
Cyclic Shift Problems on Graphs?

Kwon Kham Sai, Ryuhei Uehara, and Giovanni Viglietta

School of Information Science, Japan Advanced Institute of Science and Technology
(JAIST), Japan. {saikwonkham,uehara,johnny}@jaist.ac.jp

Abstract. We study a new reconfiguration problem inspired by classic
mechanical puzzles: a colored token is placed on each vertex of a given
graph; we are also given a set of distinguished cycles on the graph. We
are tasked with rearranging the tokens from a given initial configuration
to a final one by using cyclic shift operations along the distinguished cy-
cles. We first investigate a large class of graphs, which generalizes several
classic puzzles, and we give a characterization of which final configura-
tions can be reached from a given initial configuration. Our proofs are
constructive, and yield efficient methods for shifting tokens to reach the
desired configurations. On the other hand, when the goal is to find a
shortest sequence of shifting operations, we show that the problem is
NP-hard, even for puzzles with tokens of only two different colors.
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1 Introduction

Recently, variations of reconfiguration problems have been attracting much in-
terest, and several of them are being studied as important fundamental problems
in theoretical computer science [8]. Also, many real puzzles which can be mod-
eled as reconfiguration problems have been invented and proposed by the puzzle
community, such as the 15-puzzle and Rubik’s cube. Among these, we focus on
a popular type of puzzle based on cyclic shift operations: see Fig. 1. In these
puzzles, we can shift some elements along predefined cycles as a basic operation,
and the goal is to rearrange the pieces into a desired pattern.

In terms of reconfiguration problems, this puzzle can be modeled as fol-
lows. The input of the problem is a graph G = (V,E), a set of colors Col =
{1, 2, . . . , c}, and one colored token on each vertex in V . We are also given a set
C of cycles of G. The basic operation on G is called “shift” along a cycle C in C,
and it moves each token located on a vertex in C into the next vertex along C.
This operation generalizes the token swapping problem, which was introduced
by Yamanaka et al. [11], and has been well investigated recently. Indeed, when
we restrict each cycle in C to have length two (each cycle would correspond to an
edge in E), the cyclic shift problem is equivalent to the token swapping problem.
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18H04091.
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Fig. 1. Commercial cyclic shift puzzles: Turnstile (left) and Rubik’s Shells (right)

In the mathematical literature, the study of permutation groups and their
generators has a long history. An important theorem by Babai [1] states that
the probability that two random permutations of n objects generate either the
symmetric group Sn (i.e., the group of all permutations) or the alternating group
An (i.e., the group of all even permutations) is 1 − 1/n + O(n2). However, the
theorem says nothing about the special case where the generators are cycles.

In [4], Heath et al. give a characterization of the permutations that, together
with a cycle of length n, generate either An or Sn, as opposed to a smaller
permutation group. On the other hand, in [7], Jones shows that An and Sn
are the only finite primitive permutation groups containing a cycle of length
n − 3 or less. However, his proof is non-constructive, as it heavily relies on the
classification of finite simple groups (and, as the author remarks, a self-contained
proof is unlikely to exist). In particular, no non-trivial upper bound is known on
the distance of two given permutations in terms of a set of generators.

The computational complexity of related problems has been studied, too. It
is well known that, given a set of generators, the size of the permutation group
they generate is computable in polynomial time. Also, the inclusion of a given
permutation π in the group is decidable in polynomial time, and an expression
for π in terms of the generators is also computable in polynomial time [2].

In contrast, Jerrum showed that computing the distance between two given
permutations in terms of two generators is PSPACE-complete [6]. However, the
generators used for the reduction are far from being cycles.

In this paper, after giving some definitions (Section 2), we study the configu-
ration space of a large class of cyclic shift problems which generalize the puzzles
in Fig. 1 (Section 3). We show that, except for one special case, the permutation
group generated by a given set of cycles is Sn if at least one of the cycles has
even length, and it is An otherwise. This result is in agreement with Babai’s
theorem [1], and shows a similarity with the configuration space of the (general-
ized) 15-puzzle [10]. Moreover, our proofs in Section 3 are constructive, and yield
polynomial upper bounds on the number of shift operations required to reach
a given configuration. This is contrasted with Section 4, where we show that
finding a shortest sequence of shift operations to obtain a desired configuration
is NP-hard, even for puzzles with tokens of only two different colors.
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2 Preliminaries

Let G = (V,E) be a finite, simple, undirected graph, where V is the vertex set,
with n = |V |, and E is the edge set. Let Col = {1, 2, . . . , c} be a set of colors,
where c is a constant. A token placement for G is a function f : V → Col: that
is, f(v) represents the color of the token placed on the vertex v. Without loss of
generality, we assume f to be surjective.

