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Bicolored Path Embedding Problems Inspired by Protein Folding
Models∗

Tianfeng FENG†a), Nonmember, Ryuhei UEHARA†b), and Giovanni VIGLIETTA†c), Members

SUMMARY In this paper, we introduce a path embedding problem in-
spired by the well-known hydrophobic-polar (HP) model of protein fold-
ing. A graph is said bicolored if each vertex is assigned a label in the set
{red, blue}. For a given bicolored path P and a given bicolored graph G, our
problem asks whether we can embed P into G in such a way as to match the
colors of the vertices. In our model, G represents a protein’s “blueprint,”
and P is an amino acid sequence that has to be folded to form (part of) G.
We first show that the bicolored path embedding problem is NP-complete
even if G is a rectangular grid (a typical scenario in protein folding mod-
els) and P and G have the same number of vertices. By contrast, we prove
that the problem becomes tractable if the height of the rectangular grid G is
constant, even if the length of P is independent of G. Our proof is construc-
tive: we give a polynomial-time algorithm that computes an embedding (or
reports that no embedding exists), which implies that the problem is in XP
when parameterized according to the height of G. Additionally, we show
that the problem of embedding P into a rectangular grid G in such a way
as to maximize the number of red-red contacts is NP-hard. (This problem
is directly inspired by the HP model of protein folding; it was previously
known to be NP-hard if G is not given, and P can be embedded in any way
on a grid.) Finally, we show that, given a bicolored graph G, the problem
of constructing a path P that embeds in G maximizing red-red contacts is
Poly-APX-hard.
key words: bicolored grid graph, embedding problem, HP (hydrophobic-
polar) model, Hamiltonian path problem, protein folding problem

1. Introduction

1.1 Background and Previous Work

The protein folding problem asks how a protein’s amino
acid sequence dictates its three-dimensional atomic struc-
ture. This problem has wide applications and a long history
dating back to the 1960s [8]. From the viewpoint of theo-
retical computer science, there is ongoing research aiming
at revealing insights into reality by working on simplified
abstract models.

One of the most popular such models is the
hydrophobic-polar (HP) model [5]–[7], [10], [13], [16],
[19], [22]. A protein in the HP model is represented as
an abstract open chain, where each link has unit length and
each joint is marked either H (hydrophobic, i.e., non-polar)
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or P (hydrophilic, i.e., polar). A protein is usually envi-
sioned as a path embedded in a grid within the 2D or 3D
lattice, where each joint in the chain maps to a point on
the lattice, and each link maps to a single edge. The HP
model of energy specifies that a chain desires to maximize
the number of H-H contacts, which are pairs of H nodes that
are adjacent on the lattice but not adjacent along the chain.
The optimal folding problem in the HP model asks to find
an embedding of a sequence of Hs and Ps on the 2D square
lattice that maximizes the number of H-H contacts.

Previous results on the HP model mostly concern the
2D square lattice, where commonly used techniques can be
criticized for relying on the properties of parity in the lat-
tice. For example, [15], [20], [23] provide several approxi-
mation algorithms, all of which bound the maximum num-
ber of H-H contacts in terms of the number of odd-parity H
nodes and the number of even-parity H nodes in the chain.
This is because two H nodes can be embedded in adjacent
nodes on the square lattice only if their distance along the
chain is odd, i.e., if they have opposite parity. Such observa-
tions make sense in the discrete setting, but have no obvious
meaning in the real protein folding problem that the theory
aims to model. Thus, parity-related arguments should not
be taken as the only reason as to why an amino acid chain
can or cannot fold in a certain way.

Solving the optimal folding problem in a square lattice
is shown to be NP-hard in [4]. Although the proof does not
suffer from the aforementioned parity-related issues, it con-
structs a hard-to-fold chain whose properties heavily rely on
Hadamard codes and Hamming distances. Again, appealing
to these inherently discrete concepts is a departure from the
continuous nature of real protein folding.

A final point of criticism to the traditional HP model
is that the number of H-H contacts is not the only possible
measure that may be used to capture the intricate physical
and chemical laws that describe how a real protein folds.

In mathematics and theoretical computer science, there
is a vast literature on embeddings of paths and graphs.
The general problem of embedding an unlabeled path into
a given graph is well-known to be NP-hard [4]. How-
ever, the graph embedding problem is efficiently solvable
in some special cases. Notably, there is a linear-time al-
gorithm for embedding graphs of constant size into planar
graphs [11]. Unfortunately, these results say nothing about
labeled graphs, which are the focus of the research on pro-
tein folding.

Restricting our attention to labeled graphs, there are
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substantially fewer works. To the best of our knowledge,
the literature in this field is limited to exponential-time al-
gorithms for the general embedding problem, e.g., [3], [18].

1.2 Our Approach and Motivation

Our critique of the standard HP model has inspired us to for-
mulate the bicolored path embedding problem, which, apart
from being an interesting graph embedding problem in its
own right, may be seen as a new variant of the protein fold-
ing problem within the HP model.

