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Abstract. We treat the second of the two patterns that are formable in
the OBLOT model from every initial configuration of n robots: Uniform
Circle, i.e., the pattern where the robots are located at the vertices of a
regular n-gon. The algorithm presented in this chapter solves the Uniform
Circle Formation Problem in the standard OBLOT model under the
Async scheduler.
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1 Introduction

In this chapter we treat the second of the two patterns that are formable in
OBLOT from every initial configuration of n robots: Uniform Circle, i.e., the
pattern where the robots are located at the vertices of a regular n-gon. The
algorithm presented in this chapter asssumes that no two robots are initially in
the same location, and solves the Uniform Circle Formation Problem in the
standard OBLOT model under the Async scheduler, and has been published
in [12,15].

The main body of the algorithm is described in Sect. 2, and deals with the case
of n > 5 robots. The cases with fewer robots are solved with ad-hoc algorithms,
and are discussed in Sect. 3.

Several related papers have appeared, studying the Uniform Circle Forma-
tion Problem or its variants, and solving it in special cases or under different
assumptions [2,4–8,10,16]. One of the earliest results on the problem appeared
in [18], where it is shown that robots can form Uniform Circle under the Ssync
scheduler, provided that they can remember past observations. Another early
algorithm, given in [5], makes a swarm of oblivious robots converge towards
Uniform Circle (possibly without ever forming it) under the Ssync scheduler.
Other algorithms from the same period can be combined to prove that Uniform
Circle is actually formable under the Ssync scheduler: by concatenating the
algorithm in [14], for forming a biangular configuration, with the one in [7], for
forming Uniform Circle from a biangular starting configuration, it is possible to
form Uniform Circle from any initial configuration (the case with four robots
has been solved separately in [8]). Observe, however, that the two algorithms
can be concatenated only because the scheduler is Ssync: under the Async
scheduler, this technique would be ineffective.
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Some results for the Async scheduler assume implicit agreements among all
the robots. As shown in [10], if the local coordinate systems of all the robots have
the same orientation (i.e., the system has chirality), there is a simple algorithm to
form Uniform Circle. This has later been improved by a general result of [13],
which only assumes that all local coordinate systems are right-handed. Then,
in [11], a Uniform Circle Formation algorithm was given for Async robots with
no assumptions on their local coordinate systems, but allowing them to move
along circular arcs, as well as straight line segments. A solution for n �= 4 robots
under the Async scheduler without extra assumptions (i.e., in the standard
OBLOT model) was finally given in [12], and the solution for the special case
n = 4 appeared in [15].

Related results about the formation of Uniform Circle include a study of
the problem of minimizing the maximum distance traveled by a robot, where
robots have one bit of internal memory [1], an algorithm for transparent robots
with extent that are Ssync, perform rigid movements, and agree on one axis [17],
and an algorithm for opaque LUMINOUS robots in Fsync [9].

2 General Algorithm for n > 5 Robots

If the swarm of robots is not too small, i.e., if n > 5, there is a general Uniform
Circle Formation algorithm that works in all cases [12]. Recall that the goal of
the robots is to position themselves on the vertices of a regular n-gon and stop
moving: we call this type of configuration Regular.

A fundamental geometric tool used in the algorithm is the concept of smallest
enclosing circle (SEC) of the swarm of robots: this is the circle of smallest radius
that contains all robots. It is well known that such a circle exists, is unique, and
its center and radius can be effectively computed by the robots.

The algorithm can be outlined as follows: the general strategy is to make the
robots move to the SEC, determine their final “target points”, and then move
to such points to form a Regular configuration. The robots always move in an
orderly fashion, and the ones that are allowed to move at each step are carefully
chosen in such a way that the SEC does not change during their movements. The
only exception to this protocol is when the robots form, either “intentionally”
or “accidentally”, a particular type of configuration called Pre-regular: in this
case, they follow a special procedure that ignores the SEC.

The details of the algorithm are given below.

2.1 Special Cases: Biangular and Pre-regular Configurations

We first consider the Biangular configurations, exemplified in Fig. 1(a). In such
a configuration, the number of robots n is even, and the set of their locations
has exactly n/2 axes of symmetry. Note that a Biangular configuration can be
partitioned into two Regular configurations of size n/2. This is a particularly
interesting situation, because the robots may all have the exact the same view,
provided that their axes are oriented symmetrically, as Fig. 1(a) shows. In this
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scenario, the scheduler may force all robots to perform the same computation
and move at the same time, which will make the configuration remain Biangular
at all times (or become Regular). So, any Uniform Circle Formation algorithm
must ensure that this type of synchronous behavior from a Biangular configura-
tion indeed results in the formation of a Regular configuration. Nonetheless, the
algorithm must also take into account that movements may be asynchronous and
non-rigid: while moving toward their destinations, the robots may also form dif-
ferent and possibly asymmetric intermediate configurations, and asynchronously
compute new destinations from those configurations. Therefore, it is clearly desir-
able that the robots preserve some geometric invariant as they move, so that any
such intermediate configuration is treated coherently with the Biangular case.

A solution to the problem of forming a regular polygon starting from a Bian-
gular configuration is given in [7], where the robots identify a “supporting reg-
ular polygon” (see Fig. 1(b)), and each robot moves toward the closest vertex
of such a polygon. Any intermediate configuration possibly formed while the
robots move asynchronously towards the vertices of the supporting polygon is
called Pre-regular (note that all Biangular configurations are also Pre-regular).
While executing this procedure from a Pre-regular configuration, the supporting
polygon remains invariant (e.g., see Fig. 1(c)). So, whenever the configuration is
perceived as Pre-regular by all the robots, moving toward the appropriate vertex
of the supporting polygon results in the formation of a Regular configuration.

Note that a robot can effectively determine whether the observed configu-
ration is Pre-regular. Moreover, thanks to the following lemma, all robots in a
Pre-regular configuration implicitly agree on the same supporting polygon and
behave coherently with one another.

Lemma 1 ([12]). The supporting polygon of a Pre-regular configuration is
unique.

