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Abstract

It is shown that every polyhedron in R3 can be guarded by at most 5
6 of its edges. This

result holds even if the boundary of the polyhedron is disconnected (i.e., if the polyhedron
has “holes”), and regardless of the genus of each connected component of its boundary.

When a polyhedron is homeomorphic to a ball and all its faces are triangles, the bound
can be improved slightly to 29

36 of its edges.
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1 Introduction

A polyhedron P is a compact connected 3-manifold in R3 bounded by a piecewise linear 2-
manifold. As such, P has finitely many vertices, edges, and faces. Faces need not be simply
connected, as shown in Figure 1. Every edge of P is a (topologically closed) line segment
between two vertices of P ; each edge is shared by two faces of P as a common part of their
boundary. Two points a and b are visible in a polyhedron P if the closed line segment ab is
contained in P . For the edges of a polyhedron P , we adapt the notion of weak visibility : an
edge e of P is visible to a point p if there is a point q ∈ e such that p and q are visible in P . A
set S of edges jointly guard P if every point a ∈ P is visible to some edge in S. It is possible
that a point a ∈ P does not see any vertex of P [13, Section 10.2]; however, it can be proved
that every point a ∈ P sees at least six edges of P . It follows that every polyhedron with m
edges can be guarded with at most m− 5 edges.

It was conjectured in [18] that every polyhedron of genus zero with m edges can be guarded
with at most m

6 edge guards. This bound would be optimal apart from an additive constant:
for every k ∈ N, there is a polyhedron Pk in R3 with 6(k+ 1) edges that requires at least k edge
guards (see Figure 1). The polyhedron Pk is the union of a flat tetrahedron T and k pairwise
disjoint thin tetrahedra attached to one face of T such that none of their apexes can be seen
from any of the edges of T . Since each thin tetrahedron has to be guarded by one of its edges,
P requires k edge guards.

In the preliminary version of this paper [4], it was proved that every polyhedron with m edges
(and arbitrary genus) can be guarded by at most 27

32m edges. Prior to the present paper, this
was the only known nontrivial upper bound for the edge guard problem for general polyhedra.
For every polyhedron P , it was shown how to choose a set of edges that jointly guard P as the
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Figure 1: A polyhedron with m edges that requires m
6 − 1 edge guards.

union of two sets: (i) a set of edges that cover all vertices of P , and (ii) at most 3/4 of the
remaining edges. In the present paper, we will show how to refine this technique in order to
improve the upper bound in [4] from 27

32m to 5
6m edges.

The 1-skeleton of a polyhedron P is the graph defined by the vertices and edges of P . In
Section 2, we observe that each connected component of the 1-skeleton of a polyhedron is a
2-edge-connected graph with minimum degree at least 3. An edge cover of a graph G = (V,E)
is a set of edges E′ ⊆ E such that every vertex in V is incident to an edge in E′. By placing
guards at every edge in an edge cover of the 1-skeleton of P , we ensure that every point in
P that sees a vertex is guarded. In Section 3, using classical matching theory, we give upper
bounds on the size of a minimum edge cover in a 2-edge-connected graph with minimum degree
at least 3.

In Section 4, we describe a partition of the edges of a polyhedron P into four classes, and
prove some geometric properties of such a partition. Essentially, we show that every point in
P sees either edges in certain classes or a vertex of P . These properties translate into four
different strategies for guarding P . Finally, in Section 5, we prove that a combination of the
four strategies and a careful choice of an edge cover of the 1-skeleton of P yield a set of at most
5
6m edges that jointly guard P .

The gap between the m
6 − 1 lower bound of Figure 1 and the 5

6m upper bound proved in
this paper is still substantial. Further reducing this gap is left as an open problem.

Related work. The problem of guarding a polyhedron by choosing a subset of its edges is an
instance of the well-known Art Gallery Problem [13, 18]. Most of the previous research in this
field focused on polygons in the plane. For example, it is well known that every simple polygon
with n vertices can be guarded by at most n

3 point guards [5], and that every simple orthogonal
polygon with n vertices can be guarded by at most n

4 point guards [9]. Both bounds are tight.
Shermer proved that every simple polygon with n vertices can be guarded by at most 3

10n+ 1
of its edges [17]. On the other hand, Toussaint constructed polygons where n

4 edges guards are
necessary; aside from a few small n, this lower bound is widely believed to be tight [12, 14, 16].

