
IEICE TRANS. INF. & SYST., VOL.E105–D, NO.3 MARCH 2022
517

PAPER Special Section on Foundations of Computer Science - New Trends of Theory of Computation and Algorithm -

Complexity of Critter Crunch

Tianfeng FENG†a), Leonie RYVKIN††b), Jérôme URHAUSEN†††c), Nonmembers,
and Giovanni VIGLIETTA†d), Member

SUMMARY We study the computational complexity of the puzzle
game Critter Crunch, where the player has to rearrange Critters on a board
in order to eliminate them all. Smaller Critters can be fed to larger Crit-
ters, and Critters will explode if they eat too much. Critters come in several
different types, sizes, and colors. We prove the NP-hardness of levels that
contain Blocker Critters, as well as levels where the player must clear the
board in a given number of moves (i.e., “puzzle mode”). We also character-
ize the complexity of the game, as a function of the number of columns on
the board, in two settings: (i) the setting where Critters may have several
different colors, but only two possible sizes, and (ii) the setting where Crit-
ters come in all three sizes, but with no color variations. In both settings,
the game is NP-hard for levels with exactly two columns, and solvable in
linear time for levels with only one column or more than two columns.
key words: Critter Crunch, puzzle game, computational complexity, NP-
hard problem

1. Introduction

Critter Crunch is a puzzle game developed by Capybara
Games and released in 2008. It features a rectangular board
containing several Critters, which come in different sizes
(Small, Medium, and Large) and colors, and may have some
special properties (e.g., the Blocker Critters). The player’s
goal is to clear the board of all Critters by picking some of
them up and shooting them back into the grid: a smaller
Critter is eaten when shot into a larger Critter; also, when
a Critter has eaten two other Critters (or when it has eaten
a single Critter that in turn has already eaten) it explodes,
starting a “chain reaction” that blows up all adjacent Critters
of similar size and color. When a Critter explodes, all the
Critters below it climb up, possibly into the mouths of larger
Critters above them, thus triggering combo explosions, and
so on. A YouTube gameplay video can be found at [7].

In this paper we study the computational complexity of
a version of Critter Crunch where the whole board is given

Manuscript received March 25, 2021.
Manuscript revised July 24, 2021.
Manuscript publicized December 22, 2021.
†The authors are with School of Information Science, Japan

Advanced Institute of Science and Technology (JAIST), Nomi-shi,
923–1292 Japan.
††The author is with Department of Mathematics, Ruhr Univer-

sity Bochum, Germany.
†††The author is with Department of Information and Computing

Sciences, Utrecht University, Netherlands.
a) E-mail: ftflluy@jaist.ac.jp
b) E-mail: leonie.ryvkin@rub.de
c) E-mail: j.e.urhausen@uu.nl
d) E-mail: viglietta@gmail.com (Corresponding author)

DOI: 10.1587/transinf.2021FCP0008

to the player in advance, and the player has to decide if it
is possible to clear it. That is, we study the decision prob-
lem whose input is a Critter Crunch board and the goal is to
decide whether there is a sequence of moves that eliminates
all Critters. In Sect. 2 we describe all the elements of Critter
Crunch that are relevant to this paper, and we explain the
rules of the game in greater detail.

In Sect. 3 we show that Critter Crunch is NP-hard if
Blocker Critters are present on the board. The same reduc-
tion framework can also be used to prove the NP-hardness of
levels with no special Critters but with a limit on the number
of moves that the player can do (i.e., the so-called “puzzle
mode”).

The last two sections are devoted to Critter Crunch with
no special Critters and with some limitations on sizes and
colors: Sect. 4 studies the setting where Critters may have
several different colors but only two sizes, and Sect. 5 stud-
ies the setting where Critters come in all three sizes but with
no color variations. We prove that, in both settings, the game
is NP-hard for levels with exactly two columns, and solvable
in linear time for levels with only one column or more than
two columns.

There is extensive literature on the computational com-
plexity of video games and puzzles. Examples include
Tetris, Candy Crush, Puzzle Bobble, Clickomania, and
many others [1]–[6]. Critter Crunch is a puzzle game in the
same vein as Tetris and Puzzle Bobble, and this paper is a
contribution to this line of research.

2. Critter Crunch Gameplay and Definitions

Critter Crunch is played on a rectangular board whose
columns are delimited by some vines, as illustrated in Fig. 1.
The top part of the board contains some Critters, whereas
the player controls an avatar below the board, called Biggs.
Biggs can be moved left and right, and its long, sticky
tongue can be used to pick up the bottom-most Critter of
any column. Once Biggs has picked up a Critter, he can spit
it out into any column. The Critter will hit the bottom-most
Critter of that column, or stick to the top of the board if no
Critter is present.

Critters can eat each other depending on their sizes:
Medium Critters can eat Small Critters and can be eaten by
Large Critters. However, Large Critters cannot directly eat
Small Critters. If Biggs shoots a Small (resp. Medium) Crit-
ter into a Medium (resp. Large) Critter, the bigger Critter

Copyright c© 2022 The Institute of Electronics, Information and Communication Engineers

518
IEICE TRANS. INF. & SYST., VOL.E105–D, NO.3 MARCH 2022

will eat the smaller one. (Note that no Critter gets eaten if,
for instance, a Large Critter is shot into a Medium Critter.)

When a Critter eats another Critter, it becomes full. If a
full Critter eats one more Critter, or if any Critter eats a full
Critter, the eating Critter explodes, and is eliminated from
the board. Critters also come in different colors. Whenever
a Critter explodes, all adjacent Critters of the same size and
color explode with it (Critters can be adjacent only horizon-
tally or vertically, but not diagonally). Thus, the explosion
extends to a whole “connected component” of Critters of the
same size and color.

After Critters have been eliminated by explosion, they
leave some empty space on the board. Whenever a Critter
has some empty space above, it climbs up along the vines.
Specifically, if a location is empty, all the Critters below it
move up simultaneously (see [7] at 2:54). When the upper
Critter of such a “chain”, say C1, hits a Critter C2 above
it, C1 is eaten by C2 if and only if their sizes are compatible
(i.e., if C1 is Small and C2 is Medium or if C1 is Medium and
C2 is Large). If C1 is eaten, all the Critters below it climb
up, possibly being eaten, etc. This can give rise to combo
explosions, i.e., explosions that are not directly caused by
the player but happen as a consequence of other explosions.

There is another way a Critter can eat: say that a Small
Critter has been fed to a Medium Critter (either because
Biggs has shot the Small Critter into the Medium one or
because the Small Critter has climbed up into the Medium
one), and assume that there is a Large Critter immediately
above the Medium one. Then, before the Medium Critter
has the chance to explode, the Large Critter will eat it; and
since the Medium Critter is full, the Large Critter will ex-
plode: this event is called a food chain (see [7] at 0:49). For
example, referring to Fig. 1, if Biggs picks up the Small Crit-
ter in the third column and shoots it into the second column,
he will trigger a food chain: the Medium Critter will eat the
Small one, and it will be eaten by the purple Large Critter
above it, which will explode (and no other Critter will ex-
plode, since there are no purple Large Critters adjacent to
the exploding one).

Fig. 1 A Critter Crunch screen

The Critters we have described so far are the normal
ones. There are also some special Critters, which will not
be relevant to this paper, except for one: the Blocker Critter.
This Critter cannot be picked up by Biggs, it cannot eat,
and it cannot be eaten. It only climbs up the vines as soon
as it has some empty space above, like any normal Critter.
The only way to eliminate a Blocker Critter is to remove all
Critters below it and create an empty space directly above
it: this is typically done by exploding the Critter above it.

As we have seen, every time the player picks up a Crit-
ter and shoots it back into the board (these two actions are
collectively referred to as a move), a connected component
of Critters may explode, and this first explosion may cause
a chain of combo explosions. We are interested in analyz-
ing the triplets of the form (s,m, l), indicating the amounts
of Small, Medium, and Large Critters that can be eliminated
in each explosion. More specifically, we count not only the
Critters that actually explode, but also the Critters that have
been eaten by the exploding ones. For instance, in a food
chain we are eliminating one Small Critter, one Medium
Critter, and l ≥ 1 Large Critters that actually explode: this
explosion is therefore represented by the triplet (1, 1, l).

So, each player’s move results in a (possibly empty)
sequence of explosions

((s1,m1, l1), (s2,m2, l2), . . . , (sk,mk, lk)).

The explosion triplet (s1,m1, l1) is called initial, while the

Table 1 Primitive explosions

Small Medium Large
2 ≥ 1
3 ≥ 2

2 ≥ 1
3 ≥ 2

1 1 ≥ 1
1 2 ≥ 1

Table 2 Combo-only explosions

Small Medium Large
2 1 ≥ 1
2 2 1

Fig. 2 Two combos that eliminate every Critter (squares represent
Medium Critters). Both combos consist of a primitive explosion followed
by a combo-only explosion.