2.2 General Strategy: SEC and Analogy Classes

Consider now a starting position of the robots that is not Pre-regular (and hence
not Biangular). Recall that the robots have no common reference frame, and
there are no “environmental” elements that can help them orient themselves.
This difficulty may prevent the robots from coordinating their movements and
act “consistently” from one cycle to another. To overcome this, the SEC of the
robots’ positions is identified (see Fig. 2(a)), and the algorithm ensures that the
robots move in such a way as to keep the SEC fixed. This will hold true so long as
the configuration is not Pre-regular. If the configuration happens to become Pre-
regular during the execution, then the procedure of Sect. 2.1 will be executed,
and the SEC will no longer be preserved.

As a preliminary step, the general algorithm attempts to make all robots
reach the perimeter of the SEC. So, let us consider a configuration that is not Pre-
regular and in which all robots lie on the perimeter of SEC. In this situation, we
identify pairs of robots r1 and r2 that are located in “symmetric” positions, i.e.,
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Fig. 1. (a) A Biangular configuration with local axes oriented in such a way that all
robots have the same view. (b) How the algorithm resolves a Biangular configuration.
(c) A generic Pre-regular configuration with its supporting polygon, which remains
invariant as the robots move along the arrows. (Source: [12])

such that there is an isometry of the plane that permutes the robots’ locations
switching the positions of r1 and r2. We call two such robots analogous, and the
swarm is thus partitioned into analogy classes of analogous robots (see Fig. 2(b)).
In general, an analogy class has either the shape of a Regular set or of a Biangular
set (with some degenerate cases, such as a single point or a pair of points).

Similarly to the Biangular case (cf. Sect. 2.1), the scheduler may force all the
robots in an analogy class to perform the same computation and move at the
same time, thus occupying symmetric positions again, and potentially forever. To
accommodate this, the algorithm incorporates this type of behavior and makes
all analogous robots always deliberately move together in the same fashion.
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Fig. 2. (a) A swarm of robots with its SEC and SEC/3. (b) The three highlighted
robots form an analogy class. If their axes are oriented as indicated, the three robots
have the same view. (c) The three dark-shaded robots are selected as walkers and move
according to the arrows. At the end, for each walker there is a non-walker at an angular
distance of π/3 from it (note that π/3 is a multiple of 2π/n = π/6). (Source: [12])

More specifically, the algorithm lets only one analogy class move at any given
time, while all the other robots wait on the SEC (see Fig. 2(c)). The robots in
the analogy class that is allowed to move are called walkers. When the walkers
have been chosen, they move radially to SEC/3, which is the circle whose radius
is 1/3 of the radius of the SEC and concentric with the SEC. Once they are all
on the perimeter of SEC/3, they move to their so-called finish set, while staying
within SEC/3 (or in its interior). When they are all in their finish set, they
move radially to the SEC again. After that, a new analogy class of walkers is
chosen, and so on. The walkers and the finish set are chosen in such a way that,
when the walkers are done moving, some kind of “progress” toward a Regular
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configuration is made. For instance, progress is made when two analogy classes
merge and become one (note that a Regular configuration has only one analogy
class), or when the angular distance between two robots on the SEC becomes a
multiple of 2π/n (note that in a Regular configuration all angular distances are
multiples of 2π/n).

Of course, as the walkers move, they need a strategy to “wait for each other”
and make sure to reach a configuration where they are once again analogous.
Also, different analogy classes should plan their movements “coherently”, in
such a way that their combined motion eventually results in the formation of
a Regular configuration. Note that this is complicated by the fact that, when a
class of walkers starts moving, some of the “reference points” the robots were
using to compute their destinations may be lost. Moreover, it may be impossible
to select a class of walkers in such a way that some “progress” is made when
they reach their destinations, and in such a way that the SEC remains fixed as
they move. In this case, the configuration is said to be locked, and some special
moves have to be made.

Finally, as the robots move according to the general algorithm that has
just been outlined, they may end up forming a Pre-regular configuration “by
accident”. So, the robots need a technique to stop immediately whenever this
happens, so that they can all recognize the Pre-regular configuration and start
executing the procedure of Sect. 2.1 (note that some robots may be in the mid-
dle of a movement when a Pre-regular configuration is formed accidentally, and
countermeasures have to be taken to prevent this, or else different robots may
end up executing different protocols, and the swarm will behave incoherently).

All the aforementioned aspects will be discussed in the rest of this section.
Next we will show how the robots can reach the SEC from any initial configu-
ration, as a preliminary step.

2.3 Preliminary Step: Reaching the SEC

A simple way to make all robots reach the SEC without colliding is to make
each of them move radially, away from the center, as in Fig. 3(a). This protocol
only works assuming that no two robots are co-radial, i.e., on the same half-line
extending from the center of the SEC. A special case is the Central configuration,
in which one robot lies at the center of the SEC. Central configurations are easily
resolved by simply making the central robot move to SEC/3, in such a way as
not to become co-radial with any other robot.

The Co-radial configurations that are not Central are handled as follows. First
of all, if there is any robot in the interior of SEC/3 that is not co-radial with
any other robot, it moves radially to SEC/3 (note how the evolution of a Central
configuration naturally blends with this protocol). Then, for each maximal set
of at least two mutually co-radial robots, the robot that is closest to the center
of the SEC moves radially toward the center until it is in SEC/3 (see Fig. 3(b)).
Finally, the most internal co-radial robots make a lateral move to become non-
co-radial, as in Fig. 3(c). The lateral move is within SEC/3 (or its interior) and
it is “sufficiently small”, in order to prevent collisions. A sufficiently small move
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Fig. 3. (a) All robots move radially to reach the SEC. (b) The most internal co-radial
robots move radially to SEC/3. (c) When they are in SEC/3, they make a small lateral
move. (Source: [12])

is, for instance, a move that reduces the angular distance to any other robot by
no more than 1/3.