In our model, we combine the basic ideas of protein
folding with the complementary problem of protein design,
where the goal is to synthesize a protein of a given shape
(and function) from an amino acid sequence. Thus, we pro-
vide the “blueprint” of the folded shape of a protein, in the
form of an input (grid) graph G with colors assigned to its
vertices, and we ask if a given colored path P can be (in-
jectively) embedded in G in such a way that vertex colors
match. In other terms, we are effectively asking whether a
given amino acid sequence can fold into (part of) a protein
with prescribed structure. Since the HP model has nodes of
only two types, we assume both G and P to be bicolored,
say, with colors “red” and “blue.” †

The significance of our model is that it more accurately
captures some of the crucial and practical problems of pro-
tein folding. These problems do not only concern the way a
given amino acid chain folds spontaneously, but also involve
the design of proteins with desired attributes and shapes.
Additionally, in our analysis we strive to avoid any argu-
ment that seems too closely related to the arbitrary choices
we made when designing our model (for example, none of
our proofs relies on the fact that a grid is 2-vertex-colorable,
unlike some previous works [15], [20], [23]).

The underlying idea of our research is that, in biologi-
cal processes, nature “solves” some computational problems
related to protein folding in a seemingly efficient way. In or-
der to explain these phenomena, the approach of theoretical
computer science is to formulate abstract models of proteins
and amino acid chains and study the computational com-
plexity of protein folding problems under these models.

Most of our results (with one notable exception) in-
dicate that several protein folding problems are computa-
tionally intractable in our model. In general, knowing that
a problem is computationally hard (e.g., NP-hard) should
discourage us from seeking an efficient solution. However,
in the context of protein folding, a proof of NP-hardness
can also provide insights on the deeper reasons why nature
works in a certain way. For example, the fact that protein
folding is computationally hard in a given model might be
evidence that the model is incorrect and should be modified.
Nonetheless, it could also mean that the model is accurate,

†With regard to bicolored and monochromatic graphs, we do
not adhere to established terminology from classical graph color-
ing theory; for the purposes of this paper, a coloring of a graph
is simply a labeling of its vertices, with no extra constraints. In
particular, adjacent vertices may have the same color.

but the instances of the problem that have been proved to be
hard never occur in practice. In this case, a hardness result
sheds some light on which patterns and configurations are
naturally avoided in biological systems, and why.

1.3 Paper Organization and Results

The paper is organized as follows. In Sect. 2, we give a for-
mal definition of the bicolored path embedding problem and
we introduce some preliminary results, observing that the
problem is NP-complete in several restricted cases.

In Sect. 3, we consider the case where G is a rectangu-
lar grid, which is the standard assumption in the HP model.
We prove that the bicolored path embedding problem is NP-
complete even if G and P have the same order (i.e., number
of vertices). Next, we contrast this hardness result with a
polynomial-time algorithm for the case where G is a grid of
fixed height; thus, our embedding problem, parameterized
according to the height of G, is in XP.

In Sect. 4, we show that maximizing red-red contacts
in the bicolored path embedding problem (defined in the
same way as H-H contacts in the HP model) is also NP-
hard, even if G is a rectangular grid. We remark that, in
previous work, it has been established that the problem of
maximizing H-H contacts is NP-hard when G is not given,
and P can be embedded in any way on a grid [4]. We also
prove a complementary result: the problem of constructing
a path P that embeds in a given bicolored graph G max-
imizing red-red contacts is Poly-APX-hard. In particular,
it has no polynomial-time approximation algorithm with a
sub-polynomial approximation ratio, unless P = NP.

Finally, in Sect. 5 we conclude the paper with some di-
rections for future research.

A preliminary version of this paper appeared in the
37th European Workshop on Computational Geometry (Eu-
roCG 2021) [12]. This extended version contains miss-
ing proofs, a revised and improved Sect. 3.2, and the new
Sect. 4.2.

2. Definitions and Preliminaries

In this paper, a graph is said “bicolored” if each of its ver-
tices is assigned one of two possible colors, e.g., red or blue:

Definition 1. A bicolored graph is a labeled undirected
graph G = (V, E, ω), where ω : V → {red, blue}.

If the image of ω is {blue}, then G is monochromatic. A
bicolored path is a bicolored graph with the topology of a
path, i.e., such that V = {v1, v2, . . . , vn} and E = {{vi, vi+1} |
1 ≤ i < n}.

If P = (V, E, ω) is a bicolored path with V =

{v1, v2, . . . , vn} and G = (V ′, E′, ω′) is a bicolored graph, we
say that a function f : V → V ′ is an embedding of P into G
if:

• f is injective, i.e., i , j =⇒ f (vi) , f (v j).
• f maps edges of P to edges of G, i.e., { f (vi), f (vi+1)} ∈
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E′ for all 1 ≤ i < n.
• f respects colors, i.e., ω(v) = ω′( f (v)) for all v ∈ V .