Everett and Rivera-Campo [6] showed that every triangulated polyhedral terrain in R3

with n vertices can be guarded by n
3 edges, as this many edges can cover all faces of a plane

triangulation with n vertices. They also proved that the faces of every plane graph with n
vertices can be guarded by 2

5n edges. See also [3] for other variants of the Art Gallery Problem
for polyhedral terrains.

For orthogonal polyhedra with m edges in R3, it was conjectured that m
12 edge guards are

always sufficient: for every k ∈ N, there are orthogonal polyhedra Pk in R3 with 12(k+ 1) edges
that require at least k edge guards [18]. Benbernou et al. [1] showed that for every orthogonal
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polyhedron of genus g, 11
72m −

g
6 − 1 edge guards are sufficient. Also, denoting by r the total

number of reflex edges in an orthogonal polyhedron, 7
12r − g + 1 edge guards are sufficient.

More recently, Viglietta [19] improved these upper bounds to m−4
8 + g and r−g

2 + 1 edge guards,
respectively, for 2-reflex orthogonal polyhedra; i.e., orthogonal polyhedra having reflex edges
in only two directions (the latter bound is optimal for g = 0). All the aforementioned results
about orthogonal polyhedra also hold for open edge guards: an open edge e of P is visible from
a point p if there is a point q in the relative interior of e such that p and q are visible in P .

2 Polyhedra and 1-skeletons

A polyhedron P is defined as a compact and connected 3-manifold in R3 whose boundary ∂P is
a piecewise linear 2-manifold. Since P is a compact set in R3, it is contained in some ball, and
it contains its own boundary: ∂P ⊂ P . The piecewise linear structure of ∂P naturally yields a
subdivision into finitely many polygonal faces. Namely, a face is any maximal planar subset of
∂P whose relative interior is connected. A face is bounded by line segments called edges, whose
endpoints are called vertices of P . Edges and vertices are defined in such a way that no vertex
lies in the relative interior of an edge. Each edge bounds exactly two (non-coplanar) faces. If
the internal dihedral angle between these two faces is less than π, the edge is convex ; otherwise,
the internal dihedral angle must be greater than π, and the edge is reflex.1 Each vertex of a
polyhedron is shared by three or more faces, and is incident to the same number of edges. If
all edges incident to a vertex are convex, the vertex is said to be convex as well. A vertex is a
saddle if it has both convex and reflex incident edges.

The boundary ∂P of a polyhedron need not be connected. One connected component
of ∂P , the outer boundary, includes all vertices of the convex hull of P (plus possibly other
vertices). In addition, ∂P has one connected component for each hole of P . For example,
P = {(x, y, z) ∈ R3 | 1 ≤ max{|x|, |y|, |z|} ≤ 2} is a polyhedron consisting of a cube C1 with
a central cubic hole C2. Its boundary ∂P has two connected components, coinciding with ∂C1

(the outer boundary) and ∂C2, respectively.
Each connected component of ∂P is a compact orientable 2-manifold, which is either homeo-

morphic to a sphere or has one or more handles [8, Theorem 9.3.11]. The number of handles
of a connected component of ∂P is called the genus of that component. For example, if the
boundary of a polyhedron has the topology of a sphere, it has genus zero. On the other hand,
P = {(x, y, z) ∈ R3 | 1 ≤ max{|x|, |y|} ≤ 2 ∧ |z| ≤ 1} is a polyhedron whose boundary has the
topology of a torus, and hence it has genus one.