The reason why we make robots reach SEC/3 before performing lateral moves
is because we want to prevent the accidental formation of Pre-regular configu-
rations. We will discuss this aspect later, in Sect. 2.9.

It is easy to see how this strategy makes the robots coordinate themselves
and avoid collisions. Indeed, as soon as a robot r makes a lateral move and
stops being co-radial with other robots, it is seen by the other robots as a non-
co-radial robot lying in the interior of SEC/3. Hence, no other robot will take
initiatives, and will just wait until r has reached SEC/3 and has stopped there.
This guarantees that, when a robot decides to perform a lateral move, no other
robot is in the middle of a lateral move.
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Also, no matter how many robots lie on the same line through the center of
the SEC, the innermost will always move first, and then the others will follow in
order, after the first has stabilized on SEC/3. When this procedure is completed,
there are no more co-radial robots and no robots in the interior of SEC/3. At
this point, the robots can safely move toward the SEC radially.

Lemma 2 ([12]). If no Pre-regular configurations are ever formed, the algo-
rithm will make all robots eventually reach the perimeter of the SEC and stop
there.

After this phase of the algorithm has been completed, no two robots will
ever become co-radial again. We will achieve this through a careful selection of
walkers and target points, and by making walkers move appropriately.

2.4 Half-Disk Configurations

Another special initial case has to be resolved: the Half-disk case. In this con-
figuration, all the robots lie in one half-disk of the SEC, and the diameter of
such a half-disk is called principal diameter (see Fig. 4(a)). The reason why it is
convenient to resolve these configurations immediately and separately from all
others will be explained in the following, when discussing locked configurations.

Half-disk configurations are resolved by making some robots move from the
“occupied” half-disk of the SEC to the “non-occupied” one. Note that, while
doing so, some robots have to cross the principal diameter. Also, as a conse-
quence of the definition of SEC, the principal diameter must contain robots on
both endpoints. These two robots, r1 and r2, must stay in place in order to
maintain the SEC stable. Hence, exactly two other robots, which have smallest
angular distances from r1 and r2 respectively, move to the two points where
the principal diameter intersects SEC/3 (see Fig. 4(b)). Once they are both
there, they move into the non-occupied half-disk, remaining inside SEC/3, as
in Fig. 4(c). (More precisely, if the principal diameter already contains some
robots on or inside SEC/3, such robots do not preliminarily move to the perime-
ter of SEC/3, because it is unnecessary and it may even cause collisions; in this
case, they move into the unoccupied half-disk right away.)

A very special Half-disk case is the one where all robots lie on the same
line. This case is handled as a generic Half-disk, with two robots first moving on
SEC/3 (if they are not already on it or in its interior), and then moving away from
the principal diameter. If they move in opposite directions, the configuration is
no longer Half-disk. If they move in the same direction, they form a generic
Half-disk, which is then resolved normally.

When analyzing the possible evolutions of a Half-disk configuration, one has
to keep in mind that it transitions into a different configuration while one or two
robots are still moving. This turns out to be relatively easy, since the moving
robots are inside SEC/3 (like the robots that move laterally in the Co-radial
case) and move in a very predictable and controlled way. When the configuration
ceases to be Half-disk, the robots will move on SEC as described before, and they
will never form a Half-disk configuration again.
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Fig. 4. (a) A Half-disk configuration and the principal diameter. (b) Two robots move
to the intersection between the principal diameter and SEC/3. (c) The same two robots
move to the non-occupied half-disk. (Source: [12])

Lemma 3 ([12]). If no Pre-regular configurations are ever formed, the algo-
rithm will make all robots eventually reach the perimeter of the SEC and stop
there, in such a way that in every half-circle of the SEC there is at least one
robot.

2.5 Identifying Targets

Suppose now that all robots lie on the perimeter of the SEC, and the configura-
tion is not Pre-regular and not Half-disk. In this case we can define a target set,
which represents the final Regular configuration that the robots are attempt-
ing to form. Each element of the target set is called a target, and corresponds
to some robot’s intended destination. Hence the target set is a Regular set of n
points arranged on the SEC in such a way that it can be computed by all robots,
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regardless of their local coordinate system (i.e, regardless of the orientation of
their local axes, their handedness, and their unit of distance). Next we describe
how the target set is defined, depending on the configuration of the robots.

Assume that the configuration has an axis of symmetry �. Then � must nec-
essarily be an axis of symmetry of the target set. If one robot r lies on �, then
the target of r coincides by definition with r’s location, and the other targets are
defined accordingly (see Fig. 5(a)). If no robot lies on �, then no target is placed
on �, either. In this case, the correspondence between robots and targets is as in
Fig. 5(b). It is not hard to prove that this definition is independent of the choice
of an axis of symmetry �, and that therefore the same target set is computed by
all robots.

Lemma 4 ([12]). Even if the configuration has more than one axis of symme-
try, it has a unique target set, and the robot-target correspondence is uniquely
determined.

Assume now that the configuration has no axes of symmetry. In this case we
say that two robots are concordant if their angular distance is of the form 2kπ/n,
for some integer k, and between them there are exactly k − 1 robots. In other
terms, two concordant robots have the “correct” angular distance, and between
them there is the “correct” number of robots. This is an equivalence relation
that partitions the robots into concordance classes. The largest concordance
class determines the target set: by definition, each robot in this class coincides
with its own target. Even if the largest concordance class is not unique, it turns
out that there is always a way to choose one of them unambiguously, in such a
way that all robots implicitly agree on it. Once some targets have been fixed,
the other targets and correspondences are determined accordingly, as Fig. 5(c)
shows.

Lemma 5 ([12]). In every configuration with all robots on the perimeter of the
SEC, the target set and the robot-target correspondence are uniquely determined.

2.6 Identifying Walkers, Locked Configurations

When the target set has been identified, then the walkers can be defined. The
walkers are simply the analogy class of robots that are going to move next.