FENG et al.: COMPLEXITY OF CRITTER CRUNCH
519

others are combo triplets. The following lemma character-
izes all such triplets. For a proof, refer to Appendix A.

Lemma 1. All possible initial triplets can be expressed as
sums of primitive triplets, which are listed in Table 1. There
are also some combo triplets that are not sums of primitive
ones, and these are reported in Table 2. �

In Fig. 2 we show how each type of combo-only ex-
plosion may occur. On the left we have the sequence
((0, 2, 4), (2, 1, 1)), while on the right we have the sequence
((0, 2, 7), (2, 2, 1)).

3. Basic NP-Hardness Results

In this section we prove the NP-hardness of Critter Crunch,
assuming that the board can contain normal Critters of all
sizes, as well as Blocker Critters. In Appendix B we will
extend this result to boards with only normal Critters, but
with a limit on the number of moves (“puzzle mode”).

Theorem 1. It is NP-hard to decide if it is possible to clear a
board of Critter Crunch containing normal Critters as well
as Blocker Critters.

Proof. We give a reduction from the strongly NP-complete
problem 3-Partition: 3n positive integers a1, a2, . . . , a3n are
given, and the goal is to decide if they can be partitioned in
n sets of equal sum B. It is not restrictive to assume that
B/4 < ai < B/2 for all 1 ≤ i ≤ 3n, so that every set of sum
B must have exactly three elements. An example of such a
reduction with n = 3 is shown in Fig. 3.

The 3n + n = 12 Small Critters surrounded by a red
rectangle are called the reservoir. Due to the presence of
Blocker Critters in every column, the only relevant action
the player can do is to pick up a Small Critter from the
reservoir and shoot it into a Medium Critter: this will start
a food chain that will explode some Large Critters. Hence,
each Medium Critter that the player can directly shoot into
is called trigger, and the number of Large Critters imme-
diately above it is its payload. For instance, the rightmost
trigger has a payload of a1 = 3.

It is easy to see that the biggest connected component
of Large Critters can be exploded only if the three Large
Critters marked with a blue cross become aligned: then the
player can shoot into the leftmost trigger and explode the
rightmost crossed Large Critter, as well as all the Large Crit-
ters in the leftmost column and in the upper region of the
board.

In order for this to happen, the central crossed Large
Critter has to move up by two positions, and the rightmost
crossed Large Critter has to move up by 17 positions. Since
17 is the combined payload of all triggers except the left-
most one, this is achieved only when the player has shot
into all triggers except the leftmost one.

To move the central crossed Large Critter up by two
positions, the player has to eliminate the two Large Crit-
ters above it. The topmost of these two Large Critter can

Fig. 3 Reduction from 3-Partition. Large brown squares represent
Blocker Critters; smaller squares represent Medium Critters.

be eliminated only by aligning it with the three Large Crit-
ters labeled “check 1”, which in turn can be done only by
shooting some targets between a1 and a9 with a combined
payload of 5. After that, the second Large Critter can be
eliminated only by aligning it with those labeled “check 2”,
which is done again by shooting targets with a combined

520
IEICE TRANS. INF. & SYST., VOL.E105–D, NO.3 MARCH 2022

payload of 5. This is equivalent to partitioning the ai’s into
sets each with sum 5.

When this is done, all the remaining Large Critters ex-
plode, and the Small Critters that are left move up into the
Medium Critters in the top part of the board. These Medium
Critters are exactly enough to eat all the Small ones and sub-
sequently explode. Once no normal Critter is left, also the
Blocker Critters are eliminated, and the board is cleared. �

Observe that, by a standard padding argument, the NP-
hardness reduction in Theorem 1 can be extended to a proof
of inapproximability. This is done by adding more rows of
Large Critters to the upper part of the construction (right
below the area with the Medium Critters). Indeed, these
additional Large Critters can be eliminated if and only if
the 3-Partition instance can be solved. Thus, if we place a
polynomial number of additional rows of Large Critters, we
still have a polynomial-time reduction from 3-Partition. The
result is that the maximum number of Critters that can be
eliminated from the board is NP-hard not only to compute
exactly, but even to approximate within any polynomial fac-
tor.

Corollary 1. For boards containing normal Critters and
Blocker Critters, the maximum number of Critters that can
be eliminated is NP-hard to approximate within any polyno-
mial factor. �

4. Levels with Critters of Only Two Sizes

In this section we study Critter Crunch levels containing
only normal Critters, and of two sizes only. Without loss
of generality, we may assume that the two sizes are Small
and Medium: indeed, the case with Medium and Large Crit-
ters is symmetric, and any board with only Small and Large
Critters is impossible to clear. We will characterize the com-
plexity of the game as a function of the number of columns
on the board: if the columns are only two, the game is NP-
hard; in all other cases, it is decidable in linear time.

It is trivial to see that levels with a single column are
decidable in linear time: the only move the player can do
at any given point is to pick up the bottom-most Critter and
shoot it back into place. If the Critter gets eaten, repeat the
process until there are no Critters left; otherwise, report that
the board cannot be cleared.

4.1 Boards with Three or More Columns

We will show how to decide in linear time if all Critters can
be eliminated, provided that the board consists of three or
more columns and sufficiently many rows.

Theorem 2. If a board has at least three columns and it
contains s Small Critters, m Medium Critters of c different
colors, and no Large Critters, then all Critters can be elim-
inated if and only if 2c ≤ s ≤ 2m.

Proof sketch. The idea of our proof is that, given any config-
uration of Critters, we can rearrange them into a “canonical”
configuration without causing any Critter to eat. From there,
we can set up any desired primitive explosion, as long as the
required number of Critters is present on the board. Note
that we can clear the board if and only if we can do so by
a sequence of primitive explosions: indeed, all combo-only
explosions require Critters of all three sizes (cf. Table 2),
but we are assuming to have only Small and Medium ones.
So, to decide if a given board can be cleared, it is sufficient
to count the number of Critters of each size and color, and
check if these numbers satisfy a system of linear inequali-
ties.

Proof. We call a configuration of Small and Medium Crit-
ters canonical if all the Medium Critters are in the first
column and all the Small Critters are in the second col-
umn. We will now show that from any configuration we
can reach a canonical one without feeding any Small Critter
to a Medium one. This is done in steps:

1. If the bottom-most Critter of the first column is
Medium, move it to the second column. Repeat until
the first column is empty or its bottom-most Critter is
Small.

2. Move the bottom-most Critter of the second column to
the first column if it is Small or to the third column if it
is Medium. Repeat until the second column is empty.

3. Repeat step 2 with all columns after the third one, emp-
tying all of them into the first and third column.

4. Move the bottom-most Critter of the first column to the
second column if it is Small or to the third column if it
is Medium. Repeat until the first column is empty.

5. Move the bottom-most Critter of the third column to
the second column if it is Small or to the first column if
it is Medium. Repeat until the third column is empty.

Now we will show that, from a canonical configura-
tion, we can set up any desired primitive explosion and re-
store a canonical configuration again, provided that we have
enough Critters. Since there are no Large Critters, we have
to consider only the first two rows of Table 1.

The first primitive explosion is of the form (2,m, 0),
with m ≥ 1. We can set it up provided that there are at
least two Small Critters and m Medium Critters of the same
color. First we move the bottom-most Critter of the first
column to the third column if it is of the desired color, or
to the second column otherwise. We repeat this step until
we have m Critters in the third column. Then we move all
the Medium Critters from the second column back to the
first column, and finally we shoot two Small Critters into
the third column.

The second primitive explosion is of the form (3,m, 0),
with m ≥ 2. Like before, we move m − 1 Medium Critters
of the desired color to the third column. Then we shoot one
Small Critter into the third column (thus feeding its bottom-
most Critter, which becomes full). After that, we move one
last Medium Critter of the same color to the third column,

FENG et al.: COMPLEXITY OF CRITTER CRUNCH
521

and we feed two Small Critters to it, triggering the explo-
sion.

Since we can set up any sequence of primitive explo-
sions, and no combo-only explosions are possible, decid-
ing if a given board can be cleared reduces to counting the
amount of Critters of every size and color and verify if these
numbers satisfy some simple conditions. The details are
given below.

Observe that at least two Small Critters must be used to
trigger an explosion, and each explosion only affects Critters
of one color; so, 2c ≤ s. Moreover, each Medium Critter can
eat at most two Small ones; hence, s ≤ 2m.

On the other hand, whenever 2c ≤ s ≤ 2m, we can set
up a primitive explosion of the form (2,≥ 1, 0) or (3,≥ 2, 0)
that preserves both inequalities. For example, if c = 3, s =
7, m = 8, then we use three Small Critters to explode all
the Medium Critters of the most numerous color, obtaining
c = 2, s = 4, and 2 ≤ m ≤ 5.