Let us fix a set C of cycles in G (note that C does not necessarily contain
all cycles of G). Two distinct token placements f and f ′ of G are adjacent
with respect to C if the following two conditions hold: (1) there exists a cycle
C = (v1, v2, . . . , vj) in C such that f ′(vi+1) = f(vi) and f ′(v1) = f(vj) or
f ′(vi) = f(vi+1) and f ′(vj) = f(v1) for 1 ≤ i ≤ j, and (2) f ′(w) = f(w) for all
vertices w ∈ V \ {v1, . . . , vi}. In this case, we say that f ′ is obtained from f by
shifting the tokens along the cycle C. If an edge e ∈ E is not spanned by any
cycle in C, e plays no role in shifting tokens. Therefore, without loss of generality,
we assume that every edge is spanned by at least one cycle in C.

We say that two token placements f1 and f2 are compatible if, for each
color c′ ∈ Col, we have

∣∣f−11 (c′)
∣∣ =

∣∣f−12 (c′)
∣∣. Obviously, compatibility is an

equivalence relation on token placements, and its equivalence classes are called
compatibility classes for G and Col. For a compatibility class P and a cycle set
C, we define the token-shifting graph of P and C as the undirected graph with
vertex set P , where there is an edge between two token placements if and only
if they are adjacent with respect to C. A walk in a token-shifting graph starting
from f and ending in f ′ is called a shifting sequence between f and f ′, and the
distance between f and f ′, i.e., the length of a shortest walk between them, is
denoted as dist(f, f ′) (if there is no walk between f and f ′, their distance is
defined to be ∞). If dist(f, f ′) <∞, we write f ' f ′.

For a given number of colors c, we define the c-Colored Token Shift problem
as follows. The input is a graph G = (V,E), a cycle set C for G, two compatible
token placements f0 and ft (with colors drawn from the set Col = {1, 2, . . . , c}),
and a non-negative integer `. The goal is to determine whether dist(f0, ft) ≤ `
holds. In the case that ` is not given, we consider the c-Colored Token Shift
problem as an optimization problem that aims at computing dist(f0, ft).

3 Algebraic Analysis of the Puzzles

For the purpose of this section, the vertex set of the graph G = (V,E) will
be V = {1, 2, . . . , n}, and the number of colors will be c = n, so that Col =
V , and a token placement on G can be interpreted as a permutation of V .
To denote a permutation π of V , we can either use the one-line notation π =
[π(1) π(2) . . . π(n)], or we can write down its cycle decomposition: for instance,
the permutation [3 6 4 1 7 2 5] can be expressed as the product of disjoint cycles
(1 3 4)(2 6)(5 7).

Note that, given a cycle set C, shifting tokens along a cycle (v1, v2, . . . , vj) ∈ C
corresponds to applying the permutation (v1 v2 . . . vj) or its inverse (vj vj−1 . . . v1)
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to V . The set of token placements generated by shifting sequences starting from
the “identity token placement” f0 = [1 2 . . . n] is therefore a permutation group
with the composition operator, which we denote by HC , and we call it configura-
tion group generated by C. Since we visualize permutations as functions mapping
vertices of G to colors (and not the other way around), it makes sense to compose
chains of permutations from right to left, contrary to the common convention in
the permutation group literature. So, for example, if we start from the identity
token placement for n = 5 and we shift tokens along the cycles (1 2 3) and (3 4 5)
in this order, we obtain the token placement

(1 2 3)(3 4 5) = [2 3 1 4 5] [1 2 4 5 3] = [2 3 4 5 1] = (1 2 3 4 5).

(Had we composed permutations from left to right, we would have obtained the
token placement [2 4 1 5 3] = (1 2 4 5 3) as a result.)

One of our goals in this section is to determine the configuration groups
HC generated by some classes of cycle sets C. Our choice of C will be inspired
by the puzzles in Fig. 1, and will consist of arrangements of cycles that share
either one or two adjacent vertices. As we will see, except in one special case,
the configuration groups that we obtain are either the symmetric group Sn (i.e.,
the group of all permutations) or the alternating group An (i.e., the group of all
even permutations), depending on whether the cycle set C contains at least one
even-length cycle or not: indeed, observe that a cycle of length j corresponds to
an even permutation if and only if j is odd.

