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Abstract. Mediated population protocols are an extension of popula-
tion protocols in which communication links, as well as agents, have
internal states. We study the leader election problem and some applica-
tions in constant-state mediated population protocols. Depending on the
power of the adversarial scheduler, our algorithms are either stabilizing
or allow the agents to explicitly reach a terminal state.
We show how to elect a unique leader if the graph of the possible in-
teractions between agents is complete (as in the traditional population
protocol model) or a tree. Moreover, we prove that a leader can be elected
in a complete bipartite graph if and only if the two sides have coprime
size.
We then describe how to take advantage the presence of a leader to
solve the tasks of token circulation and construction of a shortest-path
spanning tree of the network. Finally, we prove that with a leader we can
transform any stabilizing protocol into a terminating one that solves the
same task.

1 Introduction

Background. The population protocol model, introduced in the seminal paper
of Angluin et al. [3] has recently received a lot of interest among researchers in
distributed computing. The model consists of a set of simple anonymous finite-
state agents that interact pairwise, and each interaction changes the state of
both agents. Normally each pair of agents is supposed to interact infinitely often
in any infinite execution of the protocol; however, these interactions may occur
in any arbitrary order. This models the asynchrony and uncertainty in a dis-
tributed system. Moreover, as the agents have constant memory independent of
the size of the system, this means that the protocol can be scaled to populations
of any size. The population protocol model is useful for modeling large-scale
networks consisting of small mobile devices, such as sensor networks or swarms
of microrobots.

Since the introduction of this model, several variants of population protocols
have been studied. For example, there could be restrictions on which only certain
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pairs of agents are allowed to interact, giving rise to arbitrary interaction graphs
instead of the complete graph [2]. This paper considers the interaction graph
to be an arbitrary connected graph on the set of agents. Another possibility is
to consider restrictions on the schedule of interactions, e.g., allowing a periodic
scheduler, or a k-bounded scheduler, or a probabilistic scheduler [1].

The power of population protocols in terms of what kinds of predicates can
be computed by them has been studied extensively. Angluin et al. [5] showed that
the class of computable predicates is exactly the class of semilinear predicates (or,
equivalently, all predicates that can be defined by first-order logical formulas in
Presburger arithmetic). Further studies introduced enhancements in the model
to increase its computational power and allow the computation of larger classes
of predicates: endowing each agent with non-constant memory [1], assuming the
presence of a leader [7], allowing a certain amount of information to be stored
on the edges of the interaction graph [12,13]. In the present paper we study
the latter category of population protocols, which are called mediated population
protocols. We assume that the amount of memory per node and per edge of the
graph is constant, and we study what can be computed in several restricted
classes of interaction graphs and with several types of schedulers.

Our Contributions. In this paper we focus on algorithms to elect a unique
leader in a mediated population protocol, as well as applications of a leader
in several common situations. In Section 2, we formally define the mediated
population protocol model and related concepts. The types of schedulers we
consider are the recurrent scheduler, which only implements a bland notion of
fairness on interactions, and the k-bounded scheduler, which cannot neglect any
interaction for too long. We also distinguish between stabilizing protocols, which
reach a configuration in which no agent changes state any more, and terminating
protocols, in which the agents “realize” that the configuration is stable (or about
to become stable), and explicitly terminate the execution. Typically, when the
scheduler is recurrent and the task is not trivial, there exists no terminating
protocol to solve it. In these cases, we will give only stabilizing protocols. On the
other hand, when the scheduler is k-bounded, we will give terminating protocols.

In Section 3, we study the problem of leader election in several network
topologies: complete graphs, complete bipartite graphs, and trees. We prove that
a unique leader can always be elected in a complete graph and in a tree, and we
give a characterization of the complete bipartite graphs in which a leader can be
elected under a 1-bounded scheduler: those are the complete bipartite graphs in
which the two sides have coprime sizes.

In Section 4, we assume that the network contains a unique leader, and
we show how to use this feature to accomplish some typical tasks in arbitrary
networks. First we show how to solve the token circulation problem and how
to construct a shortest-path spanning tree. Then we show how to convert any
stabilizing protocol into an “equivalent” but terminating one. As a byproduct,
given any protocol for the 2-bounded scheduler, we can make it work also under
the k-bounded scheduler, for any k > 2. By combining these solutions with the
leader election protocols of Section 3, we can solve the same tasks even if a



leader is not given in advance, provided that the network is a complete graph, a
complete bipartite graph with coprime sides, or a tree.