• Let s be odd and 2c+1 = s. We thus have 2c < s < 2m,
so there is at least one color consisting of at least two
Medium Critters. We explode all the Medium Critters
of that color with three Small Critters. As this de-
creases s by three and c by one, 2c = s now holds.
As we always have c ≤ m, both inequalities still hold.
• Let s be odd and 2c + 1 < s. The inequalities 2c + 3 ≤

s < 2m follow. Again, we have at least one color con-
sisting of at least two Medium Critters. We explode
two Medium Critters of that color with three Small
Critters. This decreases s by three, m by two, and ei-
ther c does not change or it decreases by one. Due to
2c + 3 ≤ s < 2m holding before the explosion, we now
still have 2c ≤ s ≤ 2m.
• Let s be even and 2c < s. It follows that c < m, so

we know that there is at least one color consisting of
at least two Medium Critters. We now explode one
Medium Critter of that color with two Small Critters.
This reduces s by two, m by one, and c remains un-
changed. After this explosion the inequalities still hold.
• Let s be even and 2c = s. We explode all Medium

Critters of one color using two Small Critters. As this
decreases s by two and c by one, 2c = s still holds. As
we always have c ≤ m, both inequalities still hold. �

4.2 Boards with Only Two Columns

We will prove the NP-hardness of Critter Crunch with only
Small and Medium Critters and boards of only two columns.

Theorem 3. It is NP-hard to decide if it is possible to clear
a board having exactly two columns and containing only
Small Critters and Medium Critters.

Proof sketch. Our reduction is from Vertex Cover: given a
graph G = (V, E) and an integer k, decide if there is a subset
U ⊆ V of exactly k vertices such that each edge in E has at
least one endpoint in U.

Fig. 4 Edge gadget

We use Medium Critters of |V |+ 2 different colors: one
color for each vertex, plus two “neutral” colors. To represent
an edge (v1, v2), we use the edge gadget in Fig. 4. It consists
of two Medium Critters of the first neutral color, followed by
two Small Critters, then two Medium Critters of the colors
corresponding to vertices v1 and v2 (red and green in the
figure), and finally two Medium Critters of the first neutral
color and two Small Critters.

Let us assume that an edge gadget is located at the
bottom of the left column in a two-column board, and that
the right column contains only Small Critters. The relevant
property of the edge gadget is that it can be cleared only
by “borrowing” four extra Small Critters from the right col-
umn to eliminate all of its Medium Critters. However, if
one or both of its central Medium Critters are removed (i.e.,
the ones corresponding to v1 and v2), then no extra Critters
are needed to clear the rest of the gadget: in this case, we
say that the gadget is satisfied. Indeed, suppose that the red
Critter is missing from Fig. 4. Then we can feed the two up-
per Small Critters to the green Critter: this connects the four
Medium Critters of the neutral color, which can be elimi-
nated using the two bottom Small Critters.

The full reduction is sketched in Fig. 5. The left column
consists of an offset of several Medium Critters of the sec-
ond neutral color (its purpose is to ensure the proper align-
ment when we move gadgets from left to right), followed
by some sink gadgets: each of them is a sequence of |V |
Medium Critters, one of each vertex color. After that, we
have an edge gadget for each edge in E, and then a vertex
gadget for each vertex in V: a gadget for vertex v is sim-
ply a long-enough sequence of Medium Critters of the color
corresponding to v, topped by two Small Critters. The right
column only contains Small Critters.

The first thing the player must do is get rid of all the
vertex gadgets. Roughly speaking, a vertex gadget can be
eliminated in two ways: by using two Small Critters from
the right column, or by using the two Small Critters on top
of the vertex gadget itself. In the second case, the gadget’s
Medium Critters explode in the right column, and the length
of the vertex gadget is such that it overlaps with all the sink
gadgets as well as the edge gadgets (see the right side of

522
IEICE TRANS. INF. & SYST., VOL.E105–D, NO.3 MARCH 2022

Fig. 5 Sketch of the reduction from Vertex Cover. The parameters n, m,
k are given by the Vertex Cover instance, and y = 5m + n. Left: initial
configuration. Right: selecting the blue vertex. The gadgets are not drawn
to scale; in particular, all vertex chains on the left should be as long as the
blue one on the right.

Fig. 5): in this case, we say that the vertex is selected.
Selecting a vertex v has two side effects: it removes one

Medium Critter from each sink gadget, and it satisfies all the
edge gadgets corresponding to edges incident to v.

After eliminating all the vertex gadgets, the player has
to clear the edge gadgets, the sink gadgets, the offset, and
the Small Critters in the right column, leaving no Critters on
the board. However, if some edge gadgets are not satisfied,
they must be cleared by borrowing some Small Critters from
the right column, and in the end there will not be enough
Small Critters to clear all the sink gadgets. Similarly, if the
player selects a number of vertices other than k, the number
of Medium Critters left in the sink gadgets and the number
of Small Critters in the right column will not add up.

Note that the above argument depends on a careful se-
lection of the number of sink gadgets and Small Critters in
the right column. The details are given below.

Proof. We provide the missing details from the above
sketch. The reduction from Vertex Cover takes as input a
graph G= (V, E), with |V |=n and |E|=m, and an integer k.

Recall that the vertex gadgets encode each vertex
v1, . . . , vn through a long chain of Medium Critters of one
color (we assign vertex vi the color ci), topped by two Small
Critters. It is now possible to either feed two Small Critters

from the right column to the bottom Critter to explode the
chain, or move the whole chain aside to the right column
and explode it there using the two Small Critters that were
sitting on top of the chain. Exploding it in the right column
encodes selecting the respective vertex for the vertex cover
in G. Note that when exploding the chain in the left column,
there are two Small Critters less in the right one. As two
Small Critters were sitting on top of the chain and thus are
now accessible, we simply put them to the right to access
the next gadget’s lowest Critter and have the correct number
of Small Critters back at the right column.

When a vertex is chosen, i.e., the corresponding chain
explodes in the right column, all incident edge gadgets lose
the Medium Critter of the respective color. An edge gad-
get can be uncovered (all ten Critters are still present in
the gadget), covered by one vertex (nine Critters remain-
ing) or covered by both incident vertices (only eight Critters
remaining).

For any uncovered edge, we need at least four Small
Critters to explode the whole gadget (if playing “ineffi-
ciently”, even five). The intended way to eliminate an un-
covered edge gadget would be to explode the two bottom
Medium Critters of the neutral color using the Small Crit-
ters at the bottom, then use four additional Small Critters
from the right column to explode the colored Medium Crit-
ters, and finally explode the two neutral Medium Critters on
top with the two remaining Small Critters.

Alternatively, we could potentially “connect” two
neighboring edge gadgets E1 and E2, with E1 located above
E2 in the left column, as follows: Let s1 and s2 be the two
Small Critters at the bottom of E1, with s1 sitting above
s2. We feed s2 to the highest Medium Critter of E2 (af-
ter moving E2 to the right column), and then we feed s1 to
the lowest Medium Critter of E1. After moving E2 back
to the left column, our connected edge gadgets consist of
two Medium Critters of the neutral color on top, followed
by two Small Critters, the colored Medium Critters repre-
senting the first edge, one neutral Medium Critter, four full
Medium Critters the lowest of which is colored, the second
colored Medium Critter representing the second edge, and
two neutral Medium Critters. Moving the two bottom Small
Critters back to the left explodes the bottom Medium Crit-
ters immediately. Now we would need three Small Critters
to explode the colored ones of E2, then one Small Critter
for the intermediate neutral Critters, and again four Small
Critters for the colored Medium Critters of E1. In total,
we needed eight additional Small Critters to explode both
edge gadgets. This argument is repeatable when “connect-
ing” more than two edge gadgets, but the number of addi-
tional Small Critters needed in order to explode the chain of
Medium Critters remains the same: four per uncovered edge
gadget.

There is another way of playing with edge gadgets, and
it involves the concept of overfeeding. By “overfeeding”
we mean eliminating a set of Medium Critters with a sin-
gle explosion by feeding them more than two Small Crit-
ters. This is done by feeding some Medium Critters once

FENG et al.: COMPLEXITY OF CRITTER CRUNCH
523

to make them full, and then causing another Medium Critter
in the same connected component to explode by feeding it
twice. So, in an uncovered edge gadget, we can potentially
overfeed once by putting everything to the right and feed-
ing one Small Critter to the topmost neutral Medium Critter.
This observation will come into play later, when we will
count how many Small Critters have to be used to eliminate
all edge gadgets.

For a singly covered edge, we can put the five bottom
Critters to the right, explode the remaining colored Medium
Critter (now bottom-most in the right column) using the two
Small Critters from the left, and then put everything back to
the left, thus exploding the four neutral Medium Critters in
one go. We can overfeed the top Critter again, and we can
also first explode the two bottom neutral-color Critters, thus
using up to three more Small Critters to explode the whole
gadget.

When an edge is covered by both incident vertices, no
colored Medium Critter is left. We have to explode the two
neutral pairs separately. We can simply use the four Small
Critters coming with them (intended way to play) or over-
feed both pairs once, which uses up two additional Small
Critters at most.