Typically, the algorithm will attempt to move an analogy class of robots to
their corresponding targets. The robots that currently lie on their targets are
called satisfied, and these robots should not move. Moreover, the walkers should
be chosen in such a way that, when they abandon the perimeter of the SEC and
move into its interior, they do not cause the SEC to change. An analogy class of
robots with this property is called movable. Finally, no two robots should become
co-radial as a result the walkers’ movements. This means that the walkers should
be chosen in such a way that, as they move toward their targets, they do not
become co-radial with other robots. The targets of such robots are said to be
reachable.
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Fig. 5. The outer arrows indicate targets, and the inner arrows indicate correspon-
dences between robots and targets. (a) The dark-shaded robot lies on an axis of sym-
metry. (b) There are some axes of symmetry, none of which contains a robot. (c) There
are no axes of symmetry, and the dark-shaded robots form the largest concordance
class. (Source: [12])

Therefore, the walkers are selected to be a movable analogy class of robots
that are not satisfied and can reach their targets without ever becoming co-
radial with other robots. If such a class is not unique, one can always be chosen
unambiguously.

There are special cases where no such analogy class or robots exists: these
configurations are said to be locked (see for instance Fig. 6(a)). In a locked con-
figuration, the walkers are chosen with a different criterion: they are an analogy
class that is movable and not satisfied, and that is adjacent to some non-movable
analogy class. Such an analogy class is called unlocking. The goal of these walkers
is not to reach their targets (if they could, the configuration would not be locked),
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but to move in such a way as to “unlock” the configuration (as in Fig. 6(b)), thus
allowing other robots, which were previously non-movable, to reach their targets
(as in Fig. 6(c)).

Lemma 6 ([12]). In a locked configuration, each analogy class consists of at
most two robots. Also, there are at most two robots that are non-movable, and
they are adjacent.

It follows that there are only one or two walkers in a locked configuration,
and each of them is adjacent to some non-movable robot.

Lemma 7 ([12]). In every configuration with all robots on the perimeter of the
SEC, the walkers and their destinations are well defined.

2.7 Identifying Valid Configurations

Next we describe the journey that the walkers have to take to reach their des-
tinations. First they move radially to the perimeter of SEC/3, and they wait
for each other there. Once they are all on SEC/3, they start moving laterally,
remaining within SEC/3 and its interior, until they reach their finish set, which
is simply the set their destinations on SEC/3. Once they are in their finish set,
they move back to the perimeter of the SEC, radially.

The reason why the walkers move all the way to SEC/3, instead of going
directly to their destinations, is two-fold. It makes it easier to foresee and pre-
vent the accidental formation of Pre-regular configurations (see Sect. 2.9), and it
clearly separates the robots that should move from the ones that should wait,
so that none gets confused as the configuration changes.

Note that it is easy to recognize a configuration in which the walkers are
moving radially to SEC/3 or back to the SEC, because the analogy classes (and
hence the walkers) are defined only based on angular distances between robots.
Thus, if all robots are on the SEC, except for a few analogous robots that are
between SEC and SEC/3, then the configuration is recognized as a “consistent”,
or Valid one, in which the walkers are either moving to SEC/3 or are moving
back to the perimeter of the SEC (see Fig. 7(a)).

If the walkers have already started moving laterally in SEC/3, then recog-
nizing the configuration as a Valid one is more difficult. This can be done by
“guessing” where the internal robots were located when they were still on the
SEC and they have been selected as walkers. If there is a way to re-position the
internal robots within their respective “sectors” of the SEC in such a way as
to make them become a full analogy class, then the configuration is considered
Valid, and the internal robots are considered walkers (see Fig. 7(b)). Otherwise,
it means that the execution is in one of the earlier stages, and the robots still
have to make their preliminary move to the SEC.
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Fig. 6. (a) A locked configuration: the topmost robots are satisfied, the bottommost
robots are non-movable, and all other robots would become co-radial in the process
of reaching their targets. (b) A preliminary move is made to unlock the configura-
tion. (c) When the configuration is unlocked, the bottommost robots become movable.
(Source: [12])

2.8 Identifying the Finish Set

Once the configuration has been recognized as Valid and all walkers are in SEC/3,
they compute their finish set. Recall that this is the set of their destinations on
SEC/3, which they want to reach before moving back to SEC.

In order to understand where they should be going, the walkers have to
recompute their targets. Indeed, note that the original targets have been com-
puted when the walkers were on the perimeter of SEC. As they are now in SEC/3,
in the process of moving laterally to their destinations, they need a robust way to
define targets. This means that different walkers should compute the same target
set, and the target set should not change as the walkers move within SEC/3.
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(a) (b)

Fig. 7. Two types of Valid configurations. (a) Some analogous robots lie between SEC
and SEC/3, and all other robots are on the SEC. (b) All robots are on the SEC or on
SEC/3, and the distribution of the internal robots is compatible with a possible initial
configuration in which they were all on the SEC, forming an analogy class. (Source:
citeFPSV17)

Of course it may not be possible to reconstruct the original walkers’ positions
on the SEC and recompute the original targets, and therefore once again the
walkers have to “take a guess”. The default guess is that, when they were still
on the perimeter of the SEC, each walker was equidistant from its two adjacent
robots, as in Fig. 8(a). This position of the walkers is referred to as the principal
relocation, and of course it can be computed unambiguously by all robots.

Now the robots compute the finish set as follows. First of all, if the prin-
cipal relocation is not a full analogy class, but just a subset of one, then the
walkers know that it could not possibly be their initial position on the SEC (see
Fig. 8(b)). In this case, the finish set is defined to be the principal relocation
itself. The reason is that, by moving to their principal relocation, the walkers
all join some bigger analogy class: this is not an “ineffective” move, because it
makes progress toward having a unique analogy class.

On the other hand, if the principal relocation forms in fact an analogy class,
then the walkers assume that to be their original position on the SEC. Hence they
compute the new targets based on that configuration, with the usual algorithm
(see Fig. 8(c)). Now, if the walkers can reach their respective targets from inside
SEC/3 (that is, without becoming co-radial with other robots), then the finish
set is the set of their targets. Otherwise, the walkers are confused, and by default
their finish set is the principal relocation again.