Related Work. The task of electing a leader has been extensively studied in the
context of (non-mediated) population protocols. The majority of papers focus on
self-stabilizing leader election under the assumption that the scheduler is globally
fair. This is a more powerful scheduler than the recurrent one, and it may or may
not be more powerful than the k-bounded one. It has been shown that leader
election requires either as many states as agents [9] or the presence of an oracle
that informs agents about the presence of a leader in the system [15]. Concerning
restricted interaction graphs, in [10] self-stabilizing leader election algorithms for
trees are given; the case of the ring is studied in [15]. Both papers assume the
presence of an oracle. These results have been extended, under the same set of
assumptions, to arbitrary graphs in [6]. In [4], a constant-space algorithm for
the ring graph is also given. In the context of mediated population protocols, a
non-constant-space algorithm for leader election is shown in [16].

Under the globally fair scheduler, the self-stabilizing construction of a span-
ning tree has been investigated in [4], where an algorithm requiring O(logD)
states is given, D being the graph’s diameter. In the same paper, a self-stabilizing
token circulation algorithm for the ring graph is given. In a model similar to pop-
ulation protocols, a token circulation algorithm for arbitrary graphs is discussed
in [11], assuming the presence of an oracle.

Several papers assumed a unique leader as a computational tool to enhance
the power of population protocols. Counting algorithms are given in [7]; in [8],
a self-stabilizing transformer for general protocols has been studied in a slightly
different model and under the additional assumption of unbounded memory. In
the context of fault tolerance, [14] uses a leader to make any protocol tolerant
to omission failures.

Other papers have discussed the computational power of mediated population
protocols in terms of the predicates that can be computed [12,13].

In light of the above results, our paper represents a breakthrough in that
we show how to elect a leader in some large classes of networks using only
a constant number of states per agent and per edge; moreover, we often make
weaker assumptions on the scheduler, and we do not resort to querying an oracle.
The same holds for the applications of leader election, which in addition apply
to all networks in which a leader is present (regardless of the interaction graph’s
topology).

2 Model and Definitions

Network and Configuration. A network is an unoriented connected finite
graph G on a set V of at least two vertices, which are called agents. Each agent
has an agent state belonging to a finite set Q. In turn, Q is partitioned into input
states QI , work states QW , and terminal states QT .

Each edge of G has a port for each of its two endpoints; the set of all ports is
denoted by P . If {a, b} is an edge of G, we denote by p(a, b) the port on a’s side



of {a, b} and by p(b, a) the port on b’s side. Each port has a port state belonging
to a finite set U ; there exists a unique initial state u0 ∈ U .

A configuration C is a pair of functions (f, g), where f : V → Q and g : P →
U . C is said to be initial if f(V ) ⊆ QI and g(P ) = {u0}.

Interaction and Scheduler. An interaction is an ordered pair of agents
(as, ar), where as is called the sender and ar is called the receiver, such that
{as, ar} is an edge of G. The set of possible interactions of G (i.e., two for each
edge) is denoted by I. A schedule S is an infinite sequence of interactions, i.e.,
S : N→ I. A scheduler is a set of schedules. We define the following schedulers:

– the recurrent scheduler is the set of schedules in which each interaction of I
appears infinitely often;

– the k-bounded scheduler, where k is a positive constant, is the set of schedules
that belong to the recurrent scheduler and such that, between two consecu-
tive occurrences of the same interaction within a schedule, none of the other
interactions appears more than k times.

Let us observe that all the schedules in the 1-bounded scheduler are periodic.

Transition Function, Execution, and Task. A transition function (or proto-
col) is a function δ : Q×U×Q×U → Q×U×Q×U such that, if δ(qs, us, qr, ur) =
(q′s, u

′
s, q
′
r, u
′
r) and qs ∈ QT (respectively, qr ∈ QT ), then qs = q′s (respectively,

qr = q′r). That is, δ leaves terminal states unchanged.

Given a configuration C = (f, g), we say that configuration C ′ = (f ′, g′) re-
sults from C by the interaction i = (as, ar) according to the transition function δ
if f ′ coincides with f on V \{as, ar}, g′ coincides with g on P\{p(as, ar), p(ar, as)},
and

(f ′(as), g
′(p(as, ar)), f

′(ar), g
′(p(ar, as))) = δ(f(as), g(p(as, ar)), f(ar), g(p(ar, as))).