Note that the set of permutations in the configuration group HC coincides
with the connected component of the token-shifting graph (as defined in the
previous section) that contains f0. The other connected components are simply
given by the cosets of HC in Sn (thus, they all have the same size), while the
number of connected components of the token-shifting graph is equal to the
index of HC in Sn, i.e., n!/|HC |.

The other goal of this section is to estimate the diameter of the token-shifting
graph, i.e., the maximum distance between any two token placements f0 and ft
such that f0 ' ft. To this end, we state some basic preliminary facts, which are
folklore, and can be proved by mimicking the “bubble sort” algorithm.

Proposition 1.

1. The n-cycle (1 2 . . . n) and the transposition (1 2) can generate any per-
mutation of {1, 2, . . . , n} in O(n2) shifts.

2. The n-cycle (1 2 . . . n) and the 3-cycle (1 2 3) can generate any even
permutation of {1, 2, . . . , n} in O(n2) shifts.1

3. The 3-cycles (1 2 3), (2 3 4), . . . , (n − 2 n − 1 n) can generate any even
permutation of {1, 2, . . . , n} in O(n2) shifts. ut

All upper bounds given in Proposition 1 are worst-case asymptotically optimal
(refer to [6] for some proofs).

1 Of course, the two cycles generate strictly more than An (hence Sn) if and only if n
is even; however, we will only apply Proposition 1.2 to generate even permutations.
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3.1 Puzzles with two cycles

We first investigate the case where the cycle set C contains exactly two cycles α
and β, either of the form α = (1 2 . . . a) and β = (a a+1 . . . n) with 1 < a < n,
or of the form α = (1 2 . . . a) and β = (a − 1 a a + 1 . . . n), with 1 < a ≤ n.
The first puzzle is called 1-connected (a, b)-puzzle, where n = a+ b− 1, and the
second one is called 2-connected (a, b)-puzzle, where n = a + b − 2 (so, in both
cases a > 1 and b > 1 are the lengths of the two cycles α and β, respectively).
See Fig. 2 for some examples. Note that the Turnstile puzzle in Fig. 1 (left) can
be regarded as a 2-connected (6, 6)-puzzle.
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Fig. 2. A 1-connected (5, 7)-puzzle (left) and a 2-connected (6, 9)-puzzle (right)

Theorem 1. The configuration group of a 1-connected (a, b)-puzzle is An if both
a and b are odd, and it is Sn otherwise. Any permutation in the configuration
group can be generated in O(n2) shifts.

Proof. Observe that the commutator of α and β−1 is the 3-cycle α−1βαβ−1 =
(a−1 a a+ 1). So, we can apply Proposition 1.2 to the n-cycle αβ = (1 2 . . . n)
and the 3-cycle (a−1 a a+1) to generate any even permutation in O(n2) shifts.
If a and b are odd, then α and β are even permutations, and therefore cannot
generate any odd permutation.

On the other hand, if a is even (the case where b is even is symmetric),
then the a-cycle α is an odd permutation. So, to generate any odd permutation
π ∈ Sn, we first generate the even permutation πα in O(n2) shifts, and then we
do one extra shift along the cycle α−1. ut

Our first observation about 2-connected (a, b)-puzzles is that the composition
of α−1 and β is the (n−1)-cycle α−1β = (a−2 a−3 . . . 1 a a+1 . . . n), which
excludes only the element a−1. Similarly, αβ−1 = (1 2 . . . a−1 n n−1 . . . a+1),
which excludes only the element a. We will write γ1 and γ2 as shorthand for α−1β
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and αβ−1 respectively, and we will use the permutations γ1 and γ2 to conjugate
α and β, thus obtaining different a-cycles and b-cycles.2

Lemma 1. In a 2-connected (3, b)-puzzle, any even permutation can be gener-
ated in O(n2) shifts.

Proof. If we conjugate the 3-cycle α−1 by the inverse of γ1, we obtain the 3-cycle
γ1α

−1γ−11 = (2 3 4). By applying Proposition 1.2 to the (n− 1)-cycle β and the
3-cycle (2 3 4), we can generate any even permutation of V \{1} in O(n2) shifts.