Definition 2. The bicolored path embedding problem asks
whether a given bicolored path P has an embedding into a
given bicolored graph G.

In the context of the bicolored path embedding problem, the
graph G is called the blueprint.

Our first observation is that the NP-complete Hamilto-
nian path problem (i.e., given a graph, decide if there is a
walk that visits every vertex exactly once [14]) is a special
case of our bicolored path embedding problem. Namely, if
both P and G are monochromatic and have the same order,
then an embedding of P into G is precisely a Hamiltonian
path in G.

It follows that the problem of finding a bijective embed-
ding of a monochromatic path P is NP-complete. Further-
more, it remains NP-complete for all classes of blueprints G
where the Hamiltonian path problem is NP-complete. These
include split graphs, which are graphs whose vertices can be
partitioned into a clique and an independent set. Finding a
Hamiltonian path in a split graph is NP-complete even if
the clique and the independent set have the same order, as
shown in [21].

In particular, such graphs are dense, i.e., they have a
number of edges that is quadratic in the number of ver-
tices. The fact that our path embedding problem is NP-
complete even for dense blueprints is somewhat surpris-
ing: intuitively, a blueprint G with many edges should allow
greater leeway in the construction of an embedding of P. As
it turns out, a greater amount of freedom does not necessar-
ily translate into our ability to easily find embeddings.

A second class of interest is that of grid graphs, some-
times also called lattice graphs:

Definition 3. A grid graph is an induced subgraph of a reg-
ular tiling of the plane.

Note that there are only three possible regular tilings of
the plane: the square lattice, the triangular lattice, and the
hexagonal lattice.

Grid graphs are the typical setting of the standard HP
model. It is known that the Hamiltonian path problem is
NP-complete even if G is a grid graph in the square lattice,
in the triangular lattice, or in the hexagonal lattice [1]. Thus,
so is our monochromatic path embedding problem.

Furthermore, the bicolored path embedding problem is
NP-complete when G is a solid grid graph. Formally, let us
define R(a, b) as the grid graph in the square lattice whose
vertex set is {(i, j) | 1 ≤ i ≤ a and 1 ≤ j ≤ b}.
Definition 4. A rectangular grid graph is any subgraph of
the square lattice that is isomorphic to R(a, b) for some in-
tegers a and b.

Rectangular grid graph are also called solid grid graphs in
the square lattice.

Given any grid graph G′ on n vertices in the square lat-
tice, we can find the smallest integers a and b such that the

graph G = R(a, b) contains an induced subgraph G′′ isomor-
phic to G′ (intuitively, G is the “bounding rectangle” of G′′).
We color in blue all vertices of G′′, and we color in red all
other vertices of G. This operation is called “completing”
G′ to a solid grid graph G. Now, we can embed a path P of
n blue vertices into G if and only if G′ has a Hamiltonian
path: this proves that the problem is NP-complete.

We can easily generalize the previous observation to
solid graphs in the triangular or hexagonal lattice, which
are defined similarly, as equilateral triangles and equilateral
hexagons, respectively. This NP-completeness result will be
strengthened in the next section, where we consider bijective
embeddings.

3. Embeddings in Rectangular Grids

In this section we focus on rectangular blueprints, i.e.,
blueprints that are rectangular grid graphs, as defined in the
previous section. As already mentioned, this is the typical
setting of the traditional HP model of protein folding.

3.1 Bijective Embeddings

Let us first consider the case where the bicolored blueprint
G is a “precise” description of a protein, i.e., it has to be
matched exactly by the amino acid sequence represented by
the bicolored path P. In other words, G and P have the same
number of vertices, and the embedding should therefore be
bijective.

As observed at the end of Sect. 2, the non-bijective
bicolored embedding problem in a rectangular grid is NP-
complete. On the other hand, the bijective embedding prob-
lem in a rectangular grid is polynomial-time solvable if P
and G are monochromatic: indeed, this is equivalent to the
Hamiltonian path problem in a rectangular grid, which is
solved in [17].

In the following theorem, we will close the gap be-
tween the two aforementioned results: We will show that
the bijective bicolored path embedding problem is NP-
complete.

Theorem 1. The bicolored path embedding problem is NP-
complete even if the blueprint G is a rectangular grid with
the same number of vertices as the path P.

Proof. We will give an NP-hardness reduction from the
Hamiltonian path problem on grid graphs in the square lat-
tice, which is NP-complete [17].