If this is the case, we write C
δ,i−→ C ′.

The execution of a schedule S = (i0, i1, . . .) from an initial configuration C0

according to a transition function δ is the sequence of configurations (C0, C1, . . .)

such that, for every j ∈ N, Cj
δ,ij−−→ Cj+1. Let an execution E = (Cj)j≥0 be given,

with Cj = (fj , gj). We say that E is stable if there is a j∗ ∈ N such that, for
every j′ > j∗, fj′ = fj′+1. We say that E terminates if there is a j∗ ∈ N such
that fj∗(V ) ⊆ QT . Note that an execution that terminates is also stable.

A task or problem is a set of executions. We say that a protocol δ on a set
of agent states Q and a set of port states U solves a task T under scheduler S
in a given network if the execution according to δ of every schedule in S from
any initial configuration is in T . If such executions are all stable, the protocol is
said to be stabilizing. If such executions all terminate, the protocol is said to be
terminating.



Algorithmic notation. When describing transition functions, we will some-
times use an “algorithmic style” (cf. Figures 1 and 2). When the interaction (a, b)
occurs, the function Transition function is applied to the tuple (a, p(a, b), b, p(b, a));
note that, with a little abuse of notation, we identify agents and ports with their
respective states. In our formalism, a state is seen as a tuple of variables. To
refer to variable x of the state of agent a, we use the expression a.x.

3 Leader Election

In this section we study the task of electing a leader in several types of networks.
Formally, the set of agent states includes some leader states, and leader election
is the task consisting of the executions in which eventually there is a unique
agent in the network with a leader state. Note that a protocol solving the leader
election problem need not be stabilizing.

3.1 Complete Graphs

If the network is a complete graph, there is a simple leader election protocol that
works under the recurrent scheduler.

Theorem 1. There exists a stabilizing protocol that solves the leader election
problem in Kn, for all n > 1, under the recurrent scheduler.

Proof. We use only two agent states: an input state, which is also a leader state,
and a work state, which is a non-leader state. There are no terminal states and
only one port state. Whenever two agents with the leader state interact, the
sender retains the leader state and the receiver takes the non-leader state. In all
other cases, the agents retain their states.

As a result, in every execution all agents will initially have the leader state
(because it is the only input state) and, whenever two leaders meet, one will
be “eliminated”. Since all ordered pairs of agents are going to interact infinitely
many times (because the network is the complete graph and the scheduler is
recurrent), it is obvious that eventually only one agent with the leader state will
remain, and its state will never change. Hence the protocol is stabilizing. ut

3.2 Complete Bipartite Graphs

Next we give a characterization of the complete bipartite graphs in which the
leader election problem is solvable under the 1-bounded scheduler. When the
problem is solvable, we can also give a terminating protocol.

Theorem 2. There exists a (terminating) protocol that solves the leader election
problem in Km,n under the 1-bounded scheduler if and only if m and n are
coprime.



Proof. Suppose that m and n are coprime. Without loss of generality, let m < n.
The idea of our protocol is to make the m agents in the smaller side of the
graph “eliminate” m agents in the larger side. What is left is a smaller complete
bipartite graph, on which the same procedure is repeated until only one agent
remains: this agent will be the leader.

The protocol uses the fact that the schedule has period 2mn, and hence
the concept of round can be defined as a set of 2mn consecutive interactions.
Whenever an agent a is involved in an interaction for the first time (which is
easy to detect, since a still has an input state), and its partner is some agent
b, the port p(a, b) is “marked” with a special state that also encodes the role of
a in the interaction (i.e., sender or receiver). So, when a sees the marked port
again, and its role is the same as the one encoded by the mark, it knows that
a new round has started. With this technique, agents can implicitly coordinate
their actions and do different things at different rounds.

In the first round, a maximal matching is constructed. Initially all agents
are unmatched; whenever two unmatched agents interact, they become matched
and change their state accordingly. By the end of the first round, all agents in
the smaller side of the graph have been matched. During the second round, all
agents discover if they belong to the smaller side or the larger side: the ones in
the smaller side will see some unmatched agents, and the ones in the larger side
will only see matched agents. Note that each agent can perform this check by
having a “flag” in its state that is cleared at the beginning of the round and
is set whenever an unmatched agent is encountered. During the third round,
the agents in the smaller side revert their state to unmatched, and the matched
agents in the larger side become eliminated.