Now that the finish set has been defined, the robots move there, always
remaining within SEC/3, and without becoming co-radial with each other. There
is only one exception: suppose that the walkers reach their finish set and move
radially to the perimeter of the SEC: let R be the set of the final positions of
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Fig. 8. (a) The principal relocation of the internal robots. (b) If the principal relocation
is a proper subset of an analogy class, it cannot be the original position of the internal
robots, or else a larger set of walkers would have been selected. (c) If the principal
relocation forms an analogy class, it is used to determine the target set. Such targets
remain fixed as the internal robots move within their respective sectors. (Source: [12])

the walkers on the SEC. If the new configuration is locked, and the robots in R
happen to form an unlocking analogy class, then it was not a correct move for
the walkers to go to R. Indeed, this would cause them to become walkers again
(unless there are two unlocking analogy classes and the other one is chosen),
and the execution would enter an infinite loop. In this special case, the walkers
have to do something to unlock the configuration, instead of reaching R. The
strategy is as follows: if the walkers are two, they move to two antipodal points
(as in Fig. 6(b)); if there is a unique walker, it becomes antipodal with some non-
movable robot currently located on the SEC. Note that this type of move would
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not be possible in a Half-disk configuration: this is precisely why the algorithm
makes sure to resolve Half-disk configurations early on.

Lemma 8 ([12]). Suppose that an unlocking analogy class of walkers is chosen
in a locked configuration, and said walkers move to their destinations. Then, the
resulting configuration is not locked, and all its analogy classes are movable.

2.9 Accidental Formation of Pre-regular Configurations

The algorithm has still one unresolved issue. Recall that, every time a robot
computes a new destination, it first checks if the configuration is Pre-regular.
If it is, it executes the special protocol given in Sect. 2.1; otherwise it proceeds
normally. So, let us consider what happens if the swarm is executing the non-
Pre-regular protocol, and suddenly a Pre-regular configuration is formed “by
accident”. If a robot happens to perform an observation right at that time,
it is going to execute the Pre-regular protocol, while all the other robots are
still executing the other one, and maybe they are in the middle of a move (see
Fig. 9(a)). This leads to an incoherent behavior that will likely disrupt the “flow”
of the entire algorithm.

To resolve this issue, we have to avoid the unintended formation of Pre-regular
configurations whenever possible. If in some cases it is not easily avoidable, then
we have to make sure that the whole swarm stops moving, or freezes, whenever
a Pre-regular configuration is formed. This way, all robots will transition into
the new configuration, and all of them will coherently execute the Pre-regular
protocol in their next cycles.

Fortunately, certain configurations are safe:

Lemma 9 ([12]). No Central or Co-radial or Half-disk configuration can be
Pre-regular.

So, in these initial phases, no Pre-regular configuration can be formed acci-
dentally. Another important observation is the following:

Lemma 10 ([12]). In a Pre-regular configuration, no robot can be in SEC/3.

This explains why we make our walkers move radially to SEC/3 first, and we
allow them to move laterally only within SEC/3.

Hence, the only moves that have to be analyzed are the radial ones, which
are performed by the walkers between SEC and SEC/3 or by the robots that
are reaching the perimeter of the SEC during the preliminary step. We can
conveniently simplify the problem if we let only one analogy class of robots
move at a time. Note that this is already the case when the moving robots are
the walkers, and in the other cases there is always a way to totally order the
analogy classes unambiguously. If only one analogy class is moving radially, it is
then easier to keep the swarm’s behavior under control and analyze all possible
outcomes.

The general protocol that is used for radial moves is called cautious move,
and is described next.
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(a) (b)

(c)

Fig. 9. (a) As the robot on the right moves to the SEC, a Pre-regular configuration
is accidentally formed. The robot on the left recognizes a Pre-regular configuration,
and starts executing the corresponding protocol, which is inconsistent with the other
robot’s move. (b) To prevent this behavior, enough critical points are added. Now the
swarm is guaranteed to stop as soon as a Pre-regular configuration is formed. (c) A
case in which infinitely many Pre-regular configurations are formable. Still, only the
innermost is relevant, because it can be reached before all the others. (Source: [12])

2.10 Cautious Moves

In a cautious move, there is an analogy class of robots that have to move radially,
either all from SEC/3 to SEC or all from SEC to SEC/3, while the other robots
wait. Each moving robot has a final destination and is given as input a finite
set of critical points along its path. Collectively, the moving robots execute a
protocol that makes them move in such a way as to freeze whenever they are all
located at a critical point (see for instance Fig. 9(b))1.
1 A similar concept has been used in [3], with some technical differences.
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The procedure first augments the set of input critical points with a finite set
of “auxiliary” critical points, and then lets a robot move toward the next critical
point (auxiliary or not) along its path, provided that some conditions are met.
The details are as follows.

– The endpoint of each robot’s path is added to the set of critical points.
– For every robot r and every critical point p lying on any other robot’s path,

a critical point is added on r’s path at the same distance from the center of
the SEC as p.

– Then, for each pair of consecutive critical points on each robot’s path, the
midpoint is added as a critical point.

– The robots that are not farthest from the endpoints of their respective paths
are not allowed to start moving.

– The robots that are farthest from the endpoints of their respective paths move
to the next critical point along their respective paths.

Lemma 11 ([12]). If the robots execute the cautious move protocol from a frozen
initial configuration, they either reach their final destinations or they freeze in a
configuration where all of them are in a critical point.

(Recall that a configuration is said to be frozen if no robot is moving.)
So, if the potentially formable Pre-regular configurations are used to generate

the critical points of a cautious move, it is indeed guaranteed that the robots
will freeze as soon as they form one. This is not always possible, because the
formable Pre-regular configurations may be infinitely many (as in Fig. 9(c)),
while the critical points must be finite. However, it can be shown that, in all
cases, either there is a finite number of Pre-regular configurations that will be
formed before all the others, or suitable critical points can be chosen in such a
way as to prevent the formation of Pre-regular configurations altogether. Hence,
it turns out that it is always possible to choose a finite set of critical points for all
cautious moves, and guarantee that the swam is frozen whenever it transitions
into a Pre-regular configuration.

