating with the linear time asymptotically
optimal solution of [24]. We remark that all these papers assume that a leader (or multiple leaders
in [32]) is present. This assumption is needed to deterministically break the system’s symmetry.

Counting with knowledge on the degrees. Counting in interval-connected anonymous networks
was first studied in [40], where it is observed that a leader is necessary to solve counting in static
(and therefore also dynamic) anonymous networks (this result can be derived from previous works
on static networks such as [8, 52]). The paper does not give a counting algorithm but it gives an
algorithm that is able to compute an upper bound on the network size. Specifically, [40] proposes
an algorithm that, using an upper bound d on the maximum degree that each process will ever have
in the network, calculates an upper bound U on the size of the network; this upper bound may be
exponential in the actual network size (U ≤ dn).

Assuming the knowledge of an upper bound on the degree, [20] given a counting algorithm that
computes n. Such an algorithm is really costly in terms of rounds; it has been shown in [11] to be
doubly exponential in the network size. The algorithm proposes a mass distribution approach akin
to local averaging [51].

An experimental evaluation of the algorithm in [20] can be found in [22]. The result of [20] has
been improved in [11], where, again assuming knowledge of an upper bound d on the maximum

degree of a process, an algorithm is given that terminates in O
(
n(2d)n+1 logn

log d

)
rounds. A later

paper [21] has shown that counting is possible when each process knows its degree before starting
the round (for example, by means of an oracle). In this case, no prior global upper bound on the
degree of processes is needed. [21] only show that the algorithm eventually terminates but does not
bound the termination time.
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We remark that all the above works assume some knowledge on the dynamic network, as
an upper bound on the possible degrees, or as a local oracle. Moreover, all of these works give
exponential-time algorithms.

Counting without knowledge on the degrees. The first work proposing an algorithm that
does not require any knowledge of the network was [19]. The paper proposed an exponential-time
algorithm that terminates in O

(
nn+4

)
rounds. Moreover, it also gives an asymptotically optimal

algorithm for a particular category of networks (called persistent-distance). In this type of network,
a process never changes its distance from the leader.

This result was improved in [29, 31], which presented a polynomial-time counting algorithm. The
paper proposes Methodical Counting, an algorithm that counts in O(n5 log2(n)) rounds. Similarly
to [20, 21], the paper uses a mass-distribution process that is coupled with a refined analysis of
convergence time and clever techniques to detect termination. The paper also notes that, using the
same algorithm, all algebraic and boolean functions that depend on the initial number of processes
in a given state can be computed. In [30, 34], the same authors extended their result to networks
where ℓ ≥ 1 leaders are present (with ℓ known in advance), and gave an algorithm that terminates

in O
(
n4+ϵ

ℓ log3(n)
)
rounds for any ϵ > 0. In particular, when ℓ = 1, this result improves on the

running time of [29, 31]. Improve the running time and deriving tight bounds for counting in the
multi-leader case was left as an open problem in [30, 34]. We give a definitive answer to these
questions by providing a better running time that is optimal for any constant number of leaders.

Finally, in [32], they show a counting algorithm parameterized by the isoperimetric number of
the dynamic network. The technique used is similar to [29, 31], and it uses the knowledge of the
isoperimetric number to shorten the termination time. Specifically, for adversarial graphs (i.e., with
non-random topology) with ℓ leaders (ℓ is assumed to be known in advance), they give an algorithm

terminating in O
(

n3+ϵ

ℓimin
2 log

3(n)
)
rounds, where imin is a known lower bound on the isoperimetric

number of the network. This improves the work in [34], but only in graphs where imin is ω(1/
√
n).

The authors also study various types of graphs with stochastic dynamism; we remark that in this
case they always obtain superlinear results, as well. The best case is that of Erdős–Rényi, graphs

where their algorithm terminates in O
(

n1+ϵ

ℓpmin
2 log

5(n)
)
rounds; here pmin is the smallest among the

probabilities of creating an arc on all rounds. Specifically, if pmin = O(1/n), their algorithm is at
least cubic.

A recent breakthrough has been shown in [24], which proposed the novel technique of history
trees. A history tree is a combinatorial structure that models the entire evolution of an anonymous
dynamic graph. By developing a theory of history trees for dynamic networks with a unique leader,
the authors have shown a terminating solution for the Generalized Counting problem in 3n − 3
rounds.20 The authors have shown that the Generalized Counting problem is complete for the class
of problems solvable in general dynamic networks, proving that computing in anonymous dynamic
networks with a unique leader is linear. The authors have also given a stabilizing, non-terminating,
algorithm for Generalized Counting that stabilizes in roughly 2n rounds, providing an almost
matching lower bound (we will discuss lower bounds below). We remark that the results of [24] do
not apply to the leaderless or the multi-leader cases; the latter is left as an open problem in [24],
which we settle in the present paper.