The 1-skeleton of a polyhedron P is the graph defined by the vertices and edges of P . Note
that even if a polyhedron has a connected boundary of genus zero, its 1-skeleton is not necessarily
connected. An example is given in Figure 1, where the polyhedron depicted has neither handles
nor holes, but its 1-skeleton has m

6 connected components; one for each tetrahedron.
Also, observe that the top face of the large tetrahedron in Figure 1 is a triangle with several

triangular holes. In general, if the boundary of a polyhedron is connected but its 1-skeleton is
not, there must be a face with some holes in it. Note that some of these holes may touch each
other: this would happen for instance if the bases of two of the thin tetrahedra in Figure 1
shared a vertex.

A celebrated theorem by Steinitz characterizes the 1-skeletons of convex polyhedra as the
3-vertex-connected planar graphs with at least four vertices [7]. This characterization does not
extend to non-convex polyhedra. In fact, there exist polyhedra whose 1-skeleton is planar and

1The definition of face prevents two faces sharing an edge from being coplanar, and therefore the dihedral
angle between them cannot be π.
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connected but not 2-vertex-connected: such would be, for instance, the polyhedron in Figure 1
if there were only a single thin tetrahedron, and one of its base vertices lay on the perimeter of
the top face of the large tetrahedron.

However, it is easy to see that every connected component of the 1-skeleton of a polyhedron
is 2-edge-connected. Indeed, a bridge in the 1-skeleton would correspond to an edge of the
polyhedron that bounds only one face.

Observation 1. Each connected component of the 1-skeleton of a polyhedron is a 2-edge-
connected graph with minimum degree at least 3.

3 Edge covers

An edge cover of a graph G = (V,E) is a set of edges E′ ⊆ E such that every vertex v ∈ V
is incident to some edge in E′. It is well known that a minimum edge cover is the union of a
maximum matching M ⊆ E and one extra edge for each vertex not covered by M . Hence the
size of a minimum edge cover is |V | − |M |; this number is denoted by ρ(G). The goal of this
section is to study ρ(G) when G is a 2-edge-connected graph with minimum degree at least 3.
In Section 5, we will use these results to construct a minimum edge cover of the 1-skeleton of a
polyhedron.

Nishizeki and Baybars [11] proved that a maximum matching in a connected planar graph
with n ≥ 10 vertices and minimum degree at least 3 has at least n+2

3 edges. So, every such graph
has an edge cover of size at most 2n−2

3 , which can be computed in O(n) time [15]. However, we
seek upper bounds in terms of the number of edges, rather than the number of vertices.

We will now review some terminology and the Edmonds-Gallai Structure Theorem for max-
imum matchings [10, 20]. Let G = (V,E) be a simple graph. A matching M ⊆ E is perfect
if it covers all vertices of G; it is near-perfect if it covers all but one vertex of G. If every
subgraph obtained by deleting one vertex from G has a perfect matching, then G is said to be
factor-critical.

According to the Edmonds-Gallai Structure Theorem, if M ⊆ E is a maximum matching of
G, then there is a vertex set U ⊆ V (a Berge-Tutte witness set) with the following properties:

� M restricts to a perfect matching on every even component of G[V \ U ];

� every odd component of G[V \ U ] is factor-critical, and M restricts to a near-perfect
matching on it;

� M matches all vertices of U to vertices in distinct odd components of G[V \ U ].

A minimum edge cover of G can be obtained by augmenting the maximum matching M with
one extra edge for each odd component of G[V \ U ] that is not fully covered by M .

We are now in the position to prove the following lemma.

Lemma 2. Let G be a 2-edge-connected graph with m edges and minimum degree at least 3.
Then ρ(G) ≤ bm+1

3 c, and this bound is the best possible. Moreover, if ρ(G) > m
3 , then G is

factor-critical.

Proof. We begin by observing that the bound ρ(G) ≤ bm+1
3 c is the best possible. If m ≡ 0

(mod 3), our lower-bound construction is the complete bipartite graph K3,m
3

. If m ≥ 9, such
a graph satisfies the hypotheses of the lemma and has a minimum edge cover of size m

3 . For
m ≡ 1 (mod 3), we use the same construction, with the addition of a single edge between two
vertices of maximum degree. For m ≡ 2 (mod 3), the lower-bound construction is illustrated
in Figure 2. For m = 5, we have the 1-skeleton of a pyramid with square base. The base of
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Figure 2: Lower-bound constructions for Lemma 2 when m ≡ 2 (mod 3). Maximum matchings
are highlighted.