Recall that the sink gadget contains one Medium Crit-
ter of each vertex color. There are y = 5m + n consecutive
sink gadgets in the left column (the reason why we chose
this value of y will be clear later). When a vertex is selected,
i.e., the corresponding vertex chain is exploded in the right
column, all Medium Critters of the same color in the sink
gadgets explode with them. After exploding k vertex chains
in that fashion, we have y(n − k) Medium Critters of n − k
colors remaining in the sink gadgets. We will ensure to have
exactly enough Small Critters initially in the right column
to explode all of these Medium Critters plus the Medium
Critters in the offset: this amounts to 2y(n − k) + 2 Small
Critters.

The offset gadget consists of as many Critters of the
second neutral color as there are Small Critters beside it, and
10m more to ensure we can never align gadgets. After the
sink gadget is cleared by exploding the remaining Medium
Critters one by one, we need to have two additional Small
Critters on the right to explode the neutral-colored Medium
Critters. This part ensures that the alignment of the gadgets
works properly when we move gadgets from the left to the
right column.

To summarize:

• We need an offset of 10m+2y(n−k)+2 neutral-colored
Medium Critters in the left column and 2y(n − k) + 2
Small Critters in the right column. The Small Critters
are used to explode the remaining Critters in the sink
plus the offset Critters.
• Below the offset Critters, there are y copies of the sink

gadget, which consist of yn Critters in total.
• We have one edge gadget per edge, so in total 10m Crit-

ters for all edges.
• There is also one copy of each vertex chain: The chain

needs to be long enough to align with all Critters in
the sink and edges when moved over to the right col-
umn, so each vertex chain should consist of 20m + yn
Medium Critters of the respective vertex color, plus 2
Small Critters on top of the chain.

Clearly, any solvable instance of Vertex Cover is
mapped to a solvable instance of Critter Crunch. On the
other hand, it remains to be shown that we can only solve
our Critter Crunch instance if the underlying Vertex Cover
instance has a solution. We will discuss the ways to “cheat”
in detail, which will also provide a justification for the exact
value we chose for y = 5m + n.

As described above, we are able to overfeed Medium
Critters sometimes to lose some Small Critters. In total, we
are able to get rid of at most 5m + n Small Critters if we
explode all vertex chains in the left column. If we play like
this, however, we can never clear the board, because we can-
not reorder the Critters in any way to make larger groups ex-
plode and “save” Small Critters to even out our overfeeding.

However, we can explode more than k vertex chains
in the right column to get rid of some Medium Critters in
the sink. Per additional vertex chain exploded in the right
column (corresponding to an additional vertex chosen), we
lose y Medium Critters in the sink and thus need 2y Small
Critters less to explode the remaining ones.

If we explode k + 1 vertex chains on the right, we have
at most m−(k+1) uncovered, (k+1) singly covered, and (k+
1)/2 doubly covered edges (note that these numbers do not
occur simultaneously, but an upper bound is sufficient for
our purposes). As mentioned, each uncovered edge can be
overfed by at most 5 Small Critters, a singly covered edge by
up to 3 Critters, and a doubly covered edge can be overfed at
most twice. Additionally, we can overfeed each vertex chain
once. We obtain the following number of Small Critters that
can be eliminated by overfeeding:

5(m−(k+1))+3(k+1)+2(k+1)/2+n = 5m−(k+1)+n.

To ensure that exploding k + 1 or more vertex chains in the
right column can never lead to an empty board, we need
2y > 5m − (k + 1) + n. Since we chose y = 5m + n. Indeed,
exploding one additional vertex chain on the right “frees” 2y
Small Critters that are not necessary to clear the sink gad-
gets’ Medium Critters of the corresponding color anymore.
These would need to be cleared through overfeeding, which
is impossible for our choice of y.

The discussion above shows that now the only way to
eliminate all Critters is to explode exactly k vertex chains
in the right column, otherwise the numbers of Small and
Medium Critters never add up. Also, after exploding all ver-
tex chains, we need at least one colored Medium Critter per
edge gadget to have exploded (i.e., the corresponding edge
must be incident to at least one of the vertices we chose),
otherwise we cannot explode the respective edge gadget
without using Small Critters from the right column. After
successfully exploding all edges, we need exactly 2y(n − k)
Small Critters to explode the remaining y(n − k) Medium

524
IEICE TRANS. INF. & SYST., VOL.E105–D, NO.3 MARCH 2022

Critters of the sink and another two Small Critters to explode
the offset Critters of neutral color. Overfeeding or playing
“inefficiently” is in no case beneficiary. �

5. Levels with Critters of Only One Color

In this section we study Critter Crunch levels containing
only normal Critters where all Critters of the same size have
the same color. As in Sect. 4, we will give a characterization
of the game’s complexity based on the number of columns
on the board: if the columns are only two, the game is NP-
hard; in all other cases, it is decidable in linear time. (Once
again, for boards with a single column the analysis is triv-
ial.)

5.1 Boards with Three or More Columns

Theorem 4. If a board has at least three columns and it
contains s Small Critters, m Medium Critters of only one
color, and l Large Critters of only one color, then all Critters
can be eliminated if and only if:

2 ≤ m ≤ 2l if s = 0,

1 ≤ m ≤ 2l if s = 1,

(m = 1 ∧ l = 0) ∨ (m = 2 ∧ l � 1) ∨ m ≥ 3 if s = 2,

(s = 2m ∧ l = 0) ∨ s < 2m if s ≥ 3.

Proof sketch. We borrow our strategy from Sect. 4: if the
board has at least three columns and enough rows, we can
put the Critters in a “canonical” configuration, and show that
from there we can set up any desired primitive explosion.
This is sufficient because, as we will see, if the Large Crit-
ters are all of the same color, then all sequences of explosion
triplets (possibly containing combo-only explosions) can be
converted into sequences of primitive explosions. Note that
this is not necessarily true if Large Critters come in differ-
ent colors: Fig. 2 shows two examples of boards that can be
cleared, but not by primitive explosions only.

In this section, a configuration of Critters is called
canonical if all Critters of the same size are in the same
column. It is not hard to put the Critters in a canonical con-
figuration from any starting configuration without causing
any Critter to eat: the idea is to repeatedly transfer all Crit-
ters from one column to two other columns depending on
their sizes. First we put Small and Large Critters together
and we isolate the Medium ones, and finally we separate the
Small and Large Critters.

Then we can show that, from a canonical configuration,
it is possible to set up any desired primitive explosion and
restore a canonical configuration again. Firstly, we show
that we can permute the columns of a canonical configura-
tion in every possible way without causing any Critters to
eat. Then, if we are planning to explode m Medium Critters,
we can move all the Medium Critters to the first column and
only m of them to the third column: thus, the explosion of
these m Critters will not propagate to the remaining ones

in the first column. By “juggling” Critters in this fashion,
we can indeed set up any primitive explosion that involves
exactly the number of Critters that we want.

Next we have to show that, if a board can be cleared at
all, it can be cleared by primitive explosions only. For every
possible sequence of explosions, we have to show that there
exists a sequence of primitive explosions that eliminates the
same total amount of Small, Medium, and Large Critters.
For instance, the sequence ((1, 2, 3), (2, 2, 1)), consisting of a
primitive initial explosion followed by a combo-only explo-
sion, is equivalent to the sequence ((1, 1, 4), (2, 3, 0)), which
consists of two primitive explosions.

As a consequence, deciding if a given board can be
cleared reduces to counting the Critters of each size and ver-
ifying if the numbers satisfy some linear inequalities. The
details are below.

Proof. To complete the proof sketched above, we will prove
four facts: (i) from any starting configuration, we can put
the Critters in a canonical configuration without causing any
of them to eat; (ii) from a canonical configuration, we can
set up any desired primitive explosion and restore a canoni-
cal configuration; (iii) any sequence of explosions involving
Critters of the same color can be replaced by a sequence
of primitive explosions involving the same amounts of Crit-
ters; (iv) the conditions given in Theorem 4 are necessary
and sufficient for a level to be solvable.

Let us start with (i). We say that two columns are com-
patible if at least one of them is empty or if the bottom-
most Critter of the first column has a different size than the
bottom-most Critter of the second column. We will obtain a
canonical configuration in steps:

1. If the first two columns are not compatible, move the
bottom-most Critter of the first column into the second
column. Repeat until the first two columns are compat-
ible.

2. Let us assign names to the first three columns. The
third column will be called C. If the bottom-most Crit-
ter of the first or second column is Large, then that col-
umn is A and the other one is B. Otherwise, if the
bottom-most Critter of the first or second column is
Medium, then that column is B and the other one is
A. Otherwise, the first column is A and the second is B.
Note that, with this assignment, we can shoot a Small
or Large Critter into column A or a Medium Critter into
column B without causing any Critter to eat.

3. Move the bottom-most Critter of C to B if it is Medium
or to A if it is Small or Large. Repeat until C is empty.

4. Repeat step 3 with all columns after the third one, emp-
tying all of them into A and B.

5. Move the bottom-most Critter of B to C if it is Medium
or to A if it is Small or Large. Repeat until B is empty.
Now C contains only Medium Critters.