Let π ∈ An be an even permutation of V . In order to generate π, we first
move the correct token π(1) to position 1 in O(n) shifts, possibly scrambling the
rest of the tokens: let σ be the resulting permutation. If σ is even, then σ−1π is
an even permutation of V \ {1}, and we can generate it in O(n2) shifts as shown
before, obtaining π.

On the other hand, if σ is odd, then one of the generators α and β must be
odd, too. Since α is a 3-cycle, it follows that β is odd. In this case, after placing
the correct token in position 1 via σ, we shift the rest of the tokens along β, and
then we follow up with β−1σ−1π, which is an even permutation of V \ {1}, and
can be generated it in O(n2) shifts. Again, the result is σββ−1σ−1π = π. ut

Lemma 2. In a 2-connected (a, b)-puzzle with a ≥ 4 and b ≥ 5, any even per-
mutation can be generated in O(n2) shifts.

Proof. As shown in Fig. 3, the conjugate of β by γ1 is the b-cycle

δ1 = γ−11 βγ1 = (a a+ 1 . . . n− 1 a− 1 1),

and the conjugate of β−1 by γ2 is the b-cycle

δ2 = γ−12 β−1γ2 = (n n− 1 . . . a+ 2 a a− 2 a− 1).

Their composition is δ1δ2 = (1 a a − 2)(a − 1 n)(a + 1 a + 2), and therefore
(δ1δ2)2 is the 3-cycle (1 a − 2 a). Conjugating this 3-cycle by α−1, we finally
obtain the 3-cycle τ = α(δ1δ2)2α−1 = (1 2 a−1); note that τ has been generated
in a number of shifts independent of n. Now, since the 3-cycle τ and the (n−1)-
cycle γ2 induce a 2-connected (3, n− 1)-puzzle on V , we can apply Lemma 1 to
generate any even permutation of V in O(n2) shifts. ut

Theorem 2. The configuration group of a 2-connected (a, b)-puzzle is:

1. Isomorphic to Sn−1 = S5 if a = b = 4.
2. An if both a and b are odd.
3. Sn otherwise.

Any permutation in the configuration group can be generated in O(n2) shifts.

2 If g and h are two elements of a group, the conjugate of g by h is defined as h−1gh.
In the context of permutation groups, conjugation by any h is an automorphism that
preserves the cycle structure of permutations [9, Theorem 3.5].
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Fig. 3. Some permutations constructed in the proof of Lemma 2

Proof. By the symmetry of the puzzle, we may assume a ≤ b. The case with
a = 2 is equivalent to Proposition 1.1, so let a ≥ 3. If a 6= 4 or b 6= 4, then
Lemmas 1 and 2 apply, hence we can generate any even permutation in O(n2)
shifts: the configuration group is therefore at least An. Now we reason as in
Theorem 1: if a and b are odd, then α and β are even permutations, and cannot
generate any odd one. If a is even (the case where b is even is symmetric), then
α is an odd permutation. In this case, to generate any odd permutation π ∈ Sn,
we first generate the even permutation πα in O(n2) shifts, and then we do one
more shift along the cycle α−1 to obtain π.

The only case left is a = b = 4. To analyze the 2-connected (4, 4)-puzzle,
consider the outer automorphism ψ : S6 → S6 defined on a generating set of S6

as follows (cf. [9, Corollary 7.13]):

ψ((1 2)) = (1 5)(2 3)(4 6), ψ((1 3)) = (1 4)(2 6)(3 5),

ψ((1 4)) = (1 3)(2 4)(5 6), ψ((1 5)) = (1 2)(3 6)(4 5),

ψ((1 6)) = (1 6)(2 5)(3 4).

Because ψ is an automorphism, the subgroup of S6 generated by α and β is
isomorphic to the subgroup generated by the permutations ψ(α) and ψ(β). Since
α = (1 2 3 4) = (1 2)(1 3)(1 4) and β = (3 4 5 6) = (1 3)(1 4)(1 5)(1 6)(1 3),
and recalling that ψ(π1π2) = ψ(π1)ψ(π2) for all π1, π2 ∈ S6, we have:

ψ(α) = ψ((1 2))ψ((1 3))ψ((1 4)) = [1 5 6 4 3 2] = (2 5 3 6) and

ψ(β) = ψ((1 3))ψ((1 4))ψ((1 5))ψ((1 6))ψ((1 3)) = [3 1 5 4 2 6] = (1 3 5 2).