This three-round cycle is then repeated, ignoring the eliminated agents, until
only one agent remains unmatched (note that this happens if and only if m and
n are coprime). Finally, this situation has to be detected by all agents, so that
the protocol can terminate. This is done by adding another flag, which is used
in the third round, to check if the encountered unmatched agents are more than
one. So, when only one unmatched agent is left, the agents in the opposite side
detect it and get a terminal (non-leader) state. As soon as the other agents see
some terminated agents, they also get a terminal state (which will be a leader
or non-leader state, depending on whether they are unmatched or matched).

Suppose now that m and n are not coprime, and let d > 1 be their greatest
common divisor. Partition one side of the graph into m/d groups of size d and the
other side in n/d groups of size d. Let A = {a0, . . . , ad−1} and B = {b0, . . . , bd−1}
be two groups of agents on opposite sides, and let SA,B be the following sequence
of d2 interactions: first all the interactions of the form (aj , bj), with 0 ≤ j < d,
then all the interactions of the form (aj , bj+1 mod d), then all the interactions of
the form (aj , bj+2 mod d), etc. We then construct a sequence S by concatenating
all the sequences SA,B for every ordered pair (A,B) of groups of agents located
on opposite sides of the graph. The resulting sequence has length 2mn and
involves all possible interactions in the network. Finally, we construct a schedule
S∗ by concatenating infinitely many copies of S.



Suppose that in the initial configuration all agents have the same input state
(which is a valid initial configuration, regardless of the protocol), and suppose
that the above scheduler S∗ is executed. Then, every d interactions, all agents
in a same group will have the same state, and in particular there will not be a
unique agent with a leader state. This means that no protocol solves the leader
election problem under the 1-bounded scheduler (since S∗ is 1-bounded). ut

3.3 Tree Graphs

If the network is a tree and the scheduler is recurrent, we can always elect a
leader with a stabilizing protocol. Moreover, if the scheduler is k-bounded, we
have a terminating protocol.

Theorem 3. For every k ≥ 1, under the k-bounded scheduler (respectively, un-
der the recurrent scheduler), there exists a terminating (respectively, stabilizing)
protocol that solves the leader election problem in every tree.

Proof. First we describe how to elect a stable leader if the scheduler is recurrent:
the protocol is summarized in Figure 1. Then we will show how to make the same
protocol terminate under the k-bounded scheduler. The idea of the protocol is
to establish a parent-child relation between adjacent vertices of the tree in such
a way that eventually the tree becomes rooted: the root will then be the leader.
Assuming that {a, b} is an edge, the way we represent the fact that a is a
parent of b is by setting a parent flag in the state of port p(a, b). In the initial
configuration, no parent flag is set. Each agent has a parents variable too, which
counts how many parents the agent has (initially 0, and ranging from 0 to 2).
Both agents and ports also have a busy flag, initially not set.

Whenever a pair of non-busy agents (a, b) is activated and none of p(a, b) and
p(b, a) have their parent flag set, then the parent flag of p(a, b) is set, encoding the
fact that b has become a child of a. Then the parents variable of b is incremented;
if b has now two parents, both b and p(b, a) become “busy” by setting their
respective busy flag. b will then look for its “old parent” c. Note that, while b
has its busy flag set, it will accept no more parents or children. When b interacts
again with c (which is recognizable because the parent flag of p(c, b) is set and
the busy flag of p(b, c) is not set) and c is not busy, b becomes a parent of c and c
becomes a child of b (i.e, the parent flags of p(b, c) and p(c, b) are switched). Also,
the parents variable of c is incremented; if c has two parents, then both c and
p(c, b) become busy. At the same time, the parents variable of b is decremented,
meaning that b has a unique parent again. So, the next time b interacts with a
(which is recognizable because the parent flag of p(a, b) is set), b will clear its
own busy flag, as well as the busy flag of p(b, a). In the meantime, if the busy
flag of c is set, c looks for its old parent d and does the same operations that b
just did; then d will do the same, etc.