All the above works assume the dynamic network to be connected at each round. The only work
that studied counting in disconnected networks is the recent pre-print [33]. The paper proposes an

20In the Generalized Counting problem, each process starts with a certain input, and the problem is solved when
each process has computed the multiset of these inputs.
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algorithm that solves the Generalized Counting in Õ
(
(R+ n

ℓ )
n2T (1+ϵ)

i2min

)
rounds,21 where T is the

dynamic disconnectivity, ℓ is the number of leaders, imin is the isoperimetric number of the network,
and R is the cumulative bit length of all inputs. In unknown networks, assuming inputs of small

size, the number of rounds is roughly Õ
(
n2T (1+ϵ)+3

ℓ

)
. Interestingly, the algorithm requires messages

of size O(log n) bits. We highlight that the algorithm has a running time of roughly Õ
(
n5

ℓ

)
in

dynamic networks that are connected at each round, and the complexity grows exponentially with
the dynamic disconnectivity T .

Summarizing, to the best of our knowledge, there exists no worst-case cubic-time algorithm
for the Generalized Counting with multiple leaders and no algorithm that scales linearly with the
dynamic disconnectivity and the size of the network.

Lower bounds on counting. From [36], a trivial lower bound of n− 1 rounds can be derived,
as counting obviously requires information from each process to be spread in the network. The
first non-trivial lower bound for general dynamic networks has been given in the recent work [24]:
any algorithm that stabilizes on the correct count requires 2n− 6 rounds. We remark that such
a lower bound also holds for terminating algorithms. Another interesting lower bound is in [18],
which shows a specific category of anonymous dynamic networks with constant temporal diameter
(the time needed to spread information from a process to all others is at most 3 rounds), but where
counting requires Ω(log n) rounds.

B.4 Average Consensus

In the Average Consensus problem, each process vi starts with an input value xi(0), and the goal is
to compute the average of these initial values. This problem has been studied for decades in the
communities of distributed control and distributed computing [6, 15, 16, 17, 32, 42, 45, 47, 51, 54].
In the following, we give an overview that places our result in the current body of knowledge. A
more detailed picture can be found in the surveys [26, 43, 46]. We can divide current papers between
the ones that give convergent solutions to Average Consensus and the ones that give finite-time
solutions.

B.5 Convergent Average Consensus

In convergent Average Consensus algorithms, the consensus is not reached in finite time, but each
process has a local value that asymptotically converges to the average. A prototypical family of
solutions [6, 51] is based on the so-called convex combination algorithms, where each process updates
its local value xi(r) at every round r as follows:

xi(r) =
∑

∀vj∈N(r,vi)∪{vi}
aij(r) · xj(r − 1).

The value aij(r) is taken from a weight matrix that models a dynamic graph. We remark that
convex combination algorithms do not need unique IDs, and thus work in anonymous networks.

The ϵ-convergence of an algorithm is defined as the time it takes to be sure that the maximum
discrepancy between the local value of a process and the mean is at most ϵ times the initial

21A function is Õ(f(n)) if it is O(f(n)g(n)) for some polylogarithmic function g(n).
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discrepancy. That is, if the mean is m =
∑

i∈V xi(0)/|V |, the following should hold:

maxi {|xi(r)−m|}
maxi {|xi(0)−m|}

≤ ϵ.

The local averaging approach has been studied in depth, and several upper and lower bounds for
ϵ-convergence are known for both static and dynamic networks [46, 47]. The procedure ϵ-converges
in O

(
Tn3 log(1ϵ )

)
rounds if, at every round, the weight matrix A(r) such that (A(r))ij = aij(r) is

doubly stochastic (i.e., the sum of the values on rows and columns is 1) and the dynamic graph is
T -interval-connected [42]. In a dynamic network, it is possible to have doubly stochastic weight
matrices when an upper bound on the processes’ degrees is known [17]. Without such knowledge, if
the dynamic graph is always connected and stable (i.e., it changes every two rounds), then it is
possible to implement a Metropolis weights strategy that converges in O

(
n2 log(nϵ )

)
rounds [42].

Numerous other studies have investigated averaging algorithms based on Metropolis rules.
However, Metropolis rules require processes to know their out-degree prior to the broadcast phase
of each round, making them unsuitable for our model. Charron-Bost et al. observed this in [16]:
“Unfortunately, local algorithms cannot implement the Metropolis rule over dynamic networks. The
rule is only “local” in the weak sense that an agent’s next estimate xi(t) depends on information
present within distance 2 of agent i in the communication graph G(t), which is not local enough
when the network is subject to change”. The only paper that assumes a similar setting to ours
is [16], but it restricts the dynamic graph to be 1-interval-connected. The paper shows an algorithm
that uses MaxMetropolis weights and converges in O

(
n4 log(nϵ )

)
rounds.

