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Abstract. The classic Look-Compute-Move model of oblivious robots has
many strengths: algorithms designed for this model are inherently resis-
tant to a large set of failures that can affect the memory of the robots
and their communication capabilities.

However, modern technologies allow for cheap and reliable means of
communication and memorization. This is especially true if relatively low
performances are needed, such as very limited communication bandwidth
or constant memory. A theoretical model that expands the classic Look-
Compute-Move by adding a minimal ability to communicate and remem-
ber is the model of robots with lights. In this model each robot carries a
luminous source that it can modify at every cycle. The robot decides the
color of its light during its Compute phase, and the light assumes such
a color at the beginning of the next Move phase. Other robots can see
the color of this light during their Look phases. The light will remain
unaltered until the robot that carries it decides to change its color.

Typically, the number of available colors is very limited, i.e., it is con-
stant with respect to the number of robots in the system.

In this chapter we will discuss the hierarchy of Fsync, Ssync, and
Async models when lights are present, we call this model LUMINOUS.
Moreover, we will see how lights are applied to solve classic problems such
as rendezvous and forming a sequence of patterns. Finally, we will see
how lights have been exploited in models where the visibility of robots
is limited by the presence of obstructions.

1 Introduction

In the classic Look-Compute-Move model of oblivious robots, the absence of per-
sistent memory and explicit communication ensures that any algorithm for such
weak model can be implemented in a wide range of harsh scenarios where com-
municating is not a reliable option, e.g., a hostile environment where commu-
nication jamming is a possibility. Moreover, algorithms designed for this model
are inherently resistant to a large set of failures that can affect the memory of
the robots and their communication capabilities.

Fortunately, modern technologies allow for cheap and reliable means of com-
munication and storage. This is especially true if relatively low performances are
needed, such as very limited communication bandwidth or constant memory.
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A theoretical model that expands the classic Look-Compute-Move model by
adding a minimal ability to communicate and remember is the model of robots
with lights [7,8]. In this model each robot carries a luminous source that it can
modify at every cycle. The robot decides the color of its light during its Compute
phase, and the light assumes such a color at the beginning of the next Move
phase. Other robots can see the color of this light during their Look phases. The
light will remain unaltered until the robot that carries it decides to change its
color.

Typically, the number of available colors is very limited, i.e., it is constant
with respect to the number of robots in the system. Interestingly, using light to
communicate is something feasible in the real world, and it has been used to
implement real communication channels [19].

Essentially, lights allow robots to perform communication. Moreover, in case
an robot can see its own light, the light itself also serves as memory. The impact
of using lights with a constant number of colors is drastic, and greatly increases
the computational power of mobile robots.

In this chapter we will discuss the hierarchy of Fsync, Ssync, and Async
models when lights are present, that is when robots are LUMINOUS. More-
over, we will see how lights are applied to solve classic problems such as Ren-
dezvous and forming a sequence of patterns. Finally, we will see how lights have
been exploited in models where the visibility of robots is limited by the presence
of obstructions.

Chapter Outline. The outline of the Chapter is the following. We start with
Sect. 2; devoted to formalising the LUMINOUS model. Specifically, the section
describes how the Look-Compute-Move model is modified to incorporate colored
lights. This amounts to letting each robot decide the color of its own light at
each cycle, and stipulating that the snapshots taken by robots also contain light
information. After formalising the model in Sect. 3, we investigate the computa-
tional power of lights. We discuss the relationship between Fsync, Ssync, and
Async when robots are endowed with lights, focusing on robots on plane and
mentioning the difference for agents on graph. Section 4 studies the Rendezvous
problem with lights. Rendezvous is unsolvable without lights, but it becomes
solvable when lights are introduced. In Sect. 5 we discuss how LUMINOUS
robots can form a sequence of patterns. In Sect. 6 we study the problem of mak-
ing obstructive robots mutually visible, showing how lights can be used to solve
problems when the visibility is not unlimited. The Chapter terminates with the
conclusive Sect. 7.

2 Model

When lights are introduced, the usual model of oblivious robots of Chap. 1, is
extended in a natural way. Each robot carries a visible light, which at any time
has a color chosen from a palette set B. (The size of B will often be informally
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referred to as the “number of lights”.) In the basic model with lights, the palette
set is the same for all robots, and it contains a special color Off, which is the
color of every robot’s light when the execution starts. Each robot can then freely
alter the color of its own light, choosing it from B, at each Compute phase.

More specifically, the usual Look-Compute-Move phases are modified as
follows.

– Look: In the Look phase, a robot r receives an instant snapshot, which is a
multiset of pairs of the form (pi, ci), where pi is a point in the plane and
ci ∈ B is a color. The meaning of such a pair is that, at the time the snapshot
was taken, the robot r could see a robot s located in pi carrying a light with
color ci. As in the usual model, pi is the position of s as expressed in the local
coordinate system of r.
In the basic model with lights, robots have full visibility, and therefore snap-
shots always contain information about every robot in the system. When more
restrictive visibility models are considered, such as the obstructed visibility
model of Sect. 6 of this chapter, a snapshot may contain less information.

– Compute: In the Compute phase, a robot, using the snapshot obtained in the
most recent Look phase, chooses a destination point and a new color in B for
its own light.1

– Move: During the Move phase, a robot first changes the color of its light to the
color chosen in the most recent Compute phase (this action is atomic, i.e., it is
instantly executed), and then it proceeds to move to its destination according
to the classic Look-Compute-Move model.

With Modelm, we indicate the model Model where robots carry lights whose
colors are chosen from a palette set of size |B| = m. For example, with FsyncO(1)

we indicate the Fsync model with lights of a constant number of colors (constant
with respect to the number of robots in the system). When the set of problems
solvable in model Model is included in the set of problems solvable in Model′

we write Model⊆ Model′ (we use ⊂ to indicate the strict inclusion).