Let us see how an execution of this algorithm works globally. Initially, all
edges of the network are “unoriented”; as soon as some edge is activated, it
gets an “orientation”, telling which of the two endpoints is the parent. As the



execution continues, a forest of oriented subtrees is constructed, and each tree
in this forest has a unique root. When two subtrees meet because an interaction
(a, b) occurs, they merge, and the root of a’s subtree becomes the root of the
new tree. So, the orientations of all the edges in the path from b to the root of
b’s subtree have to reverse. While edges are being reversed, the agents involved
become temporarily busy, so that no other subtrees can merge at those points
and interfere with the process. Note that deadlocks are impossible because the
network is cycleless. Also, progress will always be made, because the scheduler is
recurrent, and therefore all possible interactions will eventually occur. When all
the subtrees have finally merged and all edges stop reversing, the entire tree is
oriented and has a unique root. The root is also the only agent in the tree whose
parent flag is not set. If we define this as a leader state, we have a stabilizing
leader election protocol.

1: Agent variables
2: parents := 0
3: busy := false
4:
5: Port variables
6: parent := false
7: busy := false
8:
9: Transition function δ(a, p(a, b), b, p(b, a))
10: if ¬a.busy ∧ ¬b.busy ∧ ¬p(a, b).parent ∧ ¬p(b, a).parent then
11: p(a, b).parent := true
12: b.parents := b.parents+ 1
13: if b.parents = 2 then
14: b.busy := true
15: p(b, a).busy := true

16: else if a.busy ∧ ¬b.busy ∧ ¬p(a, b).busy ∧ p(b, a).parent then
17: p(a, b).parent := true
18: p(b, a).parent := false
19: a.parents := a.parents− 1
20: b.parents := b.parents+ 1
21: if b.parents = 2 then
22: b.busy := true
23: p(b, a).busy := true

24: else if a.busy ∧ a.parents = 1 ∧ p(b, a).parent then
25: a.busy := false
26: p(a, b).busy := false

Fig. 1: Stabilizing leader election in a tree

Suppose now that the scheduler is k-bounded, and let us show how to make
the above protocol terminate. Observe that a technique similar to the one used
in Theorem 2 allows any agent to determine when it has interacted with all of its
neighbors in the tree. The first time an agent is involved in an interaction as the
sender, it marks the corresponding port. Then it counts how many times that
same interaction occurs; at the k+ 1th occurrence, the agent knows that all the
possible interactions have occurred at least once, and therefore it has interacted



with all of its neighbors. Since k is fixed, a constant number of agent states
is sufficient to implement this counter. Furthermore, an agent can determine
whether it is a leaf or an internal vertex of the network: if the agent sees a
marked port every time it is activated as the sender of an interaction for k + 1
times consecutively, then it is a leaf. Now, if a leaf agent has a parent, it knows
that it will never become leader, and therefore it can get a terminal non-leader
state. More generally, if an agent with a parent realizes that all its neighboring
agents except its parent are in a terminal state, then it can get a terminal non-
leader state, as well. Once again, this check can be performed with a flag and a
finite counter. It is easy to prove by induction that eventually all agents except
the final root of the tree will get a terminal non-leader state. When this happens,
the root easily realizes and gets a terminal leader state. ut

4 Applications of a Unique Leader

In this section we will show how the presence of a unique leader can help us
solve several different tasks. Formally, these are tasks consisting of executions in
which the initial configuration has a unique agent in a leader state.

4.1 Token Circulation

Here we provide a stabilizing solution to the token circulation task that works
in every network under the recurrent scheduler. Formally, the set of agent states
includes some token states, and token circulation is the task consisting of the
executions in which, if in the initial configuration there is a unique agent with
token state, then in every configuration there is a unique agent with token state,
and each agent has token state in at least one configuration.

Protocol Variables. Each agent’s state consists of three flags: token, tree,
and summoning. Each port’s state consists of the single flag parent. The token
states coincide with the leader states, and are those in which token = true. All
flags of all agents and ports are initially set to false, with the exception of the
token flag of the leader, which is set to true.