We remark that all of the above works only achieve convergence to the average of the inputs,
and do not stabilize on the average in finite time.

B.6 Finite-Time Average Consensus

The algorithms in the second class solve the finite-time Average Consensus; in this case, the value
stabilizes to the actual average in a finite number of rounds. The majority of the literature on finite-
time Average Consensus has considered static networks [26, 45, 54]. In such a setting, algorithms
that stabilize in a linear number of rounds are known [45, 54]. Few works considered anonymous
dynamic networks; [42] describes an algorithm that stabilizes in O(n2) rounds and requires the
network to change every three rounds, while in [15] a randomized Monte Carlo linear algorithm
is given. An interesting take is given in [32], which investigates terminating Average Consensus
algorithms for adversarial dynamic graphs and random dynamic graphs (i.e., Watts–Strogatz,
Barabàsi–Albert, RGG, and Erdős–Rényi–Gilbert graphs). The algorithm for the adversarial case

has a time complexity of O
(
n5

ℓ log3(n)
)
rounds, where ℓ is the (known) number of leaders in the

system. Our multi-leader algorithm is optimal for any constant number of leaders, and settles an
open problem of [32] on finding tight results. For random dynamic graphs, the complexity of the
algorithm changes according to the model, but all the algorithms presented in [32] are super-linear
and require the knowledge of the number of leaders to terminate.

To the best of our knowledge, there is no deterministic solution to Average Consensus that
stabilizes, or even converges, in a linear number of rounds in unknown dynamic networks.
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[43] A. Nedić, A. Olshevsky, and M. G. Rabbat. Network Topology and Communication-
Computation Tradeoffs in Decentralized Optimization. Proceedings of the IEEE, 106(5):953–976,
2018.

36



[44] R. O’Dell and R. Wattenhofer. Information Dissemination in Highly Dynamic Graphs. In
Proceedings of the 5th Joint Workshop on Foundations of Mobile Computing (DIALM-POMC
’05), pages 104–110, 2005.

[45] A. Olshevsky. Linear Time Average Consensus and Distributed Optimization on Fixed Graphs.
SIAM Journal on Control and Optimization, 55(6):3990–4014, 2017.

[46] A. Olshevsky and J. N. Tsitsiklis. Convergence Speed in Distributed Consensus and Averaging.
SIAM Journal on Control and Optimization, 48(1):33–55, 2009.

[47] A. Olshevsky and J. N. Tsitsiklis. A Lower Bound for Distributed Averaging Algorithms on
the Line Graph. IEEE Transactions on Automatic Control, 56(11):2694–2698, 2011.

[48] N. Sakamoto. Comparison of Initial Conditions for Distributed Algorithms on Anonymous
Networks. In Proceedings of the 18th ACM Symposium on Principles of Distributed Computing
(PODC ’99), pages 173–179, 1999.

[49] J. Seidel, J. Uitto, and R. Wattenhofer. Randomness vs. Time in Anonymous Networks. In
Proceedings of the 29th International Symposium on Distributed Computing (DISC ’15), pages
263–275, 2015.

[50] T. Sharma and M. Bashir. Use of Apps in the COVID-19 Response and the Loss of Privacy
Protection. Nature Medicine, 26(8):1165–1167, 2020.

[51] J. N. Tsitsiklis. Problems in Decentralized Decision Making and Computation. PhD thesis,
Massachusetts Institute of Technology, Department of Electrical Engineering and Computer
Science, 1984.

[52] M. Yamashita and T. Kameda. Computing on an Anonymous Network. In Proceedings of
the 7th ACM Symposium on Principles of Distributed Computing (PODC ’88), pages 117–130,
1988.

[53] M. Yamashita and T. Kameda. Computing on Anonymous Networks. I. Characterizing the
Solvable Cases. IEEE Transactions on Parallel and Distributed Systems, 7(1):69–89, 1996.

[54] Y. Yuan, G.-B. Stan, L. Shi, M. Barahona, and J. Goncalves. Decentralised Minimum-Time
Consensus. Automatica, 49(5):1227–1235, 2013.

37


	Introduction
	Our Contributions
	Technical Advances
	Impact on Fundamental Problems and State of the Art

	Definitions and Preliminaries
	Computation in Leaderless Networks
	Stabilizing Algorithm
	Terminating Algorithm

	Computation in Networks with Leaders
	Stabilizing Algorithm
	Terminating Algorithm

	Negative Results
	Leaderless Networks
	Networks with Leaders

	Conclusions
	The Subroutine ApproxCount and Its Correctness
	Survey of Related Work
	Dynamic Networks with IDs
	Anonymous Static Networks
	Counting in Anonymous Interval-Connected Networks
	Average Consensus
	Convergent Average Consensus
	Finite-Time Average Consensus

	References