3 Computational Power of Lights

The presence of lights have an impact on the relative computational power of
the Fsync-Async-Ssync models2. When we refer to robots without lights we
have that, for OBLOT there are problems that are solvable in Fsync but not
in Ssync (e.g., the Gathering problem). However, between Ssync and Async
the only known result is the trivial Async⊆Ssync.

In this section we investigate what happens when a constant number of lights
is available.

1 Note that setting the light at the end of the compute phase is equivalent to set the
light at the beginning of the move phase.

2 We say Fsync model as shorthand for the model of OBLOT (or LUMINOUS)
robots with Fsync scheduler.
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3.1 The Relationship Between AsyncO(1) and Ssync

[8] shows that AsyncO(1) is more powerful than Ssync, that is Ssync ⊂
AsyncO(1). This is done in two steps, first it is shown how to simulate any
algorithm for Ssync in AsyncO(1) using a constant number of lights. Then it
is shown that there exists a problem solvable in AsyncO(1) but not in Ssync.

Simulating SSYNC in ASYNCO(1). The simulator of [8] uses five colors: Trying
(T), Waiting (W), Moving (M), Stopping (S), Finished (F), and five states, one
for each different color.

The idea is to synchronize robots in a simulated cycle, namely the Mega-Cycle.
During a Mega-Cycle, each robot executes one step of the simulated algorithm
A. A new Mega-Cycle starts only when all robots terminated the execution of
the previous Mega-Cycle. Each Mega-Cycle is structured as follows. Initially, all
robots have light T. A robot with light T once activated tries to simulate one
activation of A, in doing so it first checks if all other robots have color in T or
S. In such case, the robot sets its color to M and it executes A. Otherwise, if
there is an robot with color M, the robot from color T switches to color W and it
does nothing. Intuitively, this check avoid that a robot provides to A a snapshot
containing robots that are moving, this is consistent with Ssync model.

If a robot has color M and no robot in its snapshot has color T, then it goes
to color S and it does nothing. An robot with color W goes back to T only if
there is no robot with color M. A robot with color S goes to color F if all robots
have color in {S,F}. A robot with color F goes to color T if all robots have color
in {T,F}. The previous rules ensure that, in a Mega-Cycle, each robot executes
exactly one activation of A. It is also easy to see that all robots execute the
Mega-Cycle: until there is some robot in W or T, there will be at least one robots
that enters in M. A new Mega-Cycle starts when some robot goes from F to T.
The state diagram of the simulator is shown in Fig. 1.

T ∀T, S M S F

W

∃M M

T ∀S, F

∀T, F

Fig. 1. State diagram of the simulator for Ssync in AsyncO(1) of [8]. On each arrow
there is label specifying a property of the snapshot that has to be verified to do the
corresponding state transition. As example, the label between node T and node S is
∀T, S, that means: each robot in the snapshot is either in state T or S.
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This simulator gives the following theorem:

Theorem 1 ([8]). Ssync ⊆ AsyncO(1).

The Additional Power of ASYNCO(1). It is well known that Rendezvous of
two oblivious anonymous robots cannot be solved in Ssync, see [26]. However,
it is possible to create an algorithm that solves Rendezvous in AsyncO(1). The
first paper showing this has been [8], where Rendezvous is solved using 4 colors.
Other papers investigated the Rendezvous improving this first result in many
directions. The Rendezvous will be the core of Sect. 4, the interested reader can
refer to that Section.

The existence of several Rendezvous algorithms in AsyncO(1) and the The-
orem1, leads to:

Theorem 2 ([8]). Ssync ⊂ AsyncO(1).

3.2 The Relationship Between AsyncO(1) and Fsync

The relationship between AsyncO(1) and Fsync is still not clear. It has been
shown in [8] that there exist a problem solvable in AsyncO(1) and not in Fsync.
The problem is the Oscillating Points.

In the Oscillating Points problem two robots, initially starting in distinct
positions, have to move in such a way to alternate configurations in which their
relative distance decreases (near configuration), and configurations in which their
distance increases (far configuration). The intuitive reason why such problem is
unsolvable in Fsync is that the problem specification implicitly needs robots to
remember weather they are in near or far configuration. This is not a problem
when lights are present, being lights persistent a certain color can be associ-
ated with a specific configuration, in [8] 4 colors are used to solve Oscillating
Points.

Theorem 3 ([8]). The Oscillating Points problem is solvable in AsyncO(1),
and is unsolvable in Fsync.

However, it is still unknown if Fsync can be simulated or not by AsyncO(1).
Therefore, we do not know weather Fsync is included in AsyncO(1), or weather
the two models are orthogonal. Figure 2 shows the hierarchy of the models in
the light of the results of [8].

The Power of Remembering. The relationship between AsyncO(1) and Fsync
is completely clear when we allows robots to remember the snapshot of the
previous round (model AsyncO(1) + Snapshot). In this case, it is possible to
simulate any Fsync algorithm, see [8]. The interesting fact is to contrast this
with what happens when lights are not available. In [26] it has been shown that
Async is weaker than Fsync even when robots remember an unlimited amount
of snapshots.
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ASYNCO(1)

SSYNC

FSYNC

ASYNCO(1)+Snapshot

Fig. 2. Hiearchy of AsyncO(1), Fsync and Ssync. An arrow indicates that the source
model is included in the destination. A strikethrough arrow indicates that the source
model is not included in the destination.

Robots on Graph with Lights. In [10] is investigated the relationship between
AsyncO(1) and Fsync when robots move in a discrete environment, that is
modelled as a graph. Robots operate following the Look-Compute-Move cycle, and
the snapshot is the entire graph. Two new problems are introduced to show the
separation of Fsync and AsyncO(1): the Pattern Series Chasing (solvable in
Fsync and not in AsyncO(1)) and the Forth and Back (solvable in AsyncO(1)

but not in Fsync). This implies that, when robots on graph are considered,
AsyncO(1) and Fsync are orthogonal models.