6. Move the bottom-most Critter of A to C if it is Medium
or to B if it is Small or Large. Repeat until A is empty.
Now C contains all the Medium Critters.

7. Move the bottom-most Critter of B to A if it is Small

FENG et al.: COMPLEXITY OF CRITTER CRUNCH
525

or to C if it is Large. Repeat until B is empty. Now A
contains all the Small Critters.

8. If the bottom-most Critter of C is Large, move it to B.
Repeat until the bottom-most Critter of C is Medium
or C is empty. Now the configuration is canonical.

To prove (ii), let us first show that we can arbitrarily
permute the first three columns of a canonical configura-
tion without causing any Critter to eat (and without using
any column after the third one). To swap the Small and the
Medium Critters, move all the Small ones under the Large
ones, move the Medium ones to the empty column, and
move the Small ones to the new empty column. To swap
the Small and the Large Critters, move all the Large ones
under the Medium ones, move the Small ones to the empty
column, and move the Large ones to the new empty column.
This is enough to obtain all permutations.

We will now show how to set up any primitive explo-
sion and restore a canonical configuration:

• To set up (2,m ≥ 1, 0), start with the Medium Critters
in the first column, the Large ones in the second, and
the Small ones in the third. Move all the Small Critters
to the second column, under the Large ones. Move m
Medium Critters to the third column, feed two Small
Critters to the last one, and move the rest of the Small
Critters to the third column.
• To set up (3,m ≥ 2, 0), start with the Medium Critters

in the first column, the Large ones in the second, and
the Small ones in the third. Move all the Small Critters
to the second column, under the Large ones. Move one
Medium Critter to the third column, feed one Small
Critter to it, move m − 1 Medium Critters to the third
column, and feed two Small Critters to the last one.
Move the rest of the Small Critters to the third column.
• To set up (0, 2, l ≥ 1), start with the Large Critters

in the first column, the Small ones in the second, and
the Medium ones in the third. Move all the Medium
Critters to the second column, under the Small ones.
Move l Large Critters to the third column, feed two
Medium Critters to the last one, and move the rest of
the Medium Critters to the third column.
• To set up (0, 3, l ≥ 2), start with the Large Critters

in the first column, the Small ones in the second, and
the Medium ones in the third. Move all the Medium
Critters to the second column, under the Small ones.
Move one Large Critter to the third column, feed one
Medium Critter to it, move l − 1 Large Critters to the
third column, and feed two Medium Critters to the last
one. Move the rest of the Medium Critters to the third
column.
• To set up (1, 1, l ≥ 1), start with the Large Critters in

the first column, the Small ones in the second, and the
Medium ones in the third. Move one Small Critter to
the first column, and move all the Medium Critters to
the second column, under the remaining Small ones.
Feed the Small Critter in the first column to the last
Medium Critter of the second column. This Medium

Critter now becomes full. Move l Large Critters to the
third column, feed the full Medium Critter to the last
one, which causes the l Large Critters to explode. Fi-
nally, move the rest of the Medium Critters to the third
column.
• To set up (1, 2, l ≥ 1), start with the Large Critters in

the first column, the Small ones in the second, and the
Medium ones in the third. Move one Small Critter to
the first column, and move all the Medium Critters ex-
cept one to the second column, under the remaining
Small Critters. Feed the Small Critter in the first col-
umn to the last Medium Critter of the second column,
and move the single Medium Critter from the third col-
umn to the second. Move l Large Critters to the third
column, feed two Medium Critters (one empty and one
full) to the last one, and move the rest of the Medium
Critters to the third column.

We will now prove (iii). Consider a sequence of ex-
plosions, consisting of an initial one plus some combo ones.
By Lemma 1, the initial explosion is equivalent to a sum of
primitive explosions from Table 1, while each combo explo-
sion is a sum of explosions from Table 1 and Table 2. So,
the sequence of explosions can be decomposed into a sum
of p ≥ 1 primitive explosions plus a sum of q explosions
of the form (2, 1, l ≥ 1) and (2, 2, 1). Let us call Medium
explosion an explosion of the form (s,m ≥ 1, 0), i.e., an ex-
plosion where only Medium Critters blow up. To prove (iii),
it suffices to prove three facts: (a) if the p primitive explo-
sions in the sum are all Medium explosions, then q = 0; (b)
the sum of (2, 2, 1) and any non-Medium primitive explo-
sion is equivalent to a sum of primitive explosions, at least
one of which is non-Medium; (c) a sum of any number of
triplets of the form (1, 2, l ≥ 1) and any non-Medium primi-
tive explosion is equivalent to a sum of primitive explosions.
Indeed, if q > 0, the sum must contain at least one non-
Medium primitive explosion, due to (a). Moreover, by (b),
we can use such a non-Medium primitive explosion to elim-
inate every (2, 2, 1) triplet from the sum while still retaining
a non-Medium primitive explosion. Finally, by (c), we can
use a single non-Medium primitive explosion to eliminate
all triplets of the form (1, 2, l ≥ 1).

Let us prove (a). Assume for a contradiction that q > 0
and the p primitive explosions in the sum are all Medium
explosions. Since a sum of Medium explosions is still a
Medium explosion, we deduce that the initial explosion in
our starting sequence was a Medium one. Since q > 0, this
initial Medium explosion must have caused a combo explo-
sion, meaning that m > 0 Medium Critters blew up in the
initial explosion, and the empty space they left was occu-
pied by at least one Critter C1 below some of them, which
climbed up into a larger Critter C2 and got eaten. However,
note that either C1 or C2 must be a Medium Critter, which by
assumption has the same color as the m exploding Medium
Critters. It follows that either C1 or C2 has exploded with
the m Medium Critters, which is a contradiction.

To prove (b), let us consider all cases:

526
IEICE TRANS. INF. & SYST., VOL.E105–D, NO.3 MARCH 2022

• (2, 2, 1) + (0, 2, l ≥ 1) = (1, 2, 1) + (1, 2, l).
• (2, 2, 1)+ (0, 3, l ≥ 2) = (0, 2, 1)+ (1, 1, 1)+ (1, 2, l−1).
• (2, 2, 1) + (1, 1, l ≥ 1) = (2, 1, 0) + (1, 2, l + 1).
• (2, 2, 1) + (1, 2, l ≥ 1) = (3, 2, 0) + (0, 2, l + 1).

As for (c), we can reason as follows: suppose that
we have a non-Medium primitive explosion of the form
(s,m, l ≥ 1) and k ≥ 1 explosions of the form (2, 1, li ≥ 1).
We can convert them into the primitive explosion (s,m, l +
∑

li) and k times (2, 1, 0).
Finally, let us prove (iv). If s = 0 or if l = 0, then we

are in the case of Theorem 2. If s = 0∧ l = 0 or m = 0, then
no explosion is possible. So, in the following we assume
s ≥ 1, m ≥ 1, and l ≥ 1. What remains to be proven is that
there is a solution except if one of the following holds:

s = 1 ∧ m > 2l, (1)

s = 2 ∧ m = 2 ∧ l = 1, (2)

s ≥ 2m. (3)

We start by proving that in those cases no solution ex-
ists. If Eq. (1) holds, there is no explosion that uses the
Small Critter and helps to reduce the number of Medium
Critters when compared to the Large Critters. Indeed, sim-
ilar to Theorem 2, even when using the explosion (0, 2, 1)
until there are no more Large Critters, there will still be
Medium Critters left that cannot be removed. For Eq. (2),
a simple case analysis shows that it is impossible to remove
all Critters. Finally, for Eq. (3), we again use Theorem 2, as
Large Critters do not help when it comes to removing more
Small Critters than Medium ones.

Assume now that none of the three equations holds. We
make the following case distinction:

• Let s < m.

– If s = 1, then we must have m ≤ 2l. We feed
the Small Critter to a Medium one and then apply
Theorem 2 (the full Medium Critter will be the
last to be fed to a Large one).

– If s ≥ 2, we start with the primitive explosion
(0, 2, l), obtaining (s,m′ = m−2, 0). Since m′ ≥ 1,
we have 2 ≤ s ≤ m − 1 = m′ + 1 ≤ 2m′. So we
can apply Theorem 2.

• Let s = m.

– If s = m = 1, we use the primitive explosion
(1, 1, l).

– If s = m = 2, we must have l ≥ 2. Then we use
the primitive explosions (1, 1, 1) and (1, 1, l − 1).

– If s = m ≥ 3, we start with the primitive explosion
(1, 1, l), obtaining (s′ = s−1,m′ = m−1, 0). Since
2 ≤ s′ = m′ ≤ 2m′, we can apply Theorem 2.