Lemma 12 ([12]). Let an analogy class of robots perform a radial cautious move
from SEC to SEC/3 or vice versa, with suitable critical points. Then, either all
robots reach their destinations, or they freeze in a Pre-regular configuration.

2.11 Correctness of the Algorithm

All the elements of the Uniform Circle Formation algorithm have been pre-
sented. When a robot executes the algorithm, it determines the current con-
figuration type and executes the corresponding procedure to compute a desti-
nation point. Observe that some configurations fall in more than one category
(for instance, the Central configurations are also Co-radial), and so the order in
which such categories are tested matters. The order is the following:
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– Regular,
– Pre-regular,
– Central,
– Half-disk,
– Co-radial,
– Valid,
– Invalid.

All these classes have already been defined, except Invalid, which is the set of
configurations that do not fall in any other class. In an Invalid configuration, all
robots simply perform a cautious move toward the perimeter of the SEC.

The correctness of the Pre-regular case of the algorithm, as well as the Cen-
tral, Co-radial, and Half-disk cases is relatively straightforward to prove. Other
parts of the algorithm, however, need a more careful analysis: these include a
characterization of the locked configuration and the determination of critical
points in every configuration where a radial move is made, in order to avoid the
accidental formation of Pre-regular configuration.

These theoretical tools allow to finally tackle the Valid case, and so analyze
the main “loop” of the algorithm. It can be shown that the different phases of
the execution “hinge together” as intended: all the walkers reach SEC/3 and
freeze there (unless a Pre-regular configuration is formed in the process), then
they all move to their finish set, freeze again, and finally they move back to the
perimeter of the SEC. As the execution continues and more iterations of this
phase are made, it is necessary to study how the target set changes, in order to
make sure that a Pre-regular configuration is eventually formed.

To this end, it can be proven that, at each iteration, some “progress” is
made toward a Regular or Biangular configuration. This could mean that the
walkers join another analogy class (thus reducing the total number of analogy
classes), or that a new axis of symmetry is acquired, or that more robots become
satisfied. Of course the configuration may also be locked: in this case it can be
proved that, after one iteration, either the configuration is no longer locked, or
some analogy classes have merged, or a previously non-movable analogy class
has become movable.

Also, by design, the algorithm never allows an analogy class to split (because
the walkers constitute an analogy class when they are selected, and are again
all analogous when they reach their finish set), and it never causes a symmetric
configuration to become asymmetric from one iteration to the next. However,
it is true that the targets may change, and thus the number of satisfied robots
may actually decrease. However, this can happen only when some analogy classes
merge or when the configuration becomes symmetric, and thus it can happen
only finitely many times.

So, either a Pre-regular configuration is formed by accident (and this case
leads to a quick resolution), or eventually there will be only one analogy class
left, and hence the configuration will be Regular or Biangular. Figure 10 shows
the possible transitions between configuration types that the algorithm allows.
Observe that every possible flow ends in a Regular configuration.
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Central

Half-disk Co-radial

Invalid Valid

Pre-regular Regular

Fig. 10. Possible transitions between configurations in the Uniform Circle Formation
algorithm. (Source: [12])

Theorem 1 ([12]). The Uniform Circle Formation Problem is solvable by
n > 5 robots in the standard OBLOT model under the Async scheduler.

3 Special Algorithms for n ≤ 5 Robots

For small values of n, i.e., n ≤ 5, the Uniform Circle Formation algorithm of
Sect. 2 fails, and ad-hoc algorithms have been designed for these cases. If n ≤ 3
the problem is relatively simple, and the case n = 5 is obtained by modifying
the general algorithm of Sect. 2. The case n = 4, on the other hand, requires a
special treatment.

3.1 n �= 4 Robots

If n = 1 or n = 2, the pattern Uniform Circle is automatically formed, and
nothing has to be done. If n = 3, the algorithm is as follows:

– if the three distances between pairs of robots are all distinct and robots r1
and r2 are farthest apart, then robot r3 moves parallel to r1r2 toward the
axis of r1r2;

– otherwise, if r1r3 = r2r3, then r3 moves to the closest point that forms an
equilateral triangle with r1 and r2 (in case there are two such points, one is
chosen arbitrarily).

The analysis of this algorithm is straightforward.

Theorem 2 ([12]). The Uniform Circle Formation Problem is solvable by
n ≤ 3 robots in the standard OBLOT model under the Async scheduler.
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If n = 5, it turns out that the algorithm of Sect. 2 works as it is, except in
one situation: there are locked configurations where an unlocking analogy class
cannot be found in the usual way, because all the classes that are adjacent to
some unmovable class are satisfied. This cannot happen if n > 5, and in this
type of configuration the algorithm is undefined.

The algorithm can be modified to encompass these cases as follows. Suppose
that the configuration is Valid, with all robots on the perimeter of the SEC, and
without axes of symmetry. Two robots are said to be antipodal if they occupy
antipodal points of the SEC.

– If no two robots are antipodal, a movable robot is chosen unambiguously, it
becomes a walker, and moves to become antipodal with some other robot. It
can be shown that there exists one such robot that can complete its movement
without becoming co-radial with any other robot.

– If exactly two robots are antipodal, there is a unique robot that is adjacent to
both of them (recall that a Valid configuration cannot be Half-disk). Such a
robot is movable, and it becomes the walker and moves to become antipodal
with another robot.

– If two pairs of robots are antipodal, the non-antipodal robot is movable, it
becomes the walker, and moves to the midpoint of its adjacent robots, thus
creating an axis of symmetry.

When the configuration has an axis of symmetry �, since n = 5 is odd, there
must be a robot r on �. If � is not unique, the configuration is Regular; so, assume
that � is unique. If the two analogous robots s and s′ that are farthest from r are
not satisfied, the other two robots q and q′ make a preliminary move to become
antipodal (on the diameter of the SEC that is perpendicular to �), thus making
s and s′ able to move to their targets. When s and s′ are satisfied, q and q′ move
to their targets to form a Regular configuration.