(1) Construction of the reduction

We start from a rectangular grid R(m′, n′) with an induced
subgraph G′ (which is an instance of the Hamiltonian path
problem), and we construct the blueprint G by “expanding”
each vertex v of R(m′, n′) into a (k + 2) × (k + 2) block Bv
(where k is a large-enough even constant, defined later). If v
is not a vertex of G′, then all vertices of Bv are blue; if v is
a vertex of G′, then Bv is illustrated in Fig. 1 (right): its four
central vertices are red, and all other vertices are blue. The
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Fig. 1 Example of a grid graph G′ and the transformation of a vertex v of G′ into the (k + 2) × (k + 2)
block Bv (in this example, m′ = 5, n′ = 4, and k = 12)

Fig. 2 Complete construction of G from the graph G′ of Fig. 1 (now with k = 8): each of the circled
blocks represents a vertex in the original graph G′

order of G is therefore (k + 2) ·m′ × (k + 2) · n′; an example
of the full construction is shown in Fig. 2.

The path P is constructed as follows. Let P′ be a path
consisting of 4 red vertices followed by 2k blue vertices. P
is made up of n consecutive copies of P′, where n is the
order of G′, followed by a trail of blue vertices such that the
total length of P matches the order of G. Namely, the final
trail of P consists of (k + 2)2 ·m′n′ − (2k + 4)n blue vertices.
Refer to Fig. 3 for an example.

(2) Embedding the first part of the path

In order to embed P into G, we have to start from a set of
four red vertices in some block Bv, and then move to an-
other set of four red vertices in some other block Bw. Since
we must traverse exactly 2k blue vertices between these two
red sets, this is possible only if v and w are adjacent in G′

(note that a “diagonal” move would take 2k+1 steps on blue
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Fig. 3 Construction of the path P (in this example, k = 3 and G′ has order 2)

Fig. 4 Example of a partition into rectangles of the region not covered
by the zig-zagging copies of P′

vertices). Thus, embedding P into G is impossible if G′ is
not Hamiltonian.

Assume now that G′ is Hamiltonian. We can embed all
copies of P′ into G by “mimicking” a Hamiltonian path in
G′ and moving from one set of red vertices to the next by
covering the 2× k rectangle between them in a zig-zag fash-
ion. Eventually, the region of G covered by all the copies
of P′ looks like a winding “tube” of width 2, as sketched in
Fig. 4.

(3) Embedding the trailing blue vertices

Now we have to cover the remaining part of G with the trail-
ing sequence of blue vertices of P. Observe that this part of
G is connected, because the copies of P′ were embedded
according to a Hamiltonian path, which has no cycles, and
therefore did not disconnect G.

In order to cover this last region, we partition it into
maximal “horizontal rectangles,” i.e., in such a way that no
two rectangles touch each other along vertical edges. Fig-
ure 4 shows an example of the partition. Then we do a
depth-first traversal of these rectangles. When we visit a
new rectangle R (perhaps coming from its parent rectan-
gle R′), we cover R as exemplified in Fig. 5: we further

Fig. 5 The shaded rectangle R is subdivided into six tiles, one for each
neighboring rectangle. The numbers and arrows show the order in which
tiles and neighboring rectangles are covered. The path comes from the
parent rectangle R′, covers a tile, and moves to the next unvisited rectangle,
etc. When R is fully covered, the path returns to the parent R′.

divide it into smaller rectangular “tiles,” one for each un-
visited neighboring rectangle. After completely covering a
tile, we continue the depth-first traversal by visiting its adja-
cent rectangle R′′ in the partition. When we backtrack from
R′′ and get back to R, we move to the next tile of R, and so
on.

Note that the last tile we visit is again adjacent to R′,
and thus we are able to backtrack once all tiles of R have
been completely covered (if R is the root of the spanning
tree, we just terminate). It is straightforward to prove by
induction that this embedding algorithm completely covers
all rectangles in the partition.

(4) Detailed construction of tiles

We still need to prove that it is possible to construct the tiles
in such a way that each of them can be covered completely
before moving on to the next rectangle. We will use a result
from [17], where the grid graphs containing a Hamiltonian
path with assigned endpoints have been characterized. The
characterization includes some special cases of small order,
but since our k is a large constant, we can ignore them.

What we can gather from [17] is that, if the order (i.e.,
the number of vertices) of a tile is even and one of its sides
is longer than four vertices, then there is a Hamiltonian path
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Fig. 6 Example of a sub-problem of the dynamic-programming algorithm for rectangular blueprints.
The sub-problem specifies which vertices of the path P should be embedded in the ath column of G, and
where: this is indicated by the function f . Each arrow represents a direction bit: the vertex vi+1 should
be mapped to the left of f (vi), etc. The value of the direction bit at f (v j+1) is irrelevant, because both
v j and v j+2 are mapped to the ath column. The sub-problem asks if there exists a partial embedding of
P in the sub-grid going from the first column to the ath column that matches vertex colors and satisfies
the constraints imposed by f and the direction bits.

in the tile with any assigned endpoints having odd distance
along the grid. Because k is a large even constant, we can
indeed subdivide each rectangle in the appropriate number
of tiles, arranged as exemplified in Fig. 5, each of which has
even order and at least one side longer than four vertices
(choosing k = 32 abundantly suffices).