• Let s > m. Note that we must also have s < 2m, im-
plying that s ≥ 3. We start with the primitive explosion
(1, 1, l), obtaining (s′ = s − 1,m′ = m − 1, 0). Since
2 ≤ s′ = s − 1 ≤ 2m − 2 = 2m′, we can apply Theo-
rem 2. �

Fig. 6 Sketch of the reduction from 3-Partition (not to scale). Each
brown rectangle represents 3n shaker gadgets. We have U = 40S n2, where
S =
∑

ai. The green arrow marks the starting point.

5.2 Boards with Only Two Columns

We will prove the NP-hardness of Critter Crunch for boards
of only two columns where there are no special Critters and
no color variations.

Theorem 5. It is NP-hard to decide if it is possible to clear
a board having exactly two columns and containing only
normal Critters with no color variations.

Proof sketch. Our reduction is again from 3-Partition, where
the input are 3n positive integers a1, a2, . . . , a3n, and the goal
is to decide if they can be partitioned into n sets of equal
sum. Let S be the sum of the ai’s, and let B = S/n. Recall
that it is not restrictive to assume that B/4 < ai < B/2 for all
1 ≤ i ≤ 3n, which forces every set of sum B to have exactly
three elements.

Our reduction is sketched in Fig. 6. In the top-left part
we have the sponge, a long alternating sequence of Medium

FENG et al.: COMPLEXITY OF CRITTER CRUNCH
527

and Small Critters: its purpose is to eliminate all the Small
Critters that will be left after the player is done solving the
3-Partition instance. The sponge is matched in length by
the offset: a sequence of Medium Critters (topped by two
Small Critters) in the right column, which gives the correct
alignment to the gadgets that come next.

Below the sponge, we have 3n sequences of Medium
Critters separated by single Small Critters: each of these se-
quences represents an ai. The length of the ith sequence is
ai ·U, where U = 40S n2 is the length of a “unit”. In the right
column, corresponding to each unit, we have a sequence of
3n shaker gadgets, which will be described later (each se-
quence of 3n shaker gadgets is represented by a brown rect-
angle in Fig. 6). To fill the empty space around the shaker
gadgets, we use buffers of Small Critters.

After that, we have n check gadgets: each of them has
the purpose of verifying that the player has chosen a set of
ai’s with the correct sum of B. A check gadget extends
over both columns: in the left column it consists of Large
and Small Critters, alternating each other in a sequence of
length U/2; in the right column, it consists of a sequence of
U/2 Large Critters followed by two Medium Critters. Check
gadgets are separated by sequences of Small Critters: in the
left column, each check gadget is topped by a buffer of B ·U
Small Critters; in the right column, check gadgets are sep-
arated by buffers of a variable number of Small Critters,
which have the purpose of ensuring the proper alignment
between gadgets.

The green arrow in Fig. 6 marks the “starting point”,
meaning that everything below it is initially in the left col-
umn. It should be noted that the configuration in Fig. 6 never
actually occurs when the level is played (moving a pair of
Medium Critters to the right column causes a fuse gadget to
explode). The figure has been drawn this way to illustrate
the alignment between explosive gadgets and fuse gadgets.

The proper way to play this level is to use the shaker
gadgets to eliminate some ai’s (details on the shaker gad-
gets will be given later). Once the sum of the eliminated
ai’s is exactly B, the check gadgets in the left column have
moved up by B · U, i.e., the size of the buffers above them.
At this point, we can reach the two Medium Critters of the
first check gadget and use them to explode the sequence of
Large Critters in the right column. If everything was done
correctly, the left and right parts of the first check gadget
will be perfectly aligned, and all their Large Critters will be
eliminated by the explosion. Then we can proceed to elim-
inate more ai’s, and so on. Once all the check gadgets have
been properly eliminated, the only Critters left will be those
in the buffers, in the sponge, and in the offset. The offset can
consume at most two Small Critters (the ones at the top of
the right column), and each Medium Critter in the sponge
must consume exactly one Small Critter from the buffers;
the length of the sponge is chosen in such a way that these
numbers add up exactly.

Now we describe the shaker gadget, shown in Fig. 7.
Its purpose is to give the player two options: either “skip” it
to access some other gadgets above or below it, or destroy it.

Fig. 7 Shaker gadget. Left: initial configuration for n = 3. Center: after
one shake. Right: after two shakes.

Two consecutive skips, one going up and one going down,
are called a shake. As long as the shaker gadget is skipped,
only its Large Critters explode, and this has no side effect
on the ai’s in the left column. However, when the shaker
gadget is destroyed, one of its Medium Critters eats the two
bottom Small Critters, thus exploding and blowing up the ai

on its left. A shaker gadget should only allow n shakes, after
which it is automatically destroyed: such is the number of
shakes that the player needs to select a set of ai’s for n times.
Figure 7 shows an example of a shaker gadget for n = 3, as
well as its evolution after one and two shakes (after three
shakes, no Critter is left).

Suppose that the player fails to solve the 3-Partition in-
stance and blows up some ai’s with sum different than B.
This means that the left part of the next check gadget moves
up by the wrong multiple of U. Since the length of the left
and right parts of the check gadget is U/2, it follows that
they fail to overlap when the Large Critters on the right blow
up. This leaves U/4 unexploded Large Critters on the left.
The Medium Critters in the offset cannot be used to elim-
inate these Large Critters, because of the buffers of Small
Critters between them. If the sponge were used to elimi-
nate them, then there would not be enough Medium Crit-
ters to eat all the Small Critters in the buffers. So, the only
way to eliminate these Large Critters is to align them with
the shaker gadgets and blow them up with their Large Crit-
ters. However this is impossible, because we chose U so
that U/4 is greater than the total number of Large Critters in
the shaker gadgets. The missing details are given below.

Proof. We will provide additional details on the gadgets,
starting with the shaker gadget.

As we mentioned, the intended way to use a shaker
gadget is to explode it in the right column, next to an ai-
chain, in order to eliminate it: this corresponds to “select-
ing” that particular ai as part of a triplet with sum B. In gen-
eral, we want to blow up a triplet of shakers t1, t2, t3, next
to three ai-chains we want to eliminate. To do so, we first
move all shakers to the left column without exploding them.
Then we move them back to the right column one by one;
whenever we reach one of the three shakers ti, we explode it

528
IEICE TRANS. INF. & SYST., VOL.E105–D, NO.3 MARCH 2022

in the right column. This procedure has two effects: the left
column is reduced by B · U Medium Critters (assuming the
three ai’s we selected have sum B), and the right column is
reduced by a fixed number of Critters (additional details on
this will be given later).

Hence, any shaker gadget should give us the option to
“skip” it (by “shaking” it back and forth) for n − 1 times
before it explodes. In other words, a shaker should be large
enough to be moved to the left column and then back to
the right column for exactly n times. Thus we construct a
shaker gadget as follows: staring with a Large Critter, we
alternate n Large Critters with the same number of Small
Critters, followed by 2n Medium Critters. Below that we
place, starting with a Small Critter another alternating chain
of Small and Large Critters of total size 2n − 2, n − 1 of
each size, followed by another two Small Critters. The total
size of a shaker gadget sums up to h = 6n. Note that the
first shake decreases a shaker’s total size by 4 Critters, while
all following shakes (apart from the exploding last shake)
decrease its size by 6. As mentioned, we place 3n shaker
gadgets per unit length of Medium Critters in the ai-chains.
The buffer surrounding the 3n copies of the shaker gadget
per unit is therefore of size U − 3n · h.

The reason why we place 3n shaker gadgets per unit
is because we need to use exactly 3n shaker gadgets over-
all to blow up all the ai-chains. Eliminating one ai-chain
causes the chains below it to move up by ai “units”. So,
even though we always select different ai’s, we may have to
blow up shakers next to the same unit. This is why having
3n shaker gadgets corresponding to each unit ensures that at
all times there is at least one shaker gadget aligned with any
ai-chain we would like to explode.

Below the ai-chains are the check gadgets. Each one
consists of the explosive gadget, followed (below all n ex-
plosive gadgets) by the fuse gadget (of which we also have n
copies). The check ensures that we always have to explode
three ai-chains with values of total sum B, perform a check,
and repeat until all ai-chains are exploded and all checks
have been performed successfully.

The explosive gadget is as follows: we have D1 Small
Critters, followed by an alternating chain of C Large and C
Small Critters, where C = U/4. After that we have another
D2 Small Critters, followed again by an alternating chain of
C Large and C Small Critters, and so on. As we need to have
n checks, in the end we have Dn Small Critters, followed by
the last alternating chain of C Large and C Small Critters.
We set D1 = BU−3h− (3S n−3)4 and, for i ∈ {2, . . . , n−1},

Di = Di−1 − 3(h − 4 − 6(i − 2)) − 6(3S n − 3i).

Lastly we set

Dn = Dn−1 − (3nS − 3(n − 1))(h − 4 − 6(n − 2))

= BU − 3nS h.