the pyramid can be extended to a ladder for larger values of m. In these graphs, the size of a
minimum edge cover is m+1

3 .
Let G = (V,E) be a 2-edge-connected graph with n = |V | vertices, m = |E| edges, and

minimum degree at least 3. We will now prove that ρ(G) ≤ bm+1
3 c. Note that 3n ≤ 2m, since

every vertex is incident to three or more edges, and each edge is incident to two vertices.
Let M ⊆ E be a maximum matching of G. The Edmonds-Gallai Structure Theorem yields

a Berge-Tutte witness set U ⊆ V .
If U = ∅, then G[V \ U ] has a unique connected component, which coincides with G itself.

Assume that n is even; then M is a perfect matching on G with n
2 edges. Since M is also a

minimum edge cover, we have ρ(G) = n
2 ≤

m
3 .

On the other hand, if U = ∅ and n is odd, then G is factor-critical, and M is a near-perfect
matching on G with n−1

2 edges. Hence, ρ(G) = n − |M | = n+1
2 . Note that the inequality

3n ≤ 2m cannot hold with equality, because the left-hand side is odd and the right-hand side
is even. Thus, 3n ≤ 2m− 1. It follows that ρ(G) ≤ bm+1

3 c.
Assume now that U 6= ∅. We will prove that in this case ρ(G) ≤ m

3 holds. Denote the
connected components of G[V \ U ] by Gi = (Vi, Ei), for i = 1, 2, . . . , `. Hence, we have

|V | = |U |+
∑̀
i=1

|Vi|.

For every i = 1, . . . , `, if |Vi| is even, then M restricts to a perfect matching on Gi with |Vi|/2
edges. If |Vi| is odd, then M restricts to a near-perfect matching on Gi with (|Vi| − 1)/2 edges.
Additionally, M contains one edge for each vertex of U . Thus,

|M | = |U |+
∑̀
i=1

⌊
|Vi|
2

⌋
.

Since ρ(G) = |V | − |M |, we have

ρ(G) =
∑̀
i=1

⌈
|Vi|
2

⌉
. (1)

Let Ei ⊆ E denote the set of all edges incident to vertices in Vi; that is, all edges in Ei
plus the edges between U and Vi. The edge sets Ei, i = 1, . . . , `, are pairwise disjoint, and so∑`

i=1 |Ei| ≤ m. By (1), in order to prove that ρ(G) ≤ m
3 , it suffices to prove that the following
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holds for i = 1, . . . , `: ⌈
|Vi|
2

⌉
≤ |Ei|

3
. (2)

Let xi be the sum of degrees of the vertices in Vi. Since the minimum degree is at least 3,
we have xi ≥ 3|Vi|. Also, at least two edges in Ei are incident to some vertices in U , because G
is 2-edge-connected. Hence xi ≤ 2|Ei| − 2, and therefore

3|Vi| ≤ 2|Ei| − 2. (3)

If |Vi| is even, we immediately obtain |Vi|/2 < |Ei|/3, which implies (2). If |Vi| is odd, then the
two sides of (3) have opposite parity, and hence we can improve the inequality to 3|Vi| ≤ 2|Ei|−3,
which in turn is equivalent to (2).

From the discussion above, it follows that ρ(G) > m
3 may hold only if U = ∅ and n is odd,

which implies that G is factor-critical.

Corollary 3. Let G be a 2-edge-connected graph with m edges and minimum degree at least 3
such that ρ(G) > m

3 . Then for every edge e of G,

(i) there exists a minimum edge cover of G containing e, and

(ii) there exists a minimum edge cover of G not containing e.

Proof. Let e = {u, v}. By Lemma 2, G is factor-critical, and thus it has a (maximum) matching
M that covers every vertex except u. Of course, M does not contain e. We can extend M to a
minimum edge cover of G by adding any of the (at least three) edges incident to u: choosing e
yields (i), and any other choice yields (ii).