4 Rendezvous

Rendezvous is the special case of Gathering (see Chap. 4, Sect. 2) where the
system consists of exactly two robots whose task is to move to the same point,
no matter where and when, and then stop forever. This special case is surprisingly
hard, due to the lack of “environmental landmarks” that may help the two robots
agree on a common rendezvous point. In contrast, when more than two robots are
present, it is relatively easy in most cases to implicitly agree on a small subset of
robots that should gather first, while the others provide a visible static reference
frame that helps circumvent limitations such as asynchrony and non-rigidity3.

As shown in [26], the Rendezvous problem is unsolvable in Ssync. Indeed,
suppose the local reference frames of the two robots are oriented symmetrically:
since they have symmetric views, they always compute symmetric destination
points. As long as the destination points they compute are different, the scheduler
activates them both and lets them move. Whenever they compute the same
destination point (which must be their midpoint, by symmetry), the scheduler
3 In a rigid model robots always reach the destination when performing the move. In

a non-rigid model robots may be stopped before reaching the destination, however
they travel of at least a fixed unknown δ > 0.
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activates only one of them. To guarantee fairness, every time this happens, the
scheduler activates a different robot, alternating.

Theorem 4 ([26]). Rendezvous is unsolvable in Ssync.

One way to cope with this impossibility is to use robots with lights: the first
solution to Rendezvous in this model is found in [8], and was later improved in
several directions. In the rest of this section, we will review some approaches to
the Rendezvous problem for robots with lights.

4.1 Rendezvous with Fewest Colors

The focus of [28] is solving the Rendezvous problem for robots with lights using
the minimum number of colors. The problem is solved in a variety of models,
which combine different schedulers (Fsync, Ssync, Async), rigidity, and self-
stabilization. The concept of rigidity is defined in Chap. 1, Sect. 2.4, while self-
stabilization (see [14]) is the additional requirement that the two robots solve
Rendezvous regardless of their initial colors (as opposed to stipulating that their
lights have a specific predefined color when the execution starts).

Figure 3 summarizes the results of [28]: there is a hierarchy of 12 models
obtained by combining the aforementioned parameters in all possible ways (an
asterisk indicates that the solution has to be self-stabilizing). The number in
parentheses after each model indicates that there is an algorithm that solves
Rendezvous under that model using that many colors.

Under a certain assumption, all the numbers in Fig. 3 are minimal. The
assumption is that the robots cannot use information about their distance to
compute their destination points, but can only compute it as a function of their
respective colors. More precisely, if a robot is located in p and performs a Look
when the other robot is in q, then the destination point it computes must be of
the form (1−λ)p+λq, where λ ∈ R is computed as a function of the two robots’
lights at the moment the Look was performed. All the algorithms presented
in [28] are of this kind, as well.

The left side of Fig. 3 is easy to obtain, because in non-rigid Fsync there is a
trivial algorithm that solves Rendezvous even in the basic model (i.e., with only
one color): the algorithm makes each robot move to the midpoint of their current
locations. Even if movements are non-rigid, the robots either meet or approach
each other by at least 2δ at every turn, hence meeting in a finite number of
turns.

For non-rigid Ssync and rigid Async there is an algorithm that uses only
two colors, namely A and B, shown in Fig. 4. In the case of non-rigid Ssync,
the algorithm is also self-stabilizing.

Labels on arrows indicate the color that is seen on the other robot and the
λ parameter of the resulting move, i.e., the destination of the next Move with
respect to the position of the other robot. So, “0” stands for “do not move”,
“1/2” means “move to the midpoint”, and “1” means “move to the other robot”.
Roughly speaking, the idea of this algorithm is to make the robots approach each
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FSynch
rigid

SSynch
rigid

FSynch
non-rigid

SSynch
non-rigid

ASynch
rigid

ASynch
non-rigid

FSynch
rigid

SSynch
rigid

FSynch
non-rigid

SSynch
non-rigid

ASynch
rigid

ASynch
non-rigid

(1) (2) (2)

(1) (2) (3)

(1) (2) (3)

(1) (2) (3)

∗ ∗ ∗

∗ ∗ ∗

Fig. 3. Summary of results of [28]. For each model in the hierarchy, there exists a
Rendezvous algorithm using the number of colors in parentheses. An asterisk indicates
that the algorithm is self-stabilizing. If robots cannot use distance information in their
computations, all these numbers are optimal.

A B

A,  / 

B, 1

B, 0

A, 0

1 2

Fig. 4. Rendezvous algorithm from [28] for non-rigid Ssync (self-stabilizing) and rigid
Async

other by moving toward the midpoint as long as their lights have the same color:
if the scheduler keeps them synchronous, they eventually meet. If, on the other
hand, the scheduler does not keep them synchronous, the two robots eventually
see each other in different colors. Therefore the A-colored robot moves to the
other robot’s location, while the B-colored robot waits.

For non-rigid Async, the above algorithm fails. To see why, let r and s be
the two robots, and let them both start with color A at distance greater than 2δ.
If the scheduler lets them both perform an entire cycle but stops them as soon as
they have moved by δ, they end up in color B a positive distance apart. Now, let
both robots perform a Look phase, implying that both of them will eventually
turn A. We let robot r finish the current cycle and perform a new Look, while
the other robot s waits, still in color B. Hence, r will stay A and move to s’s
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A B

C

A,  / 

B, 0

B, 1 1 2

C, 0

C, 0

A, 0

C, 1

B, 0A, 1

Fig. 5. Self-stabilizing Rendezvous algorithm from [28] for non-rigid Async

position. Now we let s finish the current cycle and perform a new Look. So s
will turn B and move to the midpoint m. We let r finish the current cycle, thus
reaching s, and perform a whole new cycle, turning B. Finally, we let s finish
the current cycle, thus turning B and moving to m. As a result, both robots
are again set to B, they are in a Wait phase, both have executed at least one
cycle, and their distance has halved. If the scheduler repeats the same pattern
of activations, the robots will never gather.

Therefore, for non-rigid Async, the algorithm proposed in [28] uses three
colors, A, B, C, and is self-stabilizing: see Fig. 5. The algorithm is an extension
of that of Fig. 4, but its full analysis is somewhat technical.