When covering a tile, we want to start on an edge and
either end on the same edge or on the opposite edge. For
example, referring to Fig. 5, when covering tile 1 we want
to enter and exit from the same edge, but when covering
tile 2 we want to enter from an edge and exit from the op-
posite one. So, it is sufficient to choose any pair of start-
ing and ending vertices (along the appropriate edges) hav-
ing odd distance, and the characterization in [17] guarantees
that there is a Hamiltonian path in the tile having these start-
ing and ending vertices. It follows that we can embed P into
G. □

3.2 Fixed-Height Rectangular Blueprints

We can contrast our previous hardness results with an em-
bedding algorithm that runs in polynomial time, provided
that the blueprint G is a rectangular grid of fixed height k.

Lemma 1. For all integers a > 2 and b > 0,

min{(a + 1)b, (b + 1)a} < e · ab.

Proof. It is well known from elementary calculus that, if
k > 0, the function fk(x) = (1 + k/x)x is monotonically
increasing for x > 0, and its limit as x approaches +∞ is ek.
Hence, by rearranging terms, we have, for every x, k > 0,

(x + k)x < ek xx. (1)

If a ≥ b, we plug k = 1 and x = a in Eq. (1), obtaining

(a + 1)b = ((a + 1)a)
b
a < (e · aa)

b
a = e

b
a · ab ≤ e · ab.

If a < b, by a similar reasoning, we have (b + 1)a < e · ba.
To conclude, it is now sufficient to prove that ba ≤ ab. This
is done by plugging k = b − a and x = a in Eq. (1):

ba = (a + (b − a))a < eb−a · aa < ab−a · aa = ab,

recalling that, by assumption, e < 3 ≤ a. □

Theorem 2. Given a bicolored rectangular grid G of order
m × k and a bicolored path P of order n, the embedding
problem for G and P can be solved in O(2kn2km) time.

Proof. Let G be a bicolored m× k grid, and let P be a bicol-
ored path of n vertices. If n ≤ 2, the problem can be trivially
solved in O(km) time by searching G for one or two adjacent
vertices with colors matching P. Hence, let us assume that
n > 2.

(1) Sub-problem specification

Our approach is based on dynamic programming, where a
sub-problem consists in embedding part of P (not necessar-
ily all of P) into a sub-grid of G going from the first col-
umn to the ath column, with 1 ≤ a ≤ m. A sub-problem’s
specification also contains a description of the intersection
between a hypothetical embedding of P and the ath column
of G: for each vertex w in the ath column, the sub-problem
specifies which vertex vi of P is mapped to w (if any), as well
as an extra bit of information: the direction bit. This bit en-
codes whether the left or right neighbor of vi along P should
be mapped to the left neighbor of w (if such information
is incompatible with the rest of the specification, the direc-
tion bit is ignored). Figure 6 sketches a sub-problem with a
function f specifying which vertices of P are mapped into
the ath column.

Thus, the total number of sub-problems is 2kcn,km,
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where the factor m represents the possible choices of a, and
cn,k is the number of ways a subset of vertices of P can be
injectively mapped into a column of G. Informally, we can
say that cn,k is the number of ways two paths of length n and
k (representing P and a column of G, respectively) can “in-
tersect.”

(2) Solving sub-problems

The output to a sub-problem is “Yes” if an embedding of
part of P satisfying the given constraints exists, “No” if it
does not exist, and “N/A” if the sub-problem specifies no in-
tersection on the ath column, and it is not possible to embed
P entirely to the left of the ath column (this implies that P
must be embedded entirely to the right of the ath column,
but we are still unable to determine if this is possible).

Solving a sub-problem S for column a amounts to find-
ing a sub-problem S ′ for column a − 1 with a “Yes” an-
swer such that the specifications of S and S ′ are compati-
ble. In other words, the mappings described by S and S ′ on
columns a and a − 1 should (i) match the colors in G and
P, and (ii) match with each other. For example, assume that
the sub-problem S is the one illustrated in Fig. 6, where the
direction bit at f (vi) indicates that the vertex vi+1 of P should
be mapped to the left neighbor w′ of w = f (vi) (where w is in
column a). Then, the sub-problem S ′ should agree with this
specification: namely, its function f ′ should indicate that
f ′(vi+1) = w′ (which is in column a − 1).

(3) Full algorithm

Summarizing, the algorithm for solving a sub-problem S for
column a is as follows:

• If a = 1, then:

– If S specifies that the embedding of P does not
intersect column 1, then return “N/A.”

– Else, if S specifies that the embedding of P inter-
sects column 1 in a way that (i) matches vertex
colors, (ii) whenever it maps two consecutive ver-
tices vi and vi+1 of P to column 1, it maps them
to adjacent vertices, and (iii) the direction bits of
S specify that the embedding of P continues to
the right (whenever this makes sense), then return
“Yes.”