Observe that, since n = 5 is an odd number, no Pre-regular configuration
can be formed, and thus the cautious moves require no ad-hoc critical points.

Theorem 3 ([12]). The Uniform Circle Formation Problem is solvable by
n = 5 robots in the standard OBLOT model under the Async scheduler.

3.2 n = 4 Robots

The case with n = 4 robots presents difficulties that make it unique, and has
been approached with radically different techniques. This case has been resolved
in [15].

When trying to apply the algorithm of Sect. 2 to n = 4 robots, it is immediate
to recognize that the Biangular configurations are now rectangular, and for such
configurations the supporting polygon defined in Sect. 2.1 is not a unique square,
but there are infinitely many of them. Even if the robots tried to implicitly agree
on one such square with a common criterion, the square would shift as the robots
move asynchronously to its vertices, yielding a convergence algorithm at best (as
opposed to a formation algorithm).



104 G. Viglietta

The approach adopted in [15] is, roughly speaking, to “tilt” the supporting
square by 45◦. That is, a square is found such that each robot lies on a distinct
edge of it (or on the extension of an edge), and the target of each robot is the
midpoint of the edge on which it lies. Once again there is more than one such
square, but the construction in Fig. 11 unambiguously produces one.

1r

q

4r

3r

2r

3p3�

1�

4�

2�

Fig. 11. Construction of the supporting square. (Source: [15])

Let r1r2r3r4 be a strictly convex quadrilateral whose diagonals r1r3 and
r2r4 are not perpendicular. Let q be the unique point such that r1q = r2r4,
the lines r1q and r2r4 are perpendicular, and the ray emanating from r1 and
passing through q intersects the line r2r4. Let �3 be the line through r3 and q,
and let �1 be the line through r1 parallel to �3. (Since r1r3 and r2r4 are not
perpendicular, �3 is well defined and is distinct from �1.) Let �2 be the line
through r2 perpendicular to �1, and let �4 be the line through r4 parallel to �2.
By construction, these four lines intersect at four points that are vertices of a
square Q, the supporting square. In turn, the midpoints of the edges of Q form
a second square Q′, whose vertices are the target points of the robots. Referring
to Fig. 11, the target of r3 is p3, and the segment r3p3 is called r3’s pathway, etc.

Lemma 13 ([15]). All robots agree on the same supporting square, which
remains fixed as all robots move to their target points asynchronously. More-
over, no two robots’ pathways intersect.

As the above construction assumes that the robots form a convex quadri-
lateral with non-perpendicular diagonals, special protocols are needed in these
cases. If the quadrilateral is non-convex, there is a unique robot that is con-
tained in the triangle formed by the other three: this robot moves to the foot of
an altitude of such triangle, thus forming a loosely convex configuration with per-
pendicular diagonals. On the other hand, whenever the quadrilateral is (loosely)
convex and its diagonals are perpendicular, then the robots that are closest to



Uniform Circle Formation 105

the intersection point of the diagonals move away from it until the configuration
becomes a square.

The above protocol has yet one exception: it does not apply when all four
robots are on the same line. In this case, the two non-extremal robots move to
either side of the line by a small amount. As they move asynchronously in this
fashion, their supporting square changes wildly, and so a “safe region” has to be
defined in which the robots do not rely on their supporting square but follow a
different protocol. The safe region has the form of a thin hexagon, depicted in
Fig. 12. The proportions of the hexagon are carefully chosen for reasons that will
be clear later.

6h h5

4h

3h2h

1h ◦50 ◦50

Fig. 12. Thin hexagon: the angles at h1 and h4 are 50◦, and h1h4 = 4 · h1h2.
(Source: [15])

If there are robots in h1 and h4 and two internal robots on different sides of
the diagonal h1h4, then the internal robots move to the white dots of Fig. 12,
turning the configuration into one with perpendicular diagonals. If the internal
robots are on the same side of the diagonal h1h4, say above it in Fig. 12, then
they move to the vertices h2 and h3 respectively, and they wait for each other.
When they both arrive and stop, the supporting square can be computed without
ambiguity, and the protocol can safely switch to the normal one, which makes
all robots move to their target points on the supporting square.

Of course, if all robots asynchronously move toward their target points, they
may accidentally form configurations that are not strictly convex or have perpen-
dicular diagonals or are thin hexagons, much like they could accidentally form
Pre-regular configurations in the algorithm of Sect. 2. Again, the issue is resolved
by limiting the number of robots that move concurrently and by employing a
concept of critical point and cautious move similar to that of Sect. 2.10.

To define the critical points, some definitions are needed. Two robots are
concordant if they have to move around the center of the supporting square
in the same “direction” (i.e., clockwise or counterclockwise) as they go toward
their targets. They are discordant if they move in opposite directions, and a robot
is said to be finished when it is on its target point. Let the guidelines of two
discordant robots ri and rj intersect in a point g. If pi lies on the segment rig and
pj lies on the segment rjg, then ri and rj are said to be convergent ; otherwise,
they are divergent (if both ri and rj are finished, they are both convergent and
divergent). If the pathway of ri intersects the segment rjrk in v, then ri is said
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Fig. 13. Robot r2 is blocked; robots r1 and r3 are hindered. (Source: [15])

to be blocked at v. If the pathway of ri intersects an extension of the segment
rjrk in v, then ri is said to be hindered at v (see Fig. 13).

Of course, the points v defined above, which make a robot blocked or hin-
dered, constitute natural critical points for the robots’ movements, as they deter-
mine transitions to special classes of configurations (i.e., not strictly convex or
with perpendicular diagonals).