4 Edge classes and their properties

Let P be a polyhedron with m edges. (Recall from Section 2 that the boundary of P may
be disconnected, and each connected component may have arbitrary genus.) Let G = (V,E)
denote the 1-skeleton of P . We may assume, by rotating P if necessary, that no edge in E is
parallel to any coordinate plane. Similarly, we may assume that no face of P is parallel to any
coordinate axis, and that all vertices of P have distinct x- (respectively, y- and z-) coordinates.

In order to help intuition, we visualize the xy-plane as “horizontal” and the z-axis as “ver-
tical”; thus, any plane parallel to the z-axis is said to be vertical. Accordingly, if a point a has
a larger y-coordinate (respectively, z-coordinate) than a point b, we say that a lies to the right
of b (respectively, above b), and b lies to the left of a (respectively, below a). Recall that every
edge of P is incident to exactly two faces of P .

We distinguish between four types of edges in E as follows. For every edge e ∈ E, let He

denote the (unique) vertical plane containing e. The plane He divides R3 into two half-spaces,
lying to the left and to the right of He, respectively. We say that e is a left edge (respectively,
a right edge) if both faces incident to e lie to the left (respectively, to the right) of He, locally.
If the two faces incident to e locally lie on opposite sides of He and the interior or P lies above
(respectively, below) both faces, then e is a lower edge (respectively, an upper edge). Clearly,
these four classes form a partition of E. See Figure 3 for examples.

We will now prove two lemmas that immediately yield four different strategies for guarding
a polyhedron.

Proposition 4. Every point on the boundary of a polyhedron sees a non-left edge.
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Figure 3: Top: A left edge e1, a right edge e2, a lower edge e3, and an upper edge e4 in
a polyhedron P . Bottom: The cross-section of the polyhedron P with a plane parallel to
the yz-plane, which is stabbed by edges e1, . . . , e4. Dotted lines indicate the vertical planes
He1 , . . . ,He4 .

Proof. Let a be a point on the boundary of a polyhedron P , and let F be a face of P containing
a. The orthogonal projection of F onto the horizontal plane xy is a polygon F ′, possibly with
holes (some of which may touch each other or the external boundary of F ′, cf. Section 2). An
edge of F ′ is left-facing (respectively, right-facing) if the interior of F ′ locally lies on its left
(respectively, right).

Let a′ be the projection of a onto the xy-plane; obviously, a′ ∈ F ′. Shoot a ray from a′

directed leftward, and let p be the first point where the ray hits the boundary of F ′ (possibly,
p = a′). Observe that p lies on a right-facing edge e′ of F ′ (if p is a vertex of F ′, it has at least
one incident right-facing edge e′). The edge e′ is the vertical projection of an edge e of P . Since
F locally lies on the right of e, it cannot be a left edge of P . Now, since a′ sees e′ in F ′, it
follows that a sees e in P .

Lemma 5. In a polyhedron, every point sees a non-left edge.

Proof. Suppose, to the contrary, that there is a polyhedron P with a point a ∈ P that sees only
left edges. Consider the cross-section of P with the plane Ha containing a and parallel to the
yz-plane (refer to Figure 4). Due to Proposition 4, a cannot be a vertex of P , or else it would
see a non-left edge. Furthermore, if Ha contains a vertex of P , we may slightly rotate P around
a, so that all edges preserve their respective classes, and Ha no longer contains vertices of P .

The intersection Ha ∩ P may have several connected components; let Pa denote the com-
ponent that contains a. Note that Pa is a 2-dimensional polygon, possibly with holes. Each
vertex of Pa corresponds to a unique edge of P : since Ha contains no vertices of P , each vertex
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a
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y

z

Figure 4: The polygon Pa is the cross-section of the polyhedron P with the plane Ha containing
a and parallel to the yz-plane. The vertices in V ∗a are marked with large dots. Pa is decomposed
into sub-polygons by rays emitted by the vertices in V ∗a . The sub-polygon Qa contains a. Since
Qa is convex, a sees the leftmost vertex v0 of Qa.

of Pa is the unique intersection point between a single edge of P and the plane Ha. Because
each edge of P is incident to exactly two faces, it follows that each vertex of Pa is incident to
exactly two edges of Pa, and therefore its internal angle is well defined. Let V ∗a denote the set
of reflex vertices of Pa that correspond to left edges of P .