– Else, return “No.”

• If a > 1, and S specifies that the embedding of P does
not intersect column a, then:

– If there is a compatible sub-problem S ′ for col-
umn a − 1 with answer “Yes,” then return “Yes”
(by “compatible” we mean that the direction bits
of S ′ imply that no vertex of P mapped to column
a − 1 should have a neighbor mapped to column
a).

– Else, return “N/A.”

• If a > 1, and S specifies that the embedding of P has

some intersections with column a, then:

– If S specifies that the embedding of P intersects
column a in a way that (i) matches vertex colors,
(ii) whenever it maps two consecutive vertices vi
and vi+1 of P to column a, it maps them to adjacent
vertices, (iii) there is a sub-problem S ′ for column
a − 1 with answer “Yes” or “N/A” that is compat-
ible with S , and (iv) if a = n, the direction bits
of S specify that the embedding of P continues to
the left (whenever this makes sense), then return
“Yes.”

– Else, return “No.”

(4) Optimizations and remarks

As an optimization, we do not have to look up all sub-
problems S ′ for column a − 1, but only the ones whose di-
rection bits are compatible with S . In other words, we only
need to choose which vertices of P are mapped to the col-
umn a − 1 and where, and the correct direction bits can be
inferred. Hence, in order to solve S , it is sufficient to look
up at most cn,k sub-problems.

Also, for each sub-problem S ′, the compatibility test
between S ′ and S can be done in constant amortized time.
Indeed, the sub-problems S ′ are enumerated by locally
changing the function that maps points on the column a − 1
to vertices of P; as each of these local changes takes place,
the corresponding compatibility check is performed in con-
stant time. Hence, S can be solved in O(cn,k) time.

As there are 2kcn,km sub-problems in total, it takes
O(2kc2

n,km) time to solve all of them. In the end, the algo-
rithm returns “Yes” if there is a sub-problem for a = n with
a “Yes” answer; it returns “No” otherwise.

(5) Correctness and running time

The correctness of this algorithm can be proved straight-
forwardly by induction. Note that the distinction between
“N/A” and “Yes” implies that, if the final answer is “Yes,”
then at least some vertices of P have indeed been embedded
somewhere in G. If this is the case, then the compatibil-
ity tests between columns guarantee that all of P has been
correctly embedded.

In order to show that our algorithm has the desired run-
ning time, it remains to prove that cn,k = O(nk). Recall that
cn,k is the number of ways P can intersect a column of G.
We can give two upper bounds on this number. Each of the k
vertices in a column of G may intersect one of the n vertices
of P or none of them. This yields at most (n + 1)k different
configurations in total, and thus cn,k ≤ (n + 1)k. Note that
this is insufficient to conclude that cn,k = O(nk), because k
is not a constant. Let us give a second upper bound: each
of the n vertices of P may be mapped either to one of the k
vertices in the given column of G or to a different column.
This yields cn,k ≤ (k + 1)n. Now, Lemma 1, with a = n and
b = k, gives

cn,k ≤ min{(n + 1)k, (k + 1)n} < e · nk = O(nk),
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Fig. 7 Sketch of the NP-hardness reduction for the problem of maximizing red-red contacts (the value
of n should match the number of blue vertices in Block 2)

as required (recall that we were assuming that n > 2). □

We immediately have the following:

Corollary 1. The bicolored path embedding problem where
the blueprint G is a rectangular grid, parameterized accord-
ing to the height of G, is in XP.

Proof. According to Theorem 2, if G has order m × k and P
has order n, there is an algorithm that solves the embedding
problem for G and P in O(2kn2km) time. Now, if k is a con-
stant, the running time of the algorithm is O(n2km), hence
polynomial. □

4. Maximizing Red-Red Contacts

Finally, let us turn to the problem of maximizing red-red
contacts in the context of the bicolored path embedding
problem. Recall that, according to the HP model of energy,
an amino acid chain tends to fold in a way that maximizes
the number of H nodes that are close together in the folded
state, even if they are not adjacent along the chain. In other
words, when G and P are given, we seek an embedding of P
into G that covers a large number of adjacent red vertices of
G without traversing the edges that connect them with each
other.

Definition 5. A red-red contact in an embedding of P into
G is a pair of adjacent red vertices u, v in G such that the
embedding of P covers both u and v, but does not contain
the edge {u, v}.

4.1 Solid Grid Graphs

The problem of maximizing red-red contacts in the bicol-
ored path embedding problem is also NP-hard, even when
restricted to instances where the path P is guaranteed to be
embeddable into G, and even when G is a solid grid graph
(in a square, triangular, or hexagonal lattice).

Theorem 3. Given a bicolored solid grid graph G and a
bicolored path P that can be embedded in G, it is NP-hard
to find an embedding of P in G that maximizes red-red con-
tacts.