Note that the new generators ψ(α) and ψ(β) both leave the token 4 in place, and
so they cannot generate a subgroup larger than S5 (up to isomorphism). On the
other hand, we have ψ(α)ψ(β) = (1 6 2). This 3-cycle, together with the 4-cycle
ψ(α), induces a 2-connected (3, 4)-puzzle on {1, 2, 3, 5, 6}: as shown before, the
configuration group of this puzzle is (isomorphic to) S5. We conclude that the
configuration group of the 2-connected (4, 4)-puzzle is isomorphic to S5, as well.
A given permutation π ∈ S6 is in the configuration group if and only if ψ(π)
leaves the token 4 in place. ut
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3.2 Puzzles with any number of cycles

Let us generalize the (a, b)-puzzle to larger numbers of cycles. (As far as the
authors know, there are commercial products that have 2, 3, 4, and 6 cycles.)
We say that two cycles are properly interconnected if they share exactly one
vertex, of if they share exactly two vertices which are consecutive in both cycles.
Note that all 1-connected and 2-connected (a, b)-puzzles consist of two properly
interconnected cycles. Given a set of cycles C in a graph G = (V,E), let us
define the interconnection graph Ĝ = (C, Ê), where there is an (undirected) edge
between two cycles of C if and only if they are properly interconnected.

Let us assume |V | > 6 (to avoid special configurations of small size, which
can be analyzed by hand), and let C consist of k cycles of lengths n1, n2, . . . ,
nk, respectively. We say that C induces a generalized (n1, n2, . . . , nk)-puzzle on
V if there is a subset C′ ⊆ C such that:

(1) C′ contains at least two cycles;
(2) the induced subgraph Ĝ[C′] is connected;
(3) each vertex of G is contained in at least one cycle in C′.

When we fix such a subset C′, the cycles in C′ are called relevant cycles, and the
vertices of G that are shared by two properly interconnected relevant cycles are
called relevant vertices for those cycles. See Fig. 4 for an example of a generalized
puzzle.

Fig. 4. A generalized puzzle where any permutation can be generated in O(n5) shifts,
due to Theorem 3. Note that the blue cycle is the only cycle of even length, and is
not properly interconnected with any other cycle. Also, the two red cycles and the two
green cycles intersect each other but are not properly interconnected.

The next two lemmas are technical; their proof is found in the Appendix.

Lemma 3. In a generalized puzzle with three relevant cycles, C′ = {C1, C2, C3},
such that C1 and C2 induce a 2-connected (4, 4)-puzzle, any permutation involv-
ing only vertices in C1 and C2 can be generated in O(n2) shifts. ut
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Lemma 4. Let V = {1, . . . , n}, and let W = (w1, . . . , wm) ∈ V m be a sequence
such that each element of V appears in W at least once, and any three consecutive
elements of W are distinct. Then, the set of 3-cycles C = {(wi−1 wi wi+1) | 1 <
i < m} can generate any even permutation of V in O(n3) shifts. ut

Theorem 3. The configuration group of a generalized (n1, n2, . . . , nk)-puzzle is
An if n1, n2, . . . , nk are all odd, and it is Sn otherwise. Any permutation in the
configuration group can be generated in O(n5) shifts.

Proof. Observe that it suffices to prove that the given cycles can generate any
even permutation in O(n5) shifts. Indeed, if all cycles have odd length, they
cannot generate any odd permutation. On the other hand, if there is a cycle of
even length and we want to generate an odd permutation π, we can shift tokens
along that cycle, obtaining an odd permutation σ, and then we can generate the
even permutation σ−1π in O(n5) shifts, obtaining π.

Let us fix a set of k′ ≥ 3 relevant cycles C′ ⊆ C: we will show how to
generate any even permutation by shifting tokens only along relevant cycles.
By properties (2) and (3) of generalized puzzles, there exists a walk W on G
that visits all vertices (possibly more than once), traverses only edges of relevant
cycles, and transitions from one relevant cycle to another only if they are properly
interconnected, and only through a relevant vertex shared by them. We will now
slightly modify W so that it satisfies the hypotheses of Lemma 4, as well as
some other conditions. Namely, if wi−1, wi, wi+1 are any three vertices that are
consecutive in W , we would like the following conditions to hold:

(1) wi−1, wi, wi+1 are all distinct (this is the condition required by Lemma 4);
(2) either wi−1 and wi are in the same relevant cycle, or wi and wi+1 are in the

same relevant cycle;
(3) wi−1 and wi+1 are either in the same relevant cycle, or in two properly

interconnected relevant cycles.