Protocol Description. Our protocol is given in Figure 2. The token circu-
lates along the edges of a spanning tree of the network, which is constructed
incrementally as the algorithm is executed. Each agent remembers if it has al-
ready obtained the token: this is done by setting the flag tree. With this flag,
the agent also remembers that it belongs to the “partial” spanning tree. The
flag summoning is used by an agent to remember that the token has to be sent
to a new agent that recently joined the spanning tree. The ports of each edge
have a parent flag that we use to encode a parent-child relationship between
the endpoint agents or an orientation of the edge, in the same way as we did
in Theorem 3. The resulting oriented edges can point either in the direction of



1: Agent variables
2: token . true for the leader, false for non-leaders
3: tree := false
4: summoning := false
5:
6: Port variables
7: parent := false
8:
9: Transition function δ(a, p(a, b), b, p(b, a))
10: if a.token ∧ ¬a.tree then
11: a.tree := true
12: if ¬a.tree ∧ ¬a.summoning ∧ b.tree then
13: a.summoning := true
14: p(b, a).parent := true

15: if a.summoning ∧ ¬b.summoning ∧ p(b, a).parent then
16: b.summoning := true
17: p(a, b).parent := true
18: p(b, a).parent := false

19: if a.summoning ∧ b.token ∧ p(a, b).parent then
20: a.token := true
21: if ¬a.tree then
22: a.tree := true
23: a.summoning := false

24: b.token := false
25: b.summoning := false

Fig. 2: Token circulation protocol

the token (along the spanning tree) or toward an agent that is summoning the
token.

The details of the algorithm are as follows. If an agent has the token and is
not in the partial spanning tree (i.e., a.token and ¬a.tree), it sets its own tree
flag, thus becoming part of the spanning tree. This is an initialization operation
that is performed only once in every execution.

If a sender a not in the spanning tree and not summoning (i.e., ¬a.tree and
¬a.summoning) interacts with a receiver b in the spanning tree (i.e., b.tree),
then it sets it own summoning flag and orients the edge {a, b} toward b, setting
the p(b, a).parent flag.

If a summoning sender a (i.e., a.summoning) interacts with a non-summoning
receiver b along an edge of the spanning tree that is oriented toward b (i.e.,
¬b.summoning and p(b, a).parent), then b becomes a summoner as well, and
the orientation of the edge {a, b} is reversed.

Finally, if a summoning sender a interacts with a receiver b possessing the
token and the edge {a, b} is oriented toward a, then a gets the token, while b
loses it and ceases to be a summoner (in case it was a summoner). Additionally,
if a is not in the spanning tree yet, it sets its own tree flag and stops being a
summoner.

Theorem 4. The protocol in Figure 2 solves the token circulation task in any
network under the recurrent scheduler, provided that there is a unique leader.
Moreover, the protocol is stabilizing and the edges with the parent flag set (on



either port) eventually define a spanning tree of the network with edges oriented
toward the token.

Proof. First we shall prove that the edges with the parent flag set always form a
tree. Indeed, initially no parent flag is set. Then, the only line of the algorithm
that creates an edge orientation is line 14 (note that lines 16 and 17 only flip an
edge that is already oriented). In turn, line 14 is triggered only when a is not in
the spanning tree and is not summoning. But as line 14 is triggered, a becomes
summoning. Moreover, when a ceases to be summoning, it also becomes part of
the spanning tree (lines 22 and 23). And once a is part of the spanning tree,
it never leaves it (because the tree flag is never cleared in the algorithm). It
follows that a is involved in the execution of line 14 at most once. This shows
that the edges with the parent flag set never form cycles. Showing that they form
a connected sub-network (containing the token) is also easy, because line 14 is
executed only when a is a neighbor of an agent b with flag tree set, and the tree
flag is set only by the agent that initially has the token (line 11) and by agents
that have incident edges with the parent flag set (line 22). This proves that the
edges with the parent flag set form a tree throughout the execution.

Also note that the agents with the flag tree set are vertices of this partial
spanning tree: indeed, the flag is first set by the agent with the token (when the
tree has no edges yet), and then only by agents that have incident edges with the
parent flag set. Actually, the only agents that do not have the tree flag set and
are incident to edges with the parent flag set are leaves of the partial spanning
tree that have the summoning flag set.

Let us now prove the correctness of the protocol. We have to show that
eventually all agents in the network set their tree flag. Since this only happens
when they have the token, this would prove that the token reaches all agents. We
will prove by induction that the number of agents with the tree flag set is bound
to increase. Initially no agents have the tree flag set, and nothing happens until
the agent with the token is involved in an interaction and sets its own tree flag.
Note that this must happen sooner or later because the network is connected,
there are at least two agents, and the scheduler is recurrent. Then, some agent
a whose tree flag is not set will interact with an agent b whose tree flag is set,
triggering lines 12–14. So a will become a summoner and the edge {a, b} will
be oriented toward b. Of course, this may happen to several different agents,
not only to a. What will happen next is that lines 15–18 will be triggered and
some edges of the partial spanning tree will start reversing. The idea is that
each summoner tries to reach the agent with the token by reversing the edges
along the path connecting to it. This path can be easily identified because all
the non-summoners that are in the partial spanning tree point toward the token.
When an edge is reversed, its non-summoner endpoint becomes a summoner, as
well. This prevents lines 15–18 from being triggered more then once on the same
agent, and therefore prevents different summoners from interfering with each
other. Eventually, an edge reversal will reach the token. When this happens,
there is a unique path in the partial spanning tree that is oriented from the
token to a summoning leaf. Then lines 19–25 will be triggered, and the token