Observe that the three algorithms outlined above are sufficient to establish all
the color numbers indicated in Fig. 3. Indeed, due to the hierarchical structure
of the models, if there is an arrow from model X to model Y in Fig. 3, then
any algorithm for model Y also works for model X. The matching lower-bound
proofs can be found in [28]. Summarizing, we have the following theorem.

Theorem 5 ([28]). The Rendezvous problem is solvable in each of the 12 models
of Fig. 3 using the number of lights indicated in parentheses under each model. If
robots are not allowed to use distance information in their computations, these
numbers are optimal.

Finally, [28] shows how to refine the algorithm of Fig. 5 to detect termination:
that is, to let the robots acknowledge that they have gathered, in order to turn
off or “switch gears” and start performing a new task. Although this is not
a requirement of the Rendezvous problem, it is a useful feature to add. The
new algorithm still uses only three colors, but it also uses distance information,
although robots only need distinguish between zero and non-zero distances.

Later improvements to [28] indicate that, if the robots are allowed to use
distance information in their computations, they only require 2 colors to solve



Robots with Lights 261

A B

A,  / 

B, 1 B, 0

A, 0

1 2

(d>0)

A, 0 (d=0)

Fig. 6. Self-stabilizing Rendezvous algorithm from [18] for non-rigid Async using dis-
tance information
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Fig. 7. Rendezvous algorithm from [16] for rigid Ssync robots in F-state

Rendezvous, even under the non-rigid Async scheduler, and even in a self-
stabilizing way. First, [20] proposed an algorithm that assumes the robots to
know the value of the parameter δ related to non-rigid movements (see Chap. 1,
Sect. 2.4). Then, [18] managed to drop even this assumption. The Rendezvous
algorithm of [18] is shown in Fig. 6.
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Observe that this algorithm is a simple modification of that of Fig. 4: the
only difference is that, if a robot’s color is A, it changes its color to B only if
the other robot has color A and positive distance, d > 0 (i.e., if they have not
gathered); otherwise, its color remains A. Although this algorithm uses distance
information, it actually just needs to distinguish between zero and non-zero
distances.

Theorem 6 ([18]). The Rendezvous problem is solvable in a self-stabilizing way
with 2 colors under the non-rigid Async scheduler, provided that distance infor-
mation can be used in the computations.

4.2 Rendezvous Under Weaker Light Models

Observe that visible lights offer a twofold advantage to robots: on one hand, a
light serves as internal memory for the robot carrying it; on the other hand,
it can be used to communicate information to other robots. In [16], these two
aspects are decoupled, and two weaker light models are introduced: in the finite-
state model (F-state), each robot can see the color of its own light but not
the color of the other lights; in the finite-communication model (F-comm), each
robot can see the color of the other robots’ lights, but not the color of its own
light. In the case of a system with two robots, the latter model is equivalent
to letting robots send each other messages and remember only the last received
message (and be otherwise oblivious).

The Rendezvous problem is solved in [16] under these weaker light mod-
els. Specifically, if movements are rigid, the problem is solved with 6 colors in
F-state assuming the Ssync scheduler and with 12 colors in F-comm assum-
ing the Async scheduler (no assumptions are made on the units of distance of
the two robots, which may be different). If movements are non-rigid, the prob-
lem is solved in a self-stabilizing way with 3 colors in F-comm assuming the
Ssync scheduler. If movements are non-rigid and, in addition, the robots know
the value of δ, then the problem is solved with 3 colors in both F-state assum-
ing the Ssync scheduler and in F-comm assuming the Async scheduler (here,
knowing δ implicitly gives the robots a common unit of distance).

The algorithm for F-state robots in the rigid Ssync model is illustrated
in Fig. 7, where circles denote the internal states of the two robots, and Sstart

is the initial state. An arrow with a label of the form (d)I, λ denotes a state
transition that applies when the other robot is seen in direction d ∈ {left, right}
and its observed distance lies in the interval I ⊂ R. The parameter λ is as in
Sect. 4.1, and defines the destination point with respect to the other robot’s
position. For example, a robot in state Sstart perceiving the other at distance �1
on the right will move to the position of the other robot and will change state
to Sright

2 . Note that a robot can arbitrarily assign a left and a right side to the
line that connects it to the other robot, and this assignment does not change as
the execution progresses.

According to the algorithm, the robots try to reach a configuration where
they both observe each other at distance not smaller than 1 (i.e., their own unit
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of distance). From this configuration, they attempt to meet in the midpoint. If
they never meet because they are never activated in the same turn, eventually
one of them notices that its observed distance is lower than 1. This implies a
breakdown of symmetry that allows the robots to finally gather.

In order to reach the aforementioned desired configuration where they both
observe a distance not smaller than 1, the two robots first move away from each
other if they are too close. When they are far enough, they memorize the side
on which they see each other (left or right), and try to switch positions. If only
one of them is activated, they gather; otherwise they detect a side switch, and
they can finally apply the above protocol, which leads to gathering.

This is complicated by the fact that the robots may disagree on the dis-
tances they observe, because they have different units of distance. To overcome
this disagreement, they use their ability to detect a side switch to understand
which distance their partner observed. If the desired configuration is not reached
because of a disagreement, a breakdown of symmetry occurs, which is immedi-
ately exploited to gather anyway. As soon as the two robots are in the same
location at the end of a cycle, they never move again, and Rendezvous is solved.

Theorem 7 ([16]). The Rendezvous problem is solvable with 6 colors in
F-state under the rigid Ssync scheduler.

Observe that the above algorithm makes a fundamental use of the fact that
the scheduler is rigid and Ssync. For instance, the correct detection of a side
switch by a robot relies on the fact that the other robot is not currently in the
middle of a movement while it is observed (hence the scheduler is not Async),
or it could be seen on a side and then switch side by the end of the current move.
Similarly, the algorithm relies on the fact that the robots can reliably move away
from each other and reach a distance not smaller than 1. In a non-rigid setting,
they may be stopped too soon, in such a way that both end up in state S1 but
still detect a distance smaller than 1. From that point on, they will never move
again, because each of them will incorrectly assume that the other robot will
measure a distance greater than 1.