Proof. We will describe a reduction from the Hamiltonian
path problem in the case of a square lattice. A similar con-
struction can be used for triangular and hexagonal lattices,
as well.

Given a connected input grid graph G′ on n vertices, we
construct a rectangular grid graph G by juxtaposing three
blocks, each of which is in turn a rectangular grid graph.
Figure 7 shows a sketch of the whole construction.

Block 2 of G is constructed by completing G′ to a rect-
angular grid graph, as we did at the end of Sect. 2. That is,
Block 2 of G is the smallest rectangular graph R(a, b) con-
taining (an isomorphic copy of) G′ as an induced subgraph;
we color in blue the n vertices of this subgraph, and we color
in red the r = ab − n remaining vertices in R(a, b).

Next we define k = r + b+ 1, and we construct Block 1
as a grid graph isomorphic to R(⌈k/b⌉, b) whose vertices are
all red. Note that Block 1 has at least k vertices.

Block 3 of G is isomorphic to R(max{k, n} + 2, b), and
is colored as shown in Fig. 7. Namely, the column adjacent
to Block 2, i.e., the leftmost column, is all red; each of the
k rightmost columns has the topmost vertex in red and all
other vertices in blue; all other columns are entirely blue.

Finally, the path P consists of n blue vertices followed
by k red vertices.

Without loss of generality, we may assume that, if a
Hamiltonian path exists in G′, one of its endpoints s must
be on the perimeter of the bounding rectangle of G′. (This
is a well-known fact in Hamiltonicity theory; see for ex-
ample [17].) When constructing G, we can embed G′ into
Block 2 in such a way that s is in the column adjacent to
Block 1. Thus, if G′ has indeed a Hamiltonian path, we can
embed the blue part of P in Block 2 and the red part of P in
Block 1, which produces a large number of red-red contacts.

On the other hand, if G′ does not have a Hamiltonian
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path, we can only embed P in Block 3, which yields no red-
red contacts. This is because embedding some red vertices
of P in Block 1 would force us to embed all the blue vertices
in Block 2, which is impossible because G′ is not Hamilto-
nian. Also, if we embedded some red vertices in the leftmost
column of Block 3, we would have to embed all of them in
this column or in Block 2 (because G′ is connected, and
thus there is no path of red vertices connecting Block 1 with
Block 3). However, there are only r + b red vertices in this
region, and therefore we cannot fit all the k = r + b + 1 red
vertices of P. The only possibility is to embed these k red
vertices in the topmost row of Block 3, which always yields
a feasible embedding, as Block 3 has a large-enough blue
region to fit the n blue vertices of P, as well.

In conclusion, P can always be embedded in G; how-
ever, finding an embedding that produces any red-red con-
tacts at all is NP-hard. □

The above reduction implies that the maximum number
of red-red contacts is not only NP-hard to compute exactly,
but also to approximate. In the next section, we will make
this observation more precise with a strong inapproximabil-
ity result.

4.2 General Graphs

For a bicolored path P and a bicolored graph G, let mP,G be
the maximum number of red-red contacts across all embed-
dings of P into G. In the previous section we showed that
computing mP,G is NP-hard, even assuming that the solution
space is non-empty. Now, in the spirit of protein synthesis,
we formulate the following problem:

Definition 6. Given a bicolored graph G, the bicolored syn-
thesis problem asks for the bicolored path P of the same
order as G that maximizes mP,G.

Translated into the language of protein folding, we are given
the “form” of a protein (i.e., a bicolored graph G), and we
ask for the amino acid chain that is most likely to fold into a
protein of that particular form.

We will show that this problem is Poly-APX-hard,
i.e., the optimum is NP-hard to approximate within a sub-
polynomial ratio.

Theorem 4. The bicolored synthesis problem is Poly-APX-
hard.

Proof. We will give an approximation-preserving reduction
from the Independent Set problem, which is Poly-APX-
complete [2]. For the reduction, we borrow the edge gad-
get from [14], which is illustrated in Fig. 8, top. The top six
vertices (next to the letter u) constitute the “top half” of the
gadget; the other six are the “bottom half”. If this gadget is
part of a larger graph, there are only three ways a Hamilto-
nian path can traverse it, as shown in the figure.

Now, given a connected graph G′ = (V ′, E′), where
V ′ = {v1, . . . , vn}, we will construct a bicolored graph G that

Fig. 8 Illustration of the edge gadget used in Theorem 4 (see [14]). The
bottom part of the figure shows the three possible ways a Hamiltonian path
can traverse this gadget.