Decompose the polygon Pa as follows. Consider the vertices in V ∗a in an arbitrary order.
From each vertex v ∈ V ∗a successively shoot a ray along its angle bisector, and draw a line
segment `v along the ray from v to the point where the ray first hits the boundary of Pa or a
previously drawn segment. If a ray hits a vertex of Pa, perturb the ray slightly so that it does
not hit any vertex. Since v ∈ V ∗a , the two edges of Pa incident to v lie to the left of v, and so
the line segment `v lies strictly to the right of v (in fact, v is the left endpoint of `v).

The segments `v collectively decompose Pa into sub-polygons. Denote by Qa ⊆ Pa a sub-
polygon containing the point a (note that a may lie on the boundary of more than one sub-
polygon). We claim that Qa is a convex polygon. Indeed, if this were not the case, a would see
a reflex vertex vi of Qa. Both edges of Qa incident to vi must lie on ∂P , because none of the
previously drawn segments `v can start or end at a reflex vertex of one of the sub-polygons. In
particular, vi does not correspond to a left edge of P , which contradicts our initial assumption
that a only sees left edges. Hence, Qa is convex.

Let v0 be the leftmost vertex of Qa. Both edges of Qa incident to v0 are on the right side of
v0, or else there would be another vertex of Qa to the left of v0. Moreover, both edges incident
to v0 lie on ∂P . Indeed, if neither of them lay on ∂P , they would be sub-segments of `w and
`w′ , for some w,w′ ∈ V ∗a . In this case, v0 would be the left endpoint of, say, `w, implying that
v0 = w. But then, `w′ would be incident to v0 = w, a vertex of Pa other than w′, which is
impossible by construction. Similarly, if only one of the edges incident to v0 lay on ∂P , then
v0 would correspond to a non-left edge of P . The other edge incident to v0 would then be a
sub-segment of `w with w 6= v0 (there is no such segment as `v0 because v0 6∈ V ∗a ). Again, we
would have a segment `w incident to a vertex other than w, which is impossible by construction.

Since both edges incident to v0 lie on ∂P and to the right of v0, it follows that v0 corresponds
to a right edge of P . Because Qa is convex, a sees v0, which contradicts the assumption that a
only sees left edges.
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Of course, by a symmetric argument, we also obtain the following.

Corollary 6. In a polyhedron, every point sees a non-right edge.

Lemma 7. In a polyhedron, every point sees a vertex or a non-lower reflex edge.

Proof. Let P be a polyhedron and let a ∈ P be a point that sees no vertices of P . We will
prove that a sees a reflex edge of P that is not a lower edge.

Shoot a ray from a directed vertically downward, and let b be the first point where the ray
hits the boundary ∂P . Let F be a face of P containing b. Fix a triangulation of F , let T be
a triangle containing b, and let v be any vertex of T . For all 0 ≤ λ ≤ 1, we denote by pλ the
point λv + (1− λ)b. Observe that the points pλ span the line segment bv ⊂ T , with p0 = b and
p1 = v.

Define X = {λ ∈ [0, 1] | a does not see pλ}. Note that 0 6∈ X, because a sees b = p0, and
1 ∈ X, because v = p1 is a vertex of P , and a does not see any vertex. Since X is bounded and
not empty, the number x = inf X is a well-defined strictly positive real.

Because ∂P is piecewise linear, there is a left (respectively, right) neighborhood of x cor-
responding to points pλ that are visible (respectively, not visible) to a. This implies that the
segment apx intersects ∂P without “crossing” it; i.e., without exiting P . One such point of
intersection is therefore a point of strict non-convexity of ∂P , which must lie on a reflex edge e
(and is visible to a). Also, since px−ε is visible to a for all ε ∈ [0, x], it follows that there are
points of P that lie directly below e, and thus e is not a lower edge of P .

Again, by a symmetric argument, we obtain the following.