Now let us consider the F-comm model. The Rendezvous algorithm for
F-comm robots in the rigid Async model is shown in Fig. 8, where the ini-
tial state of both robots is called “Test”. The meaning of an arrow from state X
to state Y is that if a robot observes that the light of the other robot has color
X, then the first robot sets its own light to color Y . If an arrow has a label in
the form of a predicate on d, it means that the transition only happens if the
observed distance d between the two robots satisfies the predicate. Moreover, a
boldface label λ on an arrow has the same meaning as in Sect. 4.1. If such a λ is
followed by a predicate on the distance d in parentheses, the robot moves only if
the predicate is satisfied, and stays still otherwise. For example, if a robot located
in p sees the other robot located in q and in state “Both <1”, and their distance
d is positive, it assumes state “Moving Away”. If, in addition, the distance d is
less than 1, it also moves to the point (1/2 + 1/d) · p + (1/2 − 1/d) · q.
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Fig. 8. Rendezvous algorithm from [16] for rigid Async robots in F-comm

According to the algorithm, the two robots try to reach a configuration where
they both see each other at distance smaller than 1. To do so, they first commu-
nicate to each other whether or not the distance they observe is smaller than 1
(recall that they may disagree, because their units of distance may differ). If one
robot acknowledges that its partner has observed a distance not smaller than 1,
it reduces the distance by moving to the midpoint.

The process repeats until both robots observe a distance smaller than 1. At
this point, if they have not gathered yet, they try to compare their units of
distance in order to break symmetry. They move away from each other in such
a way that their final distance is the sum of their respective units of distance.
Before proceeding, they attempt to switch positions. If, due to asynchrony, they
failed to be in the same state at any time before this step, they end up gathering.
Instead, if their execution has been synchronous up to this point, they finally
switch positions. Now, if the robots have not gathered yet, they know that their
distance is actually the sum of their units. Because each robot knows its own
unit, they can tell if one of them is larger. If a robot has a smaller unit, it moves
toward its partner, which waits.

Otherwise, if their units are equal, they apply a straightforward protocol: as
soon as a robot wakes up, it moves toward the midpoint and tells its partner
to stay still. If both robots do so, they gather in the midpoint. If one robot is
delayed due to asynchrony, it acknowledges the order to stay still and tells the
other robot to come.

Theorem 8 ([16]). The Rendezvous problem is solvable with 12 colors in
F-comm under the rigid Async scheduler.

Once again, the above algorithm crucially uses rigidity, for instance when the
robots switch positions and assume that their current distance must be the sum



Robots with Lights 265

A B

C

/

0

1 2

1

Fig. 9. Rendezvous algorithm from [16] for rigid Ssync robots in F-comm

of their units. In a non-rigid setting, they could be stopped too soon, and both
detect a distance smaller than 2. From that point onward, if they are activated
synchronously and rigidly, they keep switching positions without ever gathering.

For F-comm robots under the non-rigid Ssync scheduler, there is a simple
self-stabilizing algorithm, shown in Fig. 9. The meaning of an arrow from state
X to state Y is that if a robot observes that the light of the other robot has
color X, then the first robot sets its own light to color Y . The label λ on each
arrow has the same meaning as in Sect. 4.1.

Let us analyze this algorithm. Assume first that both robots start in the
same state and both are activated at each turn. Then they always have equal
states, and they cycle through states A, B, and C forever. Every time they are
both in state A, they move toward the midpoint, and their distance reduces by
at least 2δ. Eventually, it becomes so small that they actually gather.

Otherwise, if at any point the two robots are in different states, they will
remain in different states forever. In this case their distance will never increase,
and they will periodically be found in states B and C, respectively. Whenever
this happens, the robot in state C retains its state and waits until the other
robot is activated and moves toward it by at least δ. As soon as their distance
becomes not greater than δ and they turn again B and C, they finally gather.

Theorem 9 ([16]). The Rendezvous problem is solvable in a self-stabilizing way
with 3 colors in F-comm under the non-rigid Ssync scheduler.

Finally, if the robots are non-rigid but know the value of δ, they can solve
Rendezvous with 3 colors both in F-state under the Ssync scheduler and in
F-comm under the Async scheduler. The two algorithms are relatively simple,
because not only do the robots know at what point they can assume that all
movements will be rigid (i.e., when their distance is at most δ), but knowing δ
in their respective reference frames also implicitly gives them a common unit of
distance. The details of the two algorithms are found in [16].

Theorem 10 ([16]). The Rendezvous problem is solvable with 3 colors in
F-state and under the non-rigid Ssync scheduler, provided that the robots know
the value of δ.
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Theorem 11 ([16]). The Rendezvous problem is solvable with 3 colors in
F-comm and under the non-rigid Async scheduler, provided that the robots
know the value of δ.

Whether Rendezvous can be solved at all in F-state under the rigid Async
scheduler is left in [16] as an open problem.

5 Sequence of Patterns

Forming a specific pattern has been a prototypical problem in the oblivious robot
model, see [15,17,29] and Chap. 3. The general version of this problem specifies
that a set of robot has to form a specific pattern (up to rotation or scaling).
In this section we use the concepts of symmetricity and of equivalence class of
robots, shortened in class, defined in Chap. 3.

5.1 Sequence of Patterns Without Light

A natural extension of the pattern formation is the one in which robots have
to form a sequence of patterns, see [9]. Let S = 〈S0, . . . , Sm−1〉 be a sequence
of distinct patterns. A set of robots forms S, starting from a configuration Γ , if
it forms the infinite periodic sequence S∞ = 〈S0, S2, . . . , Sm−1〉∞, obtained by
repeating forever the sequence S. It is not hard to see that in the oblivious model
there are several restrictions on S, depending on the configuration Γ . Clearly,
the relationship between the symmetricity of Γ and the one of any pattern in S
has to be the same of the classic pattern formation (see Chap. 3).