Whenever possible, the algorithm makes only one robot move while the others
wait. In this case asynchrony is not an issue, and the robot will either move to its
target or to the first critical points on its pathway. An example of such a situation
is when one robot is discordant with the other three: then, the discordant one will
move before the other three. Another example is when all robots are concordant:
in this case, the two robots on opposite sides of the supporting square that are
closest to each other will move (as they move toward their targets, their distance
will keep being the shortest). It can be proven that these two robots cannot be
both blocked or both hindered. Thus, if one of them is blocked, it is chosen as
the only robot to move; if none of them is blocked but one is hindered, it is the
one to move. In all situations in which a single robot cannot be distinguished in
a robust way, it is always possible to choose two robots to move while the other
two robots wait. Suitable critical points also exist for these situations.

A notable fact is that, when looking for critical points, in almost all cases it is
unnecessary to take into account the accidental formation of thin hexagon con-
figurations. Indeed, in most of the relevant configurations, if the robots to move
are selected properly, no thin hexagon can ever be formed, as Fig. 14 exemplifies.
This is due to the proportions of the thin hexagon detailed in Fig. 12, which have
been chosen specifically for this purpose. For instance, suppose that robots r1
and r2 are divergent and robots r3 and r4 are divergent, as well. Further assume
that r1 is the only robot that does not lie on an edge of the supporting square,
but on the extension of it: in this configuration, r1 is chosen to move toward
its target. It is easy to verify that, if r2 is the robot closest to r1, then the two
angles ∠r1r3r4 and ∠r1r4r3 are both greater than 25◦. Hence, if r1 is on an acute
vertex of a thin hexagon and r3 (respectively, r4) is on the opposite vertex, then
r4 (respectively, r3) cannot be contained in the same thin hexagon.

As in Sect. 2, for the algorithm to work properly, it is necessary to identify
to which class the observed configuration belongs, by checking them one by one
in the correct order, because some classes have intersections. The order is the
following:
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Fig. 14. (a) If r1 and r3 are on their targets and r2 and r4 move, no thin hexagon is
formed. (b) As r3 and r4 move, no thin hexagon is formed. (Source: [15])

– Perpendicular diagonals,
– Thin hexagon,
– Non-convex,
– All robots concordant,
– Two robots convergent, two other robots divergent,
– Two robots divergent, two other robots divergent,
– Three robots concordant, one discordant.

To each class corresponds a different set of actions. The algorithm is designed in
such a way that, whenever a class transition occurs, no robot is moving: thus, all
robots will “witness” the transition and will coherently execute the instructions
for the new class. Also, when the configuration transitions from class A to class
B, the class B comes before A in the list above: this ensures that some progress
toward the solution is always made. The last rule has only one exception: when
all robots are on the same side of a thin hexagon, they will eventually be found
on four consecutive vertices of it. This configuration is then interpreted as one
with two pairs of divergent robots, which is resolved by the normal algorithm
without possibility of forming a thin hexagon again.

We conclude that Uniform Circle is formable by n = 4 robots, as well.

Theorem 4 ([15]). The Uniform Circle Formation Problem is solvable by
n = 4 robots in the standard OBLOT model under the Async scheduler.
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8. Dieudonné, Y., Petit, F.: Squaring the circle with weak mobile robots. In: Hong,
S.-H., Nagamochi, H., Fukunaga, T. (eds.) ISAAC 2008. LNCS, vol. 5369, pp. 354–
365. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-92182-0 33

9. Feletti, C., Mereghetti, C., Palano, B.: Uniform circle formation for swarms of
opaque robots with lights. In: Izumi, T., Kuznetsov, P. (eds.) Stabilization, Safety,
and Security of Distributed Systems. LNCS, vol. 11201, pp. 317–332. Springer,
Cham (2018). https://doi.org/10.1007/978-3-030-03232-6 21

10. Flocchini, P., Prencipe, G., Santoro, N.: Self-deployment algorithms for mobile
sensors on a ring. Theor. Comput. Sci. 402(1), 67–80 (2008)

11. Flocchini, P., Prencipe, G., Santoro, N., Viglietta, G.: Distributed computing by
mobile robots: solving the uniform circle formation problem. In: Aguilera, M.K.,
Querzoni, L., Shapiro, M. (eds.) OPODIS 2014. LNCS, vol. 8878, pp. 217–232.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-14472-6 15

12. Flocchini, P., Prencipe, G., Santoro, N., Viglietta, G.: Distributed computing by
mobile robots: uniform circle formation. Distrib. Comput. 30(6), 413–457 (2017)

13. Fujinaga, N., Yamauchi, Y., Kijima, S., Yamashita, M.: Asynchronous pattern
formation by anonymous oblivious mobile robots. SIAM J. Comput. 44(3), 740–
785 (2015)

14. Katreniak, B.: Biangular circle formation by asynchronous mobile robots. In: Pelc,
A., Raynal, M. (eds.) SIROCCO 2005. LNCS, vol. 3499, pp. 185–199. Springer,
Heidelberg (2005). https://doi.org/10.1007/11429647 16

15. Mamino, M., Viglietta, G.: Square formation by asynchronous oblivious robots.
In: Proceedings of the 28th Canadian Conference on Computational Geometry
(CCCG), pp. 1–6 (2016)

16. Miyamae, T., Ichikawa, S., Hara, F.: Emergent approach to circle formation by
multiple autonomous modular robots. J. Robot. Mechatron. 21(1), 3–11 (2009)

17. Mondal, M., Chaudhuri, S.G.: Uniform circle formation by mobile robots. In: Pro-
ceedings of the Workshop Program of the 19th International Conference on Dis-
tributed Computing and Networking (ICDCN), pp. 20:1–20:2 (2018)

18. Suzuki, I., Yamashita, M.: Distributed anonymous mobile robots: formation of
geometric patterns. SIAM J. Comput. 28(4), 1347–1363 (1999)

https://doi.org/10.1007/978-3-540-72951-8_14
https://doi.org/10.1007/978-3-540-92182-0_33
https://doi.org/10.1007/978-3-030-03232-6_21
https://doi.org/10.1007/978-3-319-14472-6_15
https://doi.org/10.1007/11429647_16