Corollary 8. In a polyhedron, every point sees a vertex or a non-upper reflex edge.

We give one last lemma, which will be useful in the next section. Recall that a saddle vertex
of a polyhedron is a vertex with both convex and reflex incident edges.

Lemma 9. If a connected component of the 1-skeleton of a polyhedron contains no saddle
vertices, then it contains both a left edge and a right edge.

Proof. Let P be a polyhedron, and let G = (V,E) be a connected component of its 1-skeleton
such that no vertex in V is a saddle vertex of P . Then either all edges in E are convex or all
of them are reflex. Indeed, if there existed e, e′ ∈ E with e convex and e′ reflex, then there
would be a saddle vertex in G along a path connecting e and e′ (such a path exists, since G is
connected).

Suppose that all edges in E are convex. Let v ∈ V be the vertex of G with smallest x-
coordinate, and let L be the plane through v that is parallel to the yz-plane. Let Lε denote the
plane obtained by translating L by the vector (ε, 0, 0). Since all edges of P incident to v are in
E, they are all convex. It follows that for a sufficiently small ε > 0, the intersection between Lε
and the faces of P incident to v is a (convex) polygon Q. Now it is easy to see that the leftmost
(respectively, rightmost) vertex of Q lies on an edge of G that is a left (respectively, right) edge
of P .

If all edges in E are reflex, the proof is identical, except that the leftmost vertex of Q lies
on a right edge of P , and vice versa.

5 Obtaining a set of guards

The results in Section 4 lead to different ways of choosing edge guards in a polyhedron P . For
instance, Lemma 5 implies that the set of all non-left edges guards P . An alternative strategy
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is to pick an edge cover E′ of the 1-skeleton of P , and then pick all the non-lower reflex edges
that are not in E′. Indeed, every point that sees a vertex of P also sees (an endpoint of) an
edge in E′; the other points must see a non-reflex lower edge, by Lemma 7.

In the following, we will show how to combine such strategies in order to obtain our final
upper bounds on the number of edge guards.

Lemma 10. Every polyhedron with m edges whose 1-skeleton has an edge cover E′ of size m′

can be guarded with at most
3m+m′ − `− c

4

edge guards, where ` is the number of left edges in E′, and c is the number of convex edges that
are not in E′.

Proof. Let P be a polyhedron, and let G = (V,E) be its 1-skeleton, with |E| = m. Assume
that G has an edge cover E′, with |E′| = m′. Let c and r be, respectively, the number of convex
and reflex edges in E \E′. We denote by mleft, mright, mlower, mupper the number of left, right,
lower, and upper edges in E, respectively. Also, we denote by m′left the number of left edges
in E′, and by cleft (respectively, rleft) the number of convex (respectively, reflex) left edges in
E \ E′. Similarly, we define m′right, m

′
lower, and so on.

Let g be the size of a minimum set of edges that collectively guard P . By Lemma 5
and Corollary 6, we have the inequalities

g ≤ m−mleft,

g ≤ m−mright.

Furthermore, Lemma 7 and Corollary 8 yield

g ≤ m′ + r − rlower,
g ≤ m′ + r − rupper = m− c− rupper,

where we used the identity m = m′+ c+ r. By adding up these four inequalities and observing
that r − rlower − rupper = rleft + rright, we obtain

4g ≤ 3m+m′ −mleft −mright + r − rlower − rupper − c
= 3m+m′ + (rleft −mleft) + (rright −mright)− c.

Note that rright − mright ≤ 0, so we can drop this term. On the other hand, rleft − mleft =
−m′left − cleft ≤ −m′left, which yields

g ≤
3m+m′ −m′left − c

4
.

Now, renaming m′left to ` gives the desired bound.

Finally, we prove our main result.

Theorem 11. Every polyhedron with m edges can be guarded with at most 5
6m edge guards.