will follow the edges of such an oriented path, until it reaches the summoning
leaf. The agents that lose the token will clear their summoning flags, but the
one with the token will remain a summoner, to avoid triggering lines 15–18 and
avoid creating forks in the path. When the summoning leaf obtains the token
(the leaf is recognizable because its tree flag is not set), it sets its own tree flag
and clears its own summoning flag.

This ends the proof of correctness. Note that the protocol is stabilizing be-
cause, as soon as all agents have set their tree flag, no new summoners appear
and all edges stop reversing. ut

4.2 Construction of Shortest-Path Spanning Trees

Next we show how to solve the task of constructing a spanning tree of the network
under a k-bounded scheduler, again assuming that there is a unique leader. As
a bonus, the distance of the leader from any agent along the spanning tree
coincides with the distance over the whole network. Equivalently, this spanning
tree is generated by a breadth-first traversal of the network starting at the leader.

Theorem 5. For every k ≥ 1, under the k-bounded scheduler there exists a
terminating protocol that constructs a shortest-path spanning tree of any network,
provided that there is a unique leader.

Proof. The tree is created level by level, and the leader coordinates the construc-
tion: when a new level of the tree is completed, the leader will be notified and
will broadcast a message on the partial spanning tree, ordering the construction
of a new level. When a leaf receives a “new level” message, it expands identifying
its children among the agents that have not been included in the tree, yet. Each
of these agents will be part of the new level. Since the scheduler is k-bounded, a
leaf is able to detect when it has seen all its neighbors, as in Theorem 3. Then,
the leaf sends a “job done” message to its parent; in the message it also com-
municates if there is a new level or not. Each upper level collects all termination
messages and forwards them, until they reach the leader. Initially, the leader is
the only leaf of the tree and it will bootstrap the procedure creating the first
level. Note that the leader knows that the task has been completed when it de-
tects that no leaf has been able to add a new level to the spanning tree. At that
point it broadcasts a “terminate” message along the spanning tree. ut

4.3 Detection of Stability

Under the k-bounded scheduler, a unique leader can be used to convert any sta-
bilizing protocol into a terminating one, in any network. A similar technique has
been used in [17] in the context of detecting stability in message-passing systems.
As byproduct, any protocol for the 2-bounded scheduler can be simulated in all
k-bounded schedulers, for k > 2. First we give some crucial definitions.



Definitions. Let G be a network, and let δ be a transition function for G with
agent states Q and port states U . Now let Q′ = QS ×Q and U ′ = US × U , and
let δ′ be a transition function for the same network G with agent states Q′ and
port states U ′. Let us refer to the sets QS and US as the simulator work states
for agents and ports, while Q and U are the simulated states.

A simulated transition for δ′ is a state transition in which some agents or
ports change their simulated states as a result of an interaction according to δ (if,
instead, only the simulator work states change, the transition is not considered
a simulated one). Given an execution E of δ′, its simulated execution is the
execution of δ that is obtained from E by removing the non-simulated transitions
and projecting the agents’ and ports’ states on Q and U .

We say that δ′ under scheduler S ′ simulates δ under scheduler S if, for every
execution of δ′ corresponding to a schedule in S ′, its simulated execution is an
execution of δ corresponding to a schedule in S. If, additionally, δ is stabilizing
under S and δ′ is terminating under S ′, we say that δ′ detects the stability of δ.

Theorem 6. For every k > 2, given a stabilizing protocol δ, there is a protocol
δ′ that, under the k-bounded scheduler, detects the stability of δ under the 2-
bounded scheduler, from any initial configuration with a unique leader.