Moreover, the following conditions are necessary: the symmetricity of each
pattern in S is the same; the number of points in each pattern has to be the same.
It is not hard to see why the previous conditions are necessary: once two robots
share the same position, they could be bonded forever by always activating them
at the same time, thus it is not possible for the number of points in the patterns
to change; the condition on the symmetricity is also obvious and it comes from
similar considerations.

Interestingly, in Ssync with rigid robots the above conditions are also
sufficient, see [9].

5.2 Sequence of Patterns with Light

Forming a sequence of patterns in the Async model with non-rigid luminous
robots has been studied in [6]. Note that, in [6] a pattern in S is only a set of
robots positions, without any restriction on lights color, i.e. two patterns are the
same even if the colors of the robots in each pattern are completely different.

In the following we will refer to positional class to indicate a set of points
that share the same view when colors are not considered, and we will refer to
chromatic class to indicate a set of points that share the same view when colors
are considered. When lights are available, it is possible to form a sequence S even
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if: there are repeating pattern in S; the number of points in each pattern is not
the same; and, patterns have different symmetricity. The only constraint on S is
that the symmetricity of any pattern in S has to be divided by the symmetricity
of the initial configuration Γ . This in contrast with what happens when lights
are not available.

In the algorithm of [6] colors are used to synchronize the various phase of
the algorithm, and to keep the symmetry broken when robots from distinct
positional classes move in such a way to end up in the same positional class, e.g.
two robots go to the same point but have two different colors. Moreover, colors
are also used to encode information about the sequence. Specifically, if the same
pattern S appears in two different positions in S it will have a different coloring
allowing robots to distinguish which instance of S is.

More in details, the algorithm is divided in five phases:

– Leader Identification: In this phase the robots elect one class as leader class.
A light with color Gold is used to uniquely mark this class in the next phases
of the algorithm.

– Pattern Identification: During the pattern identification the leader class moves
in such a way to uniquely identify the specific pattern Sj of S that has to be
formed. In this phase colors are used for synchronization.

– Separation: In the separation step robots that are in the same positional class,
but in different chromatic classes, separate to form different positional class.
Colors are used to symmetry breaking purpose. At the of this phase each
chromatic class is on a different circle. All circles are concentric.

– Rotation and composition: Finally, in this two phases the robots dispose them-
selves to build pattern Sj .

Theorem 12 ([6]). A set of non-rigid luminous robots in Async starting from
an initial configuration Γ can form a sequence of pattern S if for any P ∈ S,
the symmetricity of P is divided by the symmetricity of Γ .

6 Mutual Visibility

In this Section we consider the setting where robots obstruct the visibility of each
other, and we focus on the Mutual Visibility problem. Such problem has been the
object of several recent papers [11–13,22–25,27], and a variety of solutions have
been proposed investigating trade-offs between time complexity and number of
lights. For this reason, it is interesting to study the Mutual Visibility problem to
understand how lights can be used in the design of sophisticated algorithms.

Problem Statement. In the Mutual Visibility problem a set of robots initially
positioned in an arbitrary configuration have a to reach a final configuration Cf ,
where for each pair of distinct robot positions pj , pi in Cf it does not exist any
robot rs on the segment connecting pi and pj . We say that robots are mutually
visible in configuration Cf . See Fig. 10.
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(a) Configuration where
robots are not mutually
visibile.

(b) Configuration where robots are
mutually visibile.

Fig. 10. Example of initial and final configuration for Mutual Visibility.

Preliminary Definitions. Given a configuration Ct, at time t, H(t) denotes the
convex hull of {p1(t), p2(t), · · · , pn(t)} at time t. The robots lying on its boundary
are the external robots, the ones lying in its interior are the internal robots. Note
that, a robot may not know where the convex hull’s vertices are located, because
its view may be obstructed by other robots. However, it can easily determine
whether it is an external or an internal robot, i.e. a robot r is external when
there are two robots in its snapshot such that the angle formed by r and them
is at least π and there is no other robot in that angle.

6.1 Main Strategies

Analysing the literature, it is possible to identify three main meta-strategies
Shrink, Contain and Local. Roughly, each of these techniques works as follow:

– Shrink: In this strategy the external robots shrink towards a single point. In
doing so internal robots progressively become external. The strategy termi-
nate when all robots are vertices of the convex hull.

– Contain: This strategy is based on two phases interior depletion and vertex
adjustment. In the first phase, the internal robots move towards the convex
hull. In the second phase the robots on the convex hull move to become
vertices.

– Local: In the Local strategy each robot does a constant number of steps,
sometimes a single step, based on its local view and moving of a small distance
from its initial position. Doing this it tries to decrease the number of collinear
robots.

These three strategy have been proposed in [11]. In the first two strategies the
final configuration does not only ensure Mutual Visibility but it also solves the
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Convex Formation problem, arranging the robots as vertices of a convex polygon.
The existing algorithms for Mutual Visibility use some variation of these strate-
gies, where the modifications are used to obtain special properties such as fast
solutions, optimal number of moves, or resilience to faulty robots.

In the following we will assume that the initial configuration is not a line. In
case the initial configuration is a line, it is easy recognizable by each robots, and
they can run a simple custom algorithm to move themselves in a configuration
where there is a proper convex hull.

Strategy Shrink. The main idea of strategy Shrink, first proposed in [11,13], is
to move the external robots on the vertices of the convex hull towards the inside
of the convex hull. The final purpose is to shrink the convex hull (see Fig. 11)
while not decreasing the number of external robots. The robots use two colors:
Off, Vertex. Initially all robots have a pre-defined color Off, the robots that are
also vertices become Vertex to signal their special positioning. By shrinking the
convex hull, internal robots become external, and, eventually, vertices of the
convex hull.

Fig. 11. Motion of vertices in Shrink.