To satisfy all conditions, it is sufficient to let W do a whole loop around a relevant
cycle before transitioning to the next (note that Lemma 4 applies regardless of
the length of W ). The only case where this is not possible is when W has
to go through a relevant 2-cycle C = (u1 u2) that is a leaf in the induced
subgraph Ĝ[C′], such that C shares exactly one relevant vertex, say u1, with
another relevant cycle C ′ = (v0 u1 v1 v2 . . . ). To let W cover C in a way
that satisfies the above conditions, we set either W = (. . . , v0, u1, u2, v1, . . . )
or W = (. . . , v1, u1, u2, v0, . . . ): that is, we skip u1 after visiting u2. After this
modification, W is no longer a walk on G, but it satisfies the hypotheses of
Lemma 4, as well as the three conditions above.

We will now show that the 3-cycle (wi−1 wi wi+1) can be generated in O(n2)
shifts, for all 1 < i < |W |. By Lemma 4, we will therefore conclude that any
even permutation of V can be generated in O(n2) · O(n3) = O(n5) shifts. Due
to conditions (2) and (3), we can assume without loss of generality that wi−1
and wi are both in the same relevant cycle C1, and that wi+1 is either in C1 or
in a different relevant cycle C2 which is properly interconnected with C1. In the
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first case, by property (1) of generalized puzzles, there exists another relevant
cycle C2 properly interconnected with C1. So, in all cases, C1 and C2 induce a
1-connected or a 2-connected (|C1|, |C2|)-puzzle.

That the 3-cycle (wi−1 wi wi+1) can be generated in O(n2) shifts now follows
directly from Theorems 1 and 2, except if |C1| = |C2| = 4 and C1 and C2 share
exactly two vertices: indeed, the 2-connected (4, 4)-puzzle is the only case where
we cannot generate any 3-cycle. However, since we are assuming that V > 6,
there must be a third relevant cycle C3, which is properly interconnected with
C1 or C2. Our claim now follows from Lemma 3. ut

4 NP-Hardness for Puzzles with Two Colors

In this section, we show that the 2-Colored Token Shift problem is NP-hard.
That is, for a graph G = (V,E), cycle set C, two token placements f0 and ft for
G, and a non-negative integer `, it is NP-hard to determine if dist(f0, ft) ≤ `.

Theorem 4. The 2-Colored Token Shift problem is NP-hard.

Proof. We will give a polynomial-time reduction from the NP-complete problem
3-Dimensional Matching, or 3DM [3]: given three disjoint sets X, Y , Z, each of
size m, and a set of triplets T ⊆ X × Y × Z, does T contain a matching, i.e., a
subset M ⊆ T of size exactly m such that all elements of X, Y , Z appear in M?

Given an instance of 3DM (X,Y, Z, T ), with n = |T |, we construct the in-
stance of the 2-Colored Token Shift problem illustrated in Fig. 5.

The vertex set of G = (V,E) includes the sets X, Y , Z (shown with a
green background in the figure: these will be called green vertices), as well
as the vertex u. Also, for each triplet t̂i = (x, y, z) ∈ T , with 1 ≤ i ≤ n,
the vertex set contains three vertices ti,1, ti,2, ti,3 (shown with a yellow back-
ground in the figure: these will be called yellow vertices), and the cycle set C
has the three cycles (u, ti,1, ti,2, ti,3, x), (u, ti,1, ti,2, ti,3, y), and (u, ti,1, ti,2, ti,3, z)
(drawn in blue in the figure). Finally, we have the vertex w, and the vertices
v1, v2, . . . , v3n−3m; for each i ∈ {1, 2, . . . , n}, the cycle set C contains the cy-
cle (ti,3, ti,2, ti,1, v1, v2, . . . , v3n−3m, w) (drawn in red in the figure). In the initial
token placement f0, there are black tokens on the 3n vertices of the form ti,j ,
and white tokens on all other vertices. In the final token placement ft, there is
a total of 3m black tokens on all the vertices in X, Y , Z, plus 3n − 3m black
tokens on v1, v2, . . . , v3n−3m; all other vertices have white tokens. With this
setup, we let ` = 3n.