The number D1 is chosen such that the following holds:
we force that three ai-chains with a total value of B have
exploded, i.e., the lowest Critters in the left column have

moved up by BU. In order to explode three ai-chains, we
need to completely remove three shakers, hence the term 3h.
Furthermore, we moved each shaker back and forth exactly
once (if we explode the topmost available shaker of each ai

and explode the ai’s of a triplet from top to bottom). The
first time a shaker is moved back and forth, its size reduces
by 4 and there are a total number of 3S n shakers. Thus we
get the term (3S n − 3)4.

The definition of the other Di’s follows the same prin-
ciple. Again 3 shaker gadgets have to be exploded, but now
their size is smaller. The size of a gadget reduces by 4 for the
first shake and by 6 for each following shake. The value Dn

is special, because all shakers disappear completely during
the last shake.

Below the explosive gadgets lie the n fuse gadgets of
the check. Each gadget consists of n copies of the following:
C Small Critters, below them are two Medium Critters, and
then 2C − 1 Large Critters. Note that when moving a fuse
gadget to the right column the Large Critters explode. This
cannot be avoided.

Let us summarize the intended way to play, assuming
that we know a partition of the set {a1, . . . , a3n} into triplets
such that the sum of each triplet equals B. We take one such
triplet {ai, a j, ak}, with i < j < k. Let t be the topmost shaker
in the topmost unit that is adjacent to the chain of Medium
Critters representing ai. We move all shakers from the right
to the left column. Then we move as many shakers back to
right column as we need to access ai, i.e., all shakers above
t. We explode t in the right column by moving it back and
forth between the two columns. This removes the chain of
Medium Critters representing ai. We remove the Medium
Critters associated with a j and ak in the same way. We move
all shakers back to the right column to regain our “default
position”. Then we move the bottom-most fuse over to the
right side, which causes it to explode. As we have ai + a j +

ak = B, the Large Critters from the fuse align perfectly with
the Large Critters of the topmost explosive gadget, which
means that the explosion removes all those Large Critters,
which is a “successful” check.

This procedure is repeated for each other triplet. In the
end, all shakers have exploded. The sponge and the off-
set gadget have not yet changed, but from the other gadgets
only Small Critters remain. What remains are n Small Crit-
ters that used to separate the ai-chains,

∑n
i=1 Di + nC Small

Critters from the explosives, nC Small Critters from the fuse
gadgets, and S (U − 3nh) Small Critters from the buffers be-
tween the shakers. We feed one Small Critter to the offset
gadget and then explode the offset gadget on the left col-
umn. Finally, we remove the Small Critters by exploding
the Medium Critters from the sponge one after the other.
Each Medium Critter eats the Small Critter below it plus
one Small Critter from the pool of remaining Critters, so we
need K = (2C + 1)n +

∑n
i=1 Di + S (U − 3nh) Medium Crit-

ters, which sets the total size of sponge and offset to 2K.
Note that, as 2Cn = 20S n3 > 18S n2 = S (3nh), we have
K > 2Cn + S (U − 3nh) > S U.

We still need to prove that one cannot solve the Critter

FENG et al.: COMPLEXITY OF CRITTER CRUNCH
529

Crunch instance without solving the underlying instance of
3-Partition. A player may try to “cheat” the game and clear
the board without playing in the intended way. A first idea
is to explode the offset before using the shakers to access
the ai-chains. As K > S U, after having exploded the offset,
a fuse on the right can no longer be aligned with an explo-
sive on the left. Furthermore, the sponge cannot be accessed
without exploding all fuses. It follows that if the offset is ex-
ploded before all fuses are used, there will be Large Critters
in the explosive gadgets that cannot be exploded.

Now, imagine that we chose (i.e., exploded) a number
of ai-chains whose sum is not B. The ai’s are all integers,
and therefore the sum of the exploded ai’s differs at least
by 1. It follows that the next fuse does not align with the
respective explosives by a height of at least U. We can try
to realign the Large Critters from the Fuse with the Large
Critters from the explosives by reducing the size of some
shakers by moving them back and forth multiple times.

At the beginning there are 3nS shakers, and each
shaker has a starting size of h. Since U = 40S n2 > 2×3nS h,
even if all shakers are exploded early, they can change the
alignment between explosive gadgets and fuses by at most
U/2. A single explosive check contains U/2 Critters, U/4 of
which are Large. This means that if the sum of an exploded
triplet of ai’s is not B, none of those U/4 Large Critters will
be exploded by the corresponding fuse.

In order to remove those Large Critters and solve the
instance, we have two options. Either we try and explode
those Large Critters by aligning them with other Large Crit-
ters that will explode anyway, or we explode them using
Medium Critters. The only Large Critters outside the check
gadgets are the ones in the shakers. There are 2n + 1
Large Critters in one shaker and at the start there are 3nS
shakers. Since U > 6nS h and h = 6n, we have U/4 >
3nS (2n+ 1)+ 3nS , and therefore at least 3nS Large Critters
need to be removed using Medium Critters. However, there
are exactly enough Medium Critters to remove all Small
Critters, so no Medium Critter can be fed to a Larger Critter.

As discussed above, any solvable 3-Partition instance
is mapped to an instance of Critter Crunch where the board
can be emptied completely by playing the intended way (and
only the intended way). An unsolvable instance leads to
misaligned check gadgets, i.e., we get Large Critters that
cannot be exploded. �

Acknowledgments

The authors are grateful to the anonymous reviewers for
greatly improving the quality of this paper with helpful com-
ments and suggestions. The third author is supported by the
Netherlands Organization for Scientific Research (NWO)
under project no. 612.001.651.

References

[1] A. Adler, E.D. Demaine, A. Hesterberg, Q. Liu, and M. Rudoy,

“Clickomania is hard even with two colors and columns,” The Math-
ematics of Various Entertaining Subjects (MOVES 2015), vol.2,
pp.325–363, Princeton University Press, 2017.

[2] R. Breukelaar, E.D. Demaine, S. Hohenberger, H.J. Hoogeboom,
W.A. Kosters, and D. Liben-Nowell, “Tetris is hard, even to approxi-
mate,” International Journal of Computational Geometry & Applica-
tions, vol.14, no.01-02, pp.41–68, 2004.

[3] E.D. Demaine and S. Langerman, “Bust-a-Move/Puzzle Bobble is
NP-complete,” Proceedings of the 18th Japan Conference on Dis-
crete and Computational Geometry and Graphs (JCDCGG 2015),
pp.94–104, 2015.

[4] L. Gualà, S. Leucci, and E. Natale, “Bejeweled, Candy Crush and
other match-three games are (NP-)hard,” Proceedings of the 10th
IEEE Conference on Computational Intelligence and Games (CIG
2014), pp.32:1–32:8, 2014.

[5] G. Kendall, A. Parkes, and K. Spoerer, “A survey of NP-complete
puzzles,” International Computer Games Association Journal, vol.31,
no.1, pp.13–34, 2008.

[6] G. Viglietta, “Lemmings is PSPACE-complete,” Theoretical Com-
puter Science, vol.586, pp.120–134, 2015.

[7] Critter Crunch | Puzzle Guide | Levels 1–10. https://www.youtube.
com/watch?v=LEfT3VHw8lc, 2013.

Appendix A: Primitive and Combo-Only Explosions

We will prove four facts: (i) Table 1 contains only feasi-
ble initial explosion triplets; (ii) every feasible initial ex-
plosion triplet can be expressed as a sum of triplets from
Table 1; (iii) the triplets in Table 2 cannot be initial explo-
sions; (iv) every feasible explosion triplet can be expressed
as a sum of triplets from Table 1 and Table 2.

Let us prove (i) first. The triplet (2,m ≥ 1, 0) is
obtained by shooting two Small Critters into an exposed
Medium Critter of a connected component of m units. The
triplet (3,m ≥ 2, 0) is obtained by having a connected com-
ponent of m Medium Critters and shooting one Small Critter
into one of them and two Small Critters into another. The
triplets (0, 2, l ≥ 1) and (0, 3, l ≥ 2) are obtained in a simi-
lar way. The triplet (1, 1, l ≥ 1) can be triggered by feeding
one Small Critter to a Medium Critter, and then shooting the
Medium Critter into a Large Critter in a connected compo-
nent of l units. Finally, the triplet (1, 2, l ≥ 1) is obtained
by feeding one empty Medium Critter to a Large Critter in
a connected component of l units, and then feeding a full
Medium Critter to the same Large Critter.