Details of Shrink. We will explain the details of the strategy Shrink of [11]
designed for rigid Ssync. A vertex robot r in position p moves inside the triangle
formed by itself and its own two neighbors on the convex hull’s boundary4 (note
that such neighbors are necessarily visible). This triangle is �pab of Fig. 12. The
only robots moving are the ones on the vertices of the hull. The move is designed
in a careful way, and the robot r moves according to this three rules:

– (Rule 1) To avoid collision with other moving vertices r does not go outside
the triangle �puv, where u, v are the midpoints of edges pa and pb.

– (Rule 2) In order to keep being external, r does not cross any line passing
through a robot inside �puv and parallel to ab. In case there is a robot in
�puv, robot r moves on the closest of such lines. In this last case the number
of external robots is increased, see Fig. 12(a).

4 The neighbors are the adjacent robots on the convex hull boundary.
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p

u v

a b

(a) robot r in position p moves carefully
to increase external robots and to remain
external.

p

u v

a b

(b) Default move of robot r in position p
to shrink the convex hull.

Fig. 12. Movements of an external robot according to the presence or not of an internal
robot in the area of movement, �puv.

Fig. 13. Special case of unique internal robot.

– (Rule 3) When there are not robots inside �puv, then r moves on the line
uv remaining a vertex of the convex hull. This move allows [11] to prove
that the convex hull shrinks in a such a way to converge to a single point.
This convergence property is a key point to prove that all internal robots
eventually became external.

Notice that, if a vertex robot r moves using Rule 3 and one of its neighbor,
let it be a, is not a vertex then a becomes a vertex. With this observation it is
clear that once all robots are external, they eventually become vertices of the
convex hull.

There is only one special case: when there exists an unique internal robots.
In this case the robot has to move because it could be positioned in the converge
point of the shrinking procedure. Thus, it will be never reached by the others.

A custom move is needed in this case. When an internal robots sees that all
the other robots are vertices, then it knows that it is the unique internal robots,
and it moves to an edge of the convex hull, see Fig. 13.

Robots terminate when they reach a strictly convex configuration, that is
when they all see each other with color Vertex. Notice, that in this algorithm
lights are used for termination detection.

It has been shown that a protocol based on Shrink correctly terminates in
rigid Ssync using two colors. Moreover, it is possible to slightly modify it so



Robots with Lights 271

to solve Mutual Visibility also in the model without lights, but when robots have
knowledge of n (the total number of robots in the system). Since lights are only
used for termination, without them and with knowledge of n a robots terminate
when it sees a strictly convex configuration, and n other robots. It is easy to see
that, when n is unknown, Shrink uses an optimal number of colors.

Theorem 13 ([11]). Protocol Shrink solves Mutual Visibility by rigid robots in
Ssync with 2 colors, or with no colors if the robots know n.

The strength of Shrink strategy is that it requires a minimal number of colors.
However, the convergence shown in Theorem 13 does not work in a non-rigid
or Async model.

Strategy Contain. The meta-strategy Contain, first presented in [11,12] for
non-rigid robots in Ssync, consists of two successive stages: interior depletion
and vertex adjustment. The algorithm uses three colors: Off, External, Adjusting.
In the interior depletion stage, the internal robots move towards the boundary
of the convex hull. At the end of this stages all robots are external. In the vertex
adjustment stage, the external robots make small adjustments to finally reach a
strictly convex configuration. Let H′(t) be the convex hull of the internal robots
at time t ∈ N, see Fig. 14(a).

Details of Contain. More precisely, strategy Contain works as follows.

– Interior depletion: Initially, all robots have lights Off. Once an external robot
is activated it switches light to External and it does nothing. The robots that
move are the one on the border H′. Eventually, a robot realizes to be on
the border of H′, this can be done locally once enough external robots have
been activated. A vertices r of H′ moves on the border of H. There are three
possible way for the robot to move:
1. When r is the only internal robots, it moves towards the midpoint of the

closest edge.
2. When r believes to be a vertex of a non degenerate H′, i.e. the robots in

H′ do not form a line, then r try to move to H. It does so, only when
it is able to identify correctly identify an edge of H where it can move
without colliding with other moving robots. As example, if r is a vertex
forming an acute internal angle of H′, then it moves to H by remaining
inside the zone delimited by the extension of the edges of H′ to which it
belongs, see Fig. 14(a).

3. When r is an extreme of the line H′, it moves towards H by using a direc-
tion that has a right angle away oriented away from H′, see Fig. 14(b).

– Vertex adjustment: When a robots r, vertex of H, with light External sees
only robots with light External, then it makes an adjustment move, the same
of strategy Shrink of Fig. 12(b). Before doing the move it sets its light to
Adjusting. After this adjustment, the neighbors of r on H will be vertices, if
they were not both vertices before the move. This Adjusting light is used by
r to remember it adjusted itself. A robot with light Adjusting, once activated
it switches to External and it terminates.
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H′H

r

(a) Case o non degenerate H′.

H′H

r

(b) Case of a f a degenerate H′.

Fig. 14. Movements of a robot on the border of H′ in Contain.

Theorem 14 ([11]). Protocol Contain solves Mutual Visibility by non-rigid
robots in Ssync with 3 colors.

Note that Contain works even when the system is non-rigid, this is in con-
trast with shrink. However, it does have a greater number of lights and the
algorithm is more complex.

In [11] slight variations of protocol Contain are presented to solve the problem
under various conditions and knowledge. Let δ be the minimum distance travelled
by a robot.

Theorem 15 ([11]). Mutual Visibility can be solved in Ssync by non-rigid
robots with no colors, if they know δ and n; it can be solved with 2 colors, if
the robots know only δ. Mutual Visibility can be solved in Async by rigid robots
with 3 colors, and in Async by non-rigid robots, if they agree on the direction
of one coordinate axis.

Strategy Local. The meta-strategy Local has been proposed in [11]. Local is
the only one of the three meta-strategies in which the final solution does not
solve Convex Formation. In this strategy, the first time a robot is activated, it
makes a small move to a new position avoiding to stop on, or to trespass, any
line connecting two visible robots, see Fig. 15. Only two colors are used: Off,
Moved that is turned on before a robot move. This simple idea solves Mutual
Visibility using two colors for the sequential scheduler Sequential (a particular
case of Ssync where a single robot is activated at each step). Also notice that
using this strategy, any robot moves at most once, in the entire execution.