It is easy to see that, if the 3DM instance has a matchingM = {t̂i1 , t̂i2 , . . . , t̂im},
then dist(f0, ft) ≤ `. Indeed, for each t̂ij = (xj , yj , zj), with 1 ≤ j ≤ m, we can
shift tokens along the three blue cycles containing the yellow vertices tij ,1, tij ,2,
tij ,3, thus moving their three black tokens into the green vertices xj , yj , and zj .
Since M is a matching, these 3m shifts eventually result in X, Y , and Z being
covered by black tokens. Finally, we can shift the 3n − 3m black tokens corre-
sponding to triplets in T \M along red cycles, moving them into the vertices v1,
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1,1t 2,1t 3,1t

1,2t 2,2t 3,2t

. . .

1n,t 2n,t 3n,t

Fig. 5. The initial token placement f0 (left) and the final token placement ft (right)

v2, . . . , v3n−3m. Clearly, this is a shifting sequence of length 3n = ` from f0 to
ft.

We will now prove that, assuming that dist(f0, ft) ≤ `, the 3DM instance
has a matching. Note that each shift, no matter along which cycle, can move
at most one black token from a yellow vertex to a non-yellow vertex. Since in
f0 there are ` = 3n black tokens on yellow vertices, and in ft no token is on a
yellow vertex, it follows that each shift must cause exactly one black token to
move from a yellow vertex to a non-yellow vertex, and no black token to move
back into a yellow vertex.

This implies that no black token should ever reach vertex u: if it did, it
would eventually have to be moved to some other location, because u does not
hold a black token in ft. However, the black token in u cannot be shifted back
into a yellow vertex, and therefore it will be shifted into a green vertex along a
blue cycle. Since every shift must cause a black token to leave the set of yellow
vertices, such a token will move into u: we conclude that u will always contain
a black token, which is a contradiction. Similarly, we can argue that the vertex
w should never hold a black token.

Let us now focus on a single triplet of yellow vertices ti,1, ti,2, ti,3. Exactly
three shifts must involve these vertices, and they must result in the three black
tokens leaving such vertices. Clearly, this is only possible if the three black tokens
are shifted in the same direction. If they are shifted in the direction of ti,3 (i.e.,
rightward in Fig. 5), they must move into green vertices (because they cannot
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go into w); if they are shifted in the direction of ti,1 (i.e., leftward in Fig. 5),
they must move into v1 (because they cannot go into u).

Note that, if a black token ever reaches a green vertex, it can no longer be
moved: any shift involving such a token would move it back into a yellow vertex
or into u. It follows that the only way of filling all the green vertices with black
tokens is to select a subset of exactly m triplets of yellow vertices and shift each
of their black tokens into a different green vertex. These m triplets of yellow
vertices correspond to a matching for the 3DM instance. ut

In the above reduction, we can easily observe that the final token placement
ft can always be reached from the initial token placement f0 in a polynomial
number of shifts. Therefore, for this particular set of instances, the 2-Colored
Token Shift problem is in NP. The same is also true of the puzzles introduced
in Section 3, due to the polynomal upper bound given by Theorem 3. However,
we do not know whether this is true for the c-Colored Token Shift problem in
general, even assuming c = 2. A theorem of Helfgott and Seress [5] implies that,
if f0 ' ft, the distance between f0 and ft has a quasi-polynomial upper bound;
this, however, is insufficient to conclude that the problem is in NP. On the
other hand, it is not difficult to see that the c-Colored Token Shift problem is in
PSPACE; characterizing its computational complexity is left as an open problem.
It would also be interesting to establish if the problem remains NP-hard when
restricted to planar graphs or to graphs of constant maximum degree.
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Appendix

Additional Figures

Fig. 6. Some cyclic shift puzzles with two (not properly interconnected) cycles

Fig. 7. More cyclic shift puzzles: Twiddler (left) and a puzzle found in the video game
Haunted Manor 2 (right)

Missing Proofs

Lemma 3. In a generalized puzzle with three relevant cycles, C′ = {C1, C2, C3},
such that C1 and C2 induce a 2-connected (4, 4)-puzzle, any permutation involv-
ing only vertices in C1 and C2 can be generated in O(n2) shifts.

Proof. Let α = (1 2 3 4) and β = (3 4 5 6) be the permutations corresponding
to shifting tokens along C1 and C2, respectively. As in Section 3.1, we set γ1 =
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α−1β = (1 4 5 6 2) and γ2 = αβ−1 = (1 2 3 6 5). Since we are assuming that
|V | > 6, there must be a seventh vertex, and shifting along C3 corresponds to a
permutation of the form τ = (. . . 7 . . . ).