Fig. 9 Example of the approximation-preserving reduction used in The-
orem 4. As the dashed edges suggest, each vertex in G labeled v1, . . . , v4 is
adjacent to all vertices in the top selector gadget, except s and t. The ver-
tices of G′ circled in purple constitute an independent set that corresponds
to a path embedded in G (drawn in green) with as many red-red contacts.

implements our approximation-preserving reduction as fol-
lows (an example is shown in Fig. 9). First we construct
an edge gadget for each edge in E′. Then we connect edge
gadgets together in such a way that, for each vertex vi ∈ V ′,
there is a path, called “strand,” that traverses (either the top
or the bottom half of) each of the edge gadgets correspond-
ing to edges incident to vi in G′. For example, in Fig. 9, the
three gadgets labeled {v2, v3}, {v1, v2}, and {v2, v4} are con-
nected together in sequence, forming a strand whose end-
points are labeled v2 in the figure. This represents the fact
that the vertex v2 ∈ V ′ is adjacent to v1, v3, and v4 in G′.
It follows that each edge gadget is shared by precisely two
strands.

Next, we construct a selector gadget, shown at the top
of Fig. 9, which simply consists of a path of n+3 vertices, the
endpoints of which are called s and t. We connect each ver-
tex of the selector gadget, except s and t, to both endpoints
of all the previously constructed strands; these connections
are represented by dashed edges in the figure.

Finally, we color all vertices of G blue except for 2n of
them, as follows. For each vertex vi ∈ V ′, we choose one
adjacent vertex v j, we identify the edge gadget correspond-
ing to {vi, v j}, and we color in red the two central vertices in
the gadget that belong to the strand of v j, as shown in Fig. 9.

This completes the construction. We will now prove
that G′ has an independent set S ⊆ V ′ of k vertices if and
only if there is a bicolored path P of the same order as
G that can be bijectively embedded in G forming exactly
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k red-red contacts. This will imply that our reduction is
approximation-preserving. In the example in Fig. 9, the in-
dependent set is S = {v1, v4}.

Note that the existence of an embedded path P that
forms k red-red contacts is equivalent to the existence of
a Hamiltonian path in G that avoids exactly k edges whose
endpoints are both red. Now, any Hamiltonian path in G
must have endpoints in s and t, and use the selector gadget
to access some of the strands. Once a strand has been cho-
sen, it must be followed until the end; after that, the path
goes to the next vertex of the selector gadget, and then into
another strand. Along the strand of vertex vi, each encoun-
tered edge gadget {vi, v j} has to be covered in one of two
possible ways, depending on whether the strand of v j will
be traversed or not. If the strand of v j is not going to be
traversed, the path must cover all vertices in the edge gad-
get {vi, v j}; for an example, see the edge gadget {v1, v2} in the
figure, where the strand of v2 is traversed and the strand of v1
is not. In this case, if the edge gadget contains two red ver-
tices corresponding to v j, these vertices will form a red-red
contact.

Thus, if a Hamiltonian path forms two red-red contacts
corresponding to vertices va and vb, it means that it does not
traverse the strands of va and vb. Hence va and vb are not ad-
jacent in G′, otherwise there would be an edge gadget {va, vb}
in G that is not covered by the path. So, the set of red-red
contacts determined by a Hamiltonian path corresponds to
an independent set of G′. Conversely, if S is an independent
set, traversing the strands of the vertices in V ′ \ S yields a
Hamiltonian path with |S | red-red contacts. □

5. Conclusions

We proposed the bicolored path embedding problem, in-
spired by protein folding in the HP model. We showed that
the problem is NP-hard in several settings, and polynomial-
time solvable if the blueprint is a grid graph of fixed height.

Our hardness results indicate that certain general prob-
lems related to protein folding are probably intractable by
computers. Interpreting some of these results in practical
terms is ultimately a philosophical matter: since nature does
indeed seem to solve NP-hard protein folding problems in
an efficient way, this may indicate that our ways of mod-
eling computation (e.g., Turing machines) do not correctly
reflect the way nature works. It may also indicate that dis-
crete models of protein folding such as the HP model do
not faithfully capture the essence of real protein folding, or
that our NP-hardness reductions produce instances of amino
acid chains and proteins that are unlikely to be found in
real biological systems. To address the latter issue, we sug-
gest studying the same problems under the smoothed analy-
sis paradigm: adding small amounts of random noise to an
amino acid chain may be sufficient to eliminate the special
patterns that cause protein folding to be computationally in-
tractable.

Another way of interpreting our hardness results is as

an “upper bound” on what can be done efficiently by com-
puters. For example, Theorem 4 states that guessing an
amino acid chain that is likely to fold into a protein of a
given arbitrary shape is a hopelessly hard problem. This
knowledge should discourage us from attempting to find ef-
ficient algorithms for the general problem, and direct us to-
ward special cases or relaxations of the problem. For in-
stance, it would be interesting to know if Theorem 4 remains
true when G is a grid graph: we leave this as an open ques-
tion.

Another open question is whether the running time of
the dynamic-programming algorithm in Sect. 3.2 can be im-
proved. Also, it would be interesting to find other natural
classes of blueprints for which the bicolored path embed-
ding problem is polynomial-time solvable.
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