Theorem 16 ([11]). Protocol Local solves Mutual Visibility by non-rigid robots
in Sequential using 2 colors.

6.2 State of the Art for the Number of Lights

The solutions above have been improved, in number of colors employed and in
the model where Mutual Visibility is solvable. In [22] an Algorithm following the
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Fig. 15. Motion of a robot in Local: the robot with a bold circle moves in such a way
to never cross or reach a segment connecting two visible robots.

Contain meta-strategy has been proposed, which allows to solve the problem in
Async non-rigid with no colors but agreement on one axis, and in Ssync non-
rigid with only 2 colors.

Theorem 17 ([22]). Mutual Visibility can be solved in Ssync by non-rigid
robots, in Async by rigid robots, and in Async by non-rigid robots, if they
agree on the direction of one coordinate axis, using 2 colors.

Moreover, another solution has been proposed based on the Local strat-
egy [3]. This algorithm solves Mutual Visibility (but not Convex Formation) in
Async non-rigid with 7 colors. The main idea is to enforce an order between
the robots movements, by allowing only robots that are not collinear with other
robots (the terminal robots) to move; in this way a local move monotonically
increases the number of terminal robots.

Theorem 18 ([3]). Mutual Visibility can be solved in Async by non-rigid robots
using 7 colors.

6.3 Time Complexity and Fault Tolerance

Apart from minimising the number of colors in Mutual Visibility solutions, other
works have focused on designing time efficient solutions [23–25,27], or solution
for environments where the robots may fails [1], or when robots are fat [21].

Time Complexity. When we consider Fsync the time complexity of an algorithm
is measured by the maximum number of rounds needed to terminate. In case
of Ssync or Async the definition is not straightforward. [24,25] proposes the
concept of epoch. Each epoch is an interval of time. A new epoch starts when
the previous epoch ends, and an epoch ends as soon as all robots have been
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activated at least once since the start of the previous epoch (or time t = 0 for
the first epoch), see [4]. In the following, the complexity of an algorithm Ssync
or Async is measured as the maximum number of epochs needed to terminate.

Failures and Fat Robots. When a robot experiments a crash failure, it stops
moving and it remains in the same position forever. A fat robot is modelled as
circular entities with unit radius [5], this in contrast with the classical model
where robots are points. For fat robots a robot ri sees a robot rj if there exists
a not obstructed segment from any point of the circle modelling robot ri to any
point of the circle modelling robot rj [2,21].

Time Efficient Solutions. As we said, the Contain and Shrink strategies
solve the Convex Formation problem. The Local strategy solves only the Mutual
Visibility. The Local solution proposed in [3] solves Mutual Visibility in Async by
non-rigid robots in O(n) steps and a constant number of moves for each robot.

Efficient Solutions for Convex Formation. The first work proposing an efficient
solution for Convex Formation has been [27], an algorithm for Fsync rigid uses
the Contain meta-strategy to solve the problem in O(log n) rounds (the algo-
rithm, however, allows collisions). This runtime is done by proposing an interior
depletion phase where internal robots goes on the convex hull in O(log n) rounds.
The vertex adjustment also ends in O(log n) rounds, and in this case robots on
the edge of the H move to create a strictly convex configuration. This is in
contrast with the classic Contain where vertex move.

In [24] the authors propose an algorithm for Ssync rigid that follows the
Contain meta-strategy and solves Mutual Visibility in O(1) epochs. The algorithm
uses an initial step, corner moving, in which vertex of H does one adjustment
movement. After this adjustment, the vertex will be visible to all internal robots.
The movement is similar to the one used by Shrink, with the additional idea of
never cross, or reach, locations where a collinearity with internal robots can be
created. After the adjustment, the convex hull H will be detectable by inter-
nal robots, that can move on its border in a constant number of epochs. In
the last phase, the robots on the edges of H move to create a strictly convex
configuration.

A similar strategy, with some modifications, works in Async rigid with time
complexity O(log n) [25].

Finally, in Fsync rigid, when n is known, a linear time solution exists,
without using any light [23]. The current state of the art from a time complex-
ity perspective is summarized in Table 1, where only collision-less solutions are
considered.

Fault-Tolerance and Fat Robots. In [1] it is investigated how to solve Mutual
Visibility in Ssync rigid, with agreement on the axes, when a single robot may
experience a crash failure. The algorithm uses 3 colors, and it is based on a
variation of the Shrink strategy. Notice that, if there is a crashed robot placed



Robots with Lights 275

Table 1. Collisions-less solutions for Convex Formation, for Fsync the time complexity
is measured using the number or rounds. For Ssync and Async, is the number of
epochs.

Paper Scheduler Time # Colors

[23] Fsync rigid O(n) 0
[24] Ssync rigid O(1) 12
[25] Async rigid O(log n) 25

exactly in the convergence point of the Shrink procedure, then the classic Shrink
strategy could fail. It could be possible for pairs of robots on the convex hull to
be collinear with the faulty robot, and to keep this collinearity by moving in a
symmetric way. This is solved in [1], by doing a special move once a configuration
with a single internal robot is reached.

Finally, Mutual Visibility has been solved, in Fsync rigid, when robots are
fat using 10 colors, in time O(n) [21].

7 Conclusions

We have seen that lights greatly enhance the capability of robots. They create
a new computational landscape where the relationships between Async, Ssync
and Fsync are different from the usual oblivious model. Besides this new rela-
tionship, a wide set problems can now be solved. A prototypical example is the
Rendezvous problem.

Another advantage is the possibility to solve old problems under weaker
assumptions, see the reduction of the restrictions needed on the sequences of
formable patterns by luminous robots.

Finally, the uses of lights allows the designing of fast and fault tolerant algo-
rithms in models where robots obstruct each other.

The model of luminous robot is still relatively new, and there are many open
problems.
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