Proof. Let P be a polyhedron with m edges (whose boundary has any number of connected
components, each of which has arbitrary genus), and let G = (V,E) be its 1-skeleton. We will
construct an edge cover E′ of G of size m′ in such a way that

m′ − `− c ≤ m

3
, (4)

10



where ` and c are defined as in Lemma 10. Observe that plugging (4) into the upper bound
given by Lemma 10 yields

3m+m′ − `− c
4

≤ 3m+m/3

4
=

5

6
m

edge guards, as desired.
We will construct E′ on each connected component of G separately. For each component

Gi = (Vi, Ei) with |Ei| = mi, we will choose an edge cover E′i of size m′i that satisfies an
inequality analogous to (4):

m′i − `i − ci ≤
mi

3
, (5)

where `i is the number of left edges in E′i, and ci is the number of convex edges in Ei \ E′i.
Then, adding up the instances of (5) corresponding to all connected components of G, we will
obtain (4).

Let Gi be a connected component of G; recall that Gi is 2-edge-connected and has minimum
degree at least 3 (cf. Observation 1). Lemma 2 states that ρ(Gi) ≤ mi+1

3 . If Gi has an edge
cover of size m′i ≤

mi
3 , then (5) is satisfied, and we are done. So, let us assume that

mi

3
< ρ(Gi) ≤

mi + 1

3
.

Suppose that Gi has a left edge e; by Corollary 3(i), Gi has a minimum edge cover E′i
containing e. Hence, m′i ≤

mi+1
3 , `i ≥ 1, and (5) is satisfied. On the other hand, if Gi has no

left edges, then it has a saddle vertex, due to Lemma 9. In particular, Gi has a convex edge e′.
Then, by Corollary 3(ii) there is a minimum edge cover of Gi not containing e′. In this case,
m′i ≤

mi+1
3 , ci ≥ 1, and again (5) is satisfied.

We can also give a better upper bound for a special class of polyhedra.

Theorem 12. Every polyhedron homeomorphic to a ball (i.e., with a connected boundary of
genus zero) with triangular faces and m edges can be guarded with at most 29

36m edge guards.

Proof. Let P be such a polyhedron. Its 1-skeleton G is isomorphic to a plane triangulation, and
hence it is a 3-vertex-connected planar graph. Also, P satisfies Euler’s formula f + n = m+ 2,
where f is the number of faces of P , and n is the number of its vertices. Since each face has
three edges and each edge is shared by two faces, we have 3f = 2m, which yields 3n = m+ 6.

Assume that n ≥ 10. It is known [2, Theorem 5] that a 3-vertex-connected planar graph
with n ≥ 10 vertices has a matching of size at least n+4

3 . This yields an edge cover for G of
at most n − n+4

3 = 2n−4
3 = 2

9m edges. By taking m′ ≤ 2
9m in Lemma 10 (and dropping the

non-positive term −`− c), we obtain an upper bound of 29
36m edge guards for P , as desired.

Assume now that n ≤ 9. Of course there are no polyhedra with fewer than four vertices.
Also, if n = 4, then m = 6, f = 4, and thus P is a tetrahedron, which is convex. In this case one
edge guard suffices, which is less than 29

36m. In the following, we will assume that 5 ≤ n ≤ 9.
By combining [2, Theorem 3] and [2, Lemma 4], we have that any 3-vertex-connected planar

graph with n ≥ 4 vertices has a matching of size at least min{n−12 , n+4
3 }. If n ≤ 9, then

n−1
2 < n+4

3 , and therefore G has a matching of size at least n−1
2 , which is perfect or near-

perfect. Such a matching can be extended to an edge cover of at most n+1
2 = m+9

6 edges.
Lemma 10 with m′ ≤ m+9

6 gives an upper bound of

19m+ 9− 6`− 6c

24
(6)
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edge guards. For n = 5, 6, 7, 8, we have m = 9, 12, 15, 18; in each of these cases, b19m+9
24 c is

equal to b2936mc, as desired.
Finally, if n = 9, we know that G has a matching M of all vertices except one, say v. Let

e be an edge incident to v; by rotating P if necessary, we can assume that e is a left edge
of P . Since the set E′ = M ∪ {e} is an edge cover of G containing a left edge, we can plug
` ≥ 1 in (6), obtaining an upper bound of b19m+3

24 c edge guards. For m = 21, this is equal to
16 = b2936mc.
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