We will prove that it is always possible to generate a transposition of the form
(3 x), with x ∈ {1, 2, 4, 5, 6}, in O(n2) shifts. Indeed, such a transposition, to-
gether with the 5-cycle γ1, induces a 1-connected (2, 5)-puzzle on {1, 2, 3, 4, 5, 6}.
Our lemma will thus follow from Theorem 1 and the fact that, in a 1-connected
(2, 5)-puzzle, the distance between any two token placements is bounded by a
constant.

If |C3| 6= 4, or if C3 is 1-connected with C1 or C2, then the transposition (3 4)
can be generated in O(n2) shifts, due to Theorems 1 and 2. So, we may assume
that |C3| = 4, and C3 is properly interconnected with C2 and shares exactly two
vertices with it. Perhaps, C3 shares at least two vertices with C1, as well. The
only possible configurations, up to symmetry, are the following:

(1) τ = (3 4 7 8). Then, τ and γ1 induce a 1-connected (4, 5)-puzzle on V , and
can generate the transposition (3 4) by Theorem 1.

(2) τ = (5 6 7 8). Then, τ and γ2 induce a 2-connected (4, 5)-puzzle on V \ {4},
and can generate the transposition (3 5) by Theorem 2.

(3) τ = (1 7 3 4). In this case, (3 2) = τ−2ατα.
(4) τ = (1 3 4 7). In this case, (3 4) = αβ−1α−1τβτ2.
(5) τ = (1 3 6 7). In this case, (3 5) = β−1ατ−1αβτ2.
(6) τ = (1 6 3 7). In this case, (3 1) = αβα−1βτ−1βτ .
(7) τ = (2 6 3 7). In this case, (3 4) = α2τ2ατ2.
(8) τ = (2 3 6 7). In this case, (3 1) = τ−1β−1αβα−1τα. ut

Lemma 4. Let V = {1, . . . , n}, and let W = (w1, . . . , wm) ∈ V m be a sequence
such that each element of V appears in W at least once, and any three consecutive
elements of W are distinct. Then, the set of 3-cycles C = {(wi−1 wi wi+1) | 1 <
i < m} can generate any even permutation of V in O(n3) shifts.

Proof. Let µ : V → {1, . . . ,m} be the function mapping each v ∈ V to the
minimum index µ(v) such that wµ(v) = v. Let π = [π1 . . . πn] be the permutation
of V such that the sequence (µ(π1), . . . , µ(πn)) is monotonically increasing.

We will prove by induction on i that C can generate any 3-cycle on {π1, . . . , πi}
in at most 3i shifts. Assume this claim to be true up to a certain i < n, and let
us prove it for i + 1. Let T = {(πj πj′ πi+1) | 1 ≤ j < j′ ≤ i}, and note that
it suffices to prove that C generates all 3-cycles in T , because the 3-cycles on
{π1, . . . , πi} are already accounted for by the inductive hypothesis.

So, fix one such 3-cycle σ1 = (πj πj′ πi+1) ∈ T , and observe that C already
contains a 3-cycle in T , namely σ2 = (wµ(πi+1)−2 wµ(πi+1)−1 wµ(πi+1)). Indeed,
we have wµ(πi+1) = πi+1, and, by the minimality of µ, there exist two distinct
indices k, k′ ∈ {1, . . . , i} such that wµ(πi+1)−2 = πk and wµ(πi+1)−1 = πk′ .

If {j, j′} = {k, k′}, then σ1 = σ2, and we are done. If {j, j′} and {k, k′}
are disjoint, consider the 3-cycle σ3 = (πj πj′ πk), which, by the inductive
hypothesis, can be generated by C in at most 3i shifts. We have σ1 = σ2σ3σ2σ2,
and so C can generate σ1 in at most 3i+ 3 = 3(i+ 1) shifts.
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Otherwise, {j, j′} and {k, k′} intersect in exactly one element, which we may
assume to be j′ = k′, without loss of generality. In this case, σ1 = σ2σ3, where
σ3 is defined as above. So, C can generate σ1 in at most 3i+ 1 < 3(i+ 1) shifts.

By taking i = n, we conclude that C can generate any 3-cycle on V in at
most 3n = O(n) shifts, implying that it can generate any even permutation of
V in O(n3) shifts, due to Proposition 1.3. ut