Proof. The protocol δ′ has an initialization phase in which the leader builds
a shortest-path spanning tree of the network, as in Theorem 5. Recall that
the spanning tree construction is terminating, hence the agents can perform
other tasks when they are finished. After the initialization phase, the protocol
is structured in two alternating phases: a reset phase and a simulation phase.
When the stability is detected, the leader starts the termination phase.

In the reset phase, all the flags used in the simulation by agents and ports
are reset. This phase is performed level by level and is coordinated by the leader
as in Theorem 5. Once again, note that the agents are able to tell when they
have reset all their incident ports, because the scheduler is k-bounded.

Once all flags have been reset, the leader starts the simulation phase. In this
phase, one simulated interaction between each ordered pair of neighboring agents
is performed, starting from the leader and proceeding to the leaves, following the
levels of the spanning tree. Each edge port has a simulation flag, which tells if
the edge has already been part of a simulated interaction in the direction corre-
sponding to the port. This flag is reset during each reset phase. The simulation
at level ` proceeds as follows: an agent receiving the order to simulate starts
scanning each incident port (whenever the scheduler generates the correspond-
ing interaction) and, if its simulation flag is not set, both endpoints of that edge
perform a simulated interaction according to δ and set the port’s simulation flag.
When all its incident ports have the simulation flag set (which can be verified
because the scheduler is k-bounded), the agent sets its own complete flag and
notifies the leader. The leader waits until it detects that each agent at level `
has set the complete flag: this can be done with a convergecast. Then the leader
issues another order to simulate, which reaches level `+ 1. The simulation phase
ends once the lowest level of the tree has finished simulating. Thanks to the
complete flag, this phase can be performed in constant space.



During the simulation phase, the agents also perform a “local stability” check
on each edge. An edge {a, b} is locally stable if no (infinite) schedule consisting
only of the interactions (a, b) and (b, a) ever causes the simulated state of a or
b to change according to δ. Note that the stability of an edge can be verified
by its endpoints in a single interaction executing δ′. Each agent has an unstable
flag that is cleared during the reset phase and is set whenever the agent either
changes its simulated state or detects that an incident edge is not locally stable.
Then, during the convergecast, agents also communicate the state of their un-
stable flag to the leader. When the simulation phase is over, the leader knows if
the whole network is locally stable. If it is not, it starts the next reset phase; oth-
erwise, it proceeds with the termination phase. The termination phase is simply
a broadcast over the spanning tree that orders all agents to get a terminal state.

The correctness of the simulation follows from the fact that, at every phase,
each simulation flag is first cleared and then set. This means that all possible
simulated interactions occur in some order at each simulation phase. So, the
resulting simulated schedule is a sequence of permutations of all the possible
interactions in the network. Each permutation contains each interaction exactly
once. Therefore, between two occurrences of the same interaction within two
consecutive permutations, no other interaction occurs more than twice. In other
words, the simulated schedule is 2-bounded.

Let us now show that the stability of δ is correctly detected and that δ′

correctly terminates. Of course, when the simulated execution of δ stabilizes,
all edges are locally stable and no agents change simulated states, and this is
detected by the leader, which then correctly executes the termination phase. We
have to prove that the leader cannot start the termination phase “by accident”
before the execution of δ has actually stabilized. Equivalently, we have to prove
that, if all edges are locally stable at some point during the simulation phase, then
the simulated execution of δ has indeed reached a stable simulated configuration.
Here the key observation is that, by the way the simulator works, the simulated
states of agents and ports change only according to δ. So, if all edges pass the
local stability test at some point in the simulation phase (and no agents change
their simulated states), it does not matter in what order they are checked, and
when. Indeed, in the next simulation phase, the simulated states of the agents
will still be the same, and therefore all edges will still be locally stable. ut
If δ′ is executed under the 1-bounded scheduler, the simulated execution obtained
in Theorem 6 corresponds to a 1-bounded schedule, as well.

Corollary 1. Given a stabilizing protocol δ, there is a protocol δ′ that, under
the 1-bounded scheduler, detects the stability of δ under the 1-bounded scheduler,
from any initial configuration with a unique leader.

Proof. Recall from Theorem 6 that the simulated schedule generated by δ′ con-
sists of a sequence of permutations of all the possible interactions. Now, if δ′ is
executed under a 1-bounded scheduler, the schedule will actually be periodic,
and so will be the resulting simulated schedule. Therefore, the simulated sched-
ule is a repetition of the same permutation of interactions, which implies that it
is 1-bounded, as well. ut
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