We will now prove (iii). Consider the explosion triplet
(2, 1, l ≥ 1). This triplet involves just one Medium Critter,
which has to eat two Small Critters and at the same time be
fed to a Large Critter without exploding. The only way this
can happen as a result of a player’s move is by triggering
a food chain: a full Medium Critter must be sitting under
an empty Large Critter, and the player must shoot a Small
Critter into this Medium Critter. However, there is no way
a full Medium Critter can be right under a Large Critter: if
the Medium Critter had collided with the Large Critter, the
Large Critter would have eaten it. So, the two Critters must
have been adjacent since the beginning. But in this case, the
Medium Critter could not be full, otherwise it would have
been eaten by the Large Critter in a food chain at the time of

http://dx.doi.org/10.23943/princeton/9780691171920.003.0018
http://dx.doi.org/10.23943/princeton/9780691171920.003.0018
http://dx.doi.org/10.1142/s0218195904001354
http://dx.doi.org/10.1007/978-3-319-48532-4_9
http://dx.doi.org/10.1109/cig.2014.6932866
http://dx.doi.org/10.3233/icg-2008-31103
http://dx.doi.org/10.1016/j.tcs.2015.01.055

530
IEICE TRANS. INF. & SYST., VOL.E105–D, NO.3 MARCH 2022

eating its first Small Critter.
Consider now the explosion triplet (2, 2, 1). Two

Medium Critters have to be fed to a Large Critter, but they
must have eaten two Small Critters as well. Suppose the
two Medium Critters eat one Small Critter each. Then, the
first Medium Critter to be fed to the Large Critter would
cause it to explode immediately, which means it would not
eat the second Medium Critter. It follows that one of the two
Medium Critters eats both Small Critters and gets eaten by
the Large Critter before exploding, which cannot happen as
an initial explosion, as already proved in the previous para-
graph.

To prove (iv), consider a generic explosion triplet
(s,m, l). Note that every Critter can eat at most two other
(possibly full) Critters. So, we have the inequalities s ≤ 2m
and m ≤ 2l. Suppose the Critters that actually explode are
Medium Critters: this means that l = 0 and s ≥ 2 (we
need at least two Small Critters to trigger an explosion of
Medium Critters). We can prove by induction on s that the
triplet (s ≥ 2,m ≥
s/2�, 0) can be expressed as a sum
of the two first primitive triplets of Table 1. For s = 2
and s = 3, we have exactly the first and second primitive
triplets, respectively. Suppose now that s ≥ 4 and that our
claim is true for s − 2. Then we can subtract the primi-
tive triplet (2, 1, 0) (first row of Table 1) to obtain the triplet
(s − 2,m ≥
s/2� − 1, 0). If s = 2s′ is even, we have
m ≥
s/2� − 1 = s′ − 1 =
(s − 2)/2�, so the new triplet
satisfies the inductive hypothesis. If s = 2s′ + 1 is odd, we
have m ≥
s/2� − 1 = s′ =
(s − 2)/2�, and again the new
triplet satisfies the inductive hypothesis.

Let us now assume that the explosion involves Large
Critters, and therefore l ≥ 1. If s = 0, the same argument
used in the previous paragraph proves that our explosion
triplet can be obtained as a sum of the third and fourth prim-
itive triplets of Table 1. So, let us assume that s ≥ 1, and
therefore also m ≥ 1, and let us prove our claim by induc-
tion on s: specifically, we will prove that, if 1 ≤ s ≤ 2m,
1 ≤ m ≤ 2l, and l ≥ 1, then the explosion triplet (s,m, l) can
be expressed as a sum of triplets from Table 1 and Table 2.

Assume first that s = 1. If m = 1 or m = 2, we have
the fifth or the sixth primitive triplet of Table 1, so let us
assume m ≥ 3, and therefore l ≥ 2. Now we can subtract the
primitive triplet (1, 2, 1) (sixth row of Table 1) to obtain the
triplet (0,m′ = m−2, l′ = l−1), with 1 ≤ m′ ≤ 2l′ and l′ ≥ 1.
As we have already seen, this triplet can be expressed as a
sum of the third and fourth primitive triplets of Table 1.

Let us assume that s = 2. If m = 1, we have the first
combo-only triplet of Table 2; if m = 2 and l = 1, we have
the second combo-only triplet of Table 2. Let us assume
now that m = 2 and l ≥ 2. The triplet (2, 2, l ≥ 2) is the sum
of the two triplets (1, 1, 1) and (1, 1, l− 1), both of which are
in the fifth row of Table 1. Assume now that m ≥ 3. We
can subtract the first primitive triplet of Table 1, (2, 1, 0), to
obtain the triplet (0,m′ = m − 1, l), where 2 ≤ m′ ≤ 2l − 1 <
2l. As we have already proved above, this triplet can be
expressed as a sum of the third and fourth primitive triplets
of Table 1.

Finally, assume that s ≥ 3, which implies that m ≥ 2,
and assume that the inductive hypothesis holds for s − 2.
We can subtract the primitive triplet (2, 1, 0) (first row of
Table 1) to obtain the triplet (s′ = s − 2,m′ = m − 1, l), with
1 ≤ s′ ≤ 2m − 2 = 2m′ and 1 ≤ m′ ≤ 2l − 1 < 2l. By the
inductive hypothesis, this triplet can be expressed as a sum
of triplets from Table 1 and Table 2.

Finally, let us prove (ii). Recall that initial explosions
are those that are a direct consequence of a player’s move
(as opposed to combo explosions, which are a consequence
of other explosions). Suppose that a move causes m > 0
Medium Critters and l = 0 Large Critters to explode. As we
have already proved for (iv), this explosion is a sum of the
first and second primitive explosions of Table 1. Suppose
now that a move causes m = 0 Medium Critters and l > 0
Large Critters to explode. If the Medium Critters that are fed
to these Large Critters have never eaten, then we can repeat
the previous argument to conclude that our explosion triplet
can be expressed as a sum of the third and fourth primitive
triplets of Table 1.

So, assume that the explosion triplet is of the form
(s,m, l), with s, l ≥ 1. Since Large Critters only explode
when one of them is fed some Medium Critters, then m ≥ 1
as well. Let l = l0 + l1 + 1, where l0 is the number of
Large Critters that have never eaten, and l1 is the number
of Large Critters that have eaten exactly one empty Medium
Critter. The “+1” accounts for a single Large Critter that
has been fed either one full Medium Critter or one empty
Medium Critter followed by one full Medium Critter: this
is the move that triggered the explosion (note that we do
not have to consider the case where the Large Critter has
eaten two empty Medium Critters, because this would im-
ply s = 0). Thus, we have either m = l1 + 1 or m = l1 + 2: in
the first case, we have a triplet of the form (1,m ≥ 1, l ≥ m),
and in the second case we have (1,m ≥ 2, l ≥ m − 1). All
triplets of the first form are already covered by triplets of
the second form, except for the case m = 1: this case yields
triplets of the form (1, 1, l ≥ 1), which is the fifth primi-
tive triplet of Table 1. Let us now consider the triplets of
the second form: (1,m ≥ 2, l ≥ m − 1). The case m = 2
is given by the sixth primitive triplet of Table 2, so let us
assume that m ≥ 3, implying that l ≥ 2. In this case, we
can subtract the triplet (1, 1, 1) (fifth row of Table 1) to ob-
tain a triplet of the form (0,m′ = m − 1, l′ = l − 1). Since
2 ≤ m′ = m−1 ≤ l = l′ +1 ≤ 2l′, as seen for (iv), this triplet
can be expressed as a sum of the third and fourth primitive
triplets of Table 1.

Appendix B: NP-Hardness of Puzzle Mode

Using the same framework as in Sect. 3, we can show that
“puzzle mode” with only normal Critters is NP-hard; an
example is shown in Fig. A· 1. Here we have a limit of
4n moves; this is exactly the number of Small Critters in
the reservoir. What forces us to “play by the rules” of 3-
Partition is the fact that we have 4n rows of Small Critters
just above the reservoir, and 4n more rows of Small Critters

FENG et al.: COMPLEXITY OF CRITTER CRUNCH
531

Fig. A· 1 Reduction from 3-Partition to Critter Crunch levels where a
limit on the number of moves is given (puzzle mode). In this example the
player can perform at most 12 moves.

just below the upper part of the board, under the Large Crit-
ters. This means that we do not have enough moves to “dig”
through these Small Critters and blow up the big connected
component of Large Critters. Similarly, rearranging Critters
around the triggers does not help: our ultimate goal is still
to align the bottom-most Large Critters of the second, third,
and fourth columns. No matter how we rearrange Critters in
the columns after the fourth one, we still end up blowing up
segments of Large Critters in the fourth column that corre-
spond to the original payloads. Hence, the only way to clear
the board is to solve the 3-Partition instance.

Tianfeng Feng is a PhD student at the
School of Information Science, Japan Advanced
Institute of Science and Technology (JAIST).
She is a member of Uehara Laboratory.

Leonie Ryvkin née Lange, received her
Master’s degree in Mathematics in 2017 from
the Ruhr University Bochum. She is now a PhD
student in the Lehrstuhl Mathematik & Infor-
matik at the Ruhr University Bochum, super-
vised by Maike Buchin.

Jérôme Urhausen received his Master’s
degree in Computer Science from the Karlsruhe
Institute of Technology (DE) in 2017. He is now
a PHD student at Utrecht University (NL) under
the supervision of Marc van Kreveld, Maarten
Löffler and Frank Staals.

Giovanni Viglietta received his PhD in
Computer Science from the University of Pisa
in 2013. He is now Assistant Professor at the
Japan Advanced Institute of Science and Tech-
nology (JAIST).

