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Abstract The Meeting problem for k ≥ 2 searchers

in a polygon P (possibly with holes) consists in mak-

ing the searchers move within P , according to a dis-

tributed algorithm, in such a way that at least two

of them eventually come to see each other, regardless

of their initial positions. The polygon is initially un-

known to the searchers, and its edges obstruct both

movement and vision. Depending on the shape of P ,

we minimize the number of searchers k for which the

Meeting problem is solvable. Specifically, if P has a ro-

tational symmetry of order σ (where σ = 1 corresponds

to no rotational symmetry), we prove that k = σ + 1

searchers are sufficient, and the bound is tight. Further-
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more, we give an improved algorithm that optimally

solves the Meeting problem with k = 2 searchers in

all polygons whose barycenter is not in a hole (which

includes the polygons with no holes). Our algorithms

can be implemented in a variety of standard models

of mobile robots operating in Look-Compute-Move cy-

cles. For instance, if the searchers have memory but are

anonymous, asynchronous, and have no agreement on

a coordinate system or a notion of clockwise direction,

then our algorithms work even if the initial memory

contents of the searchers are arbitrary and possibly mis-

leading. Moreover, oblivious searchers can execute our

algorithms as well, encoding information by carefully

positioning themselves within the polygon. This code

is computable with basic arithmetic operations (pro-

vided that the coordinates of the polygon’s vertices are

algebraic real numbers in some global coordinate sys-

tem), and each searcher can geometrically construct its

own destination point at each cycle using only a com-

pass and a straightedge. We stress that such memory-

less searchers may be located anywhere in the polygon

when the execution begins, and hence the information

they initially encode is arbitrary. Our algorithms use a

self-stabilizing map construction subroutine which is of

independent interest.
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1 Introduction

1.1 Framework

Meeting problem. Consider a set of k ≥ 2 autonomous

mobile robots, modeled as geometric points located in

a polygonal enclosure P , which may contain holes. The

boundary of P limits both visibility and mobility, in

that robots cannot move or see through the edges of

P . Each robot observes the visible portion of P (taking

an instantaneous snapshot of it), executes an algorithm

to compute a visible destination point, and then moves

to that point. Such a Look-Compute-Move cycle is re-

peated forever by every robot, each time taking a new

snapshot and moving to a newly computed point.1 In

this paper we study the Meeting problem, which pre-

scribes the k robots to move in such a way that even-

tually at least two of them come to see each other and

become “mutually aware”. We will refer to these robots

as P -searchers, or simply searchers.

Searchers’ limitations. Our searchers are severely lim-

ited, which makes the Meeting problem harder to solve.

– They do not know the shape of P in advance, nor

their whereabouts within P .

– They are anonymous, implying that they all execute

the same algorithm to determine their destination

points.

– They are oblivious, meaning that each destination

point is computed based only on the last snapshot

taken, while older snapshots are forgotten, and no

memory is retained between cycles.2

– They are deterministic, meaning that they cannot

resort to randomness in their computations. Hence,

their task has to be accomplished in all cases, as

opposed to “with high probability”.

– They are asynchronous, in the sense that we make

no assumptions on how fast each searcher completes

a Look-Compute-Move cycle compared to the oth-

ers. These parameters are dynamic and are con-

trolled by an adversarial scheduler.

– They are disoriented, which means that they have

no magnetic compasses, GPS devices, or agreements

of any kind. Each searcher has its own independent

local orientation, unit of length, and handedness.

1 The typical assumption in this model is that a searcher’s
local reference frame retains its orientation, scale, and hand-
edness after each move. We will make this assumption as well,
although it is not strictly needed by our algorithms (see the
footnote in Section 2).
2 In Section 3 we will drop this assumption in order to give

a cleaner exposition of our algorithms. In Section 4 we will re-
store the assumption and show how to extend our algorithms
to oblivious searchers.

– They are silent, in that they cannot communicate

with one another in any way. In particular, there is

no shared memory, and the information contained

in a snapshot can only be accessed by the searcher

who took that snapshot.

– They have arbitrary initial locations within P .

The polygon P is anonymous, as well. In particular,

its vertices do not carry labels, and can only be distin-

guished by their relative positions. There are no other

landmarks or objects that can help the searchers ori-

ent themselves. Our goal is to design an algorithm that

allows these searchers to solve the Meeting problem re-

gardless of their initial locations within P and regard-

less of how the adversarial scheduler decides to control

their behaviors (by slowing down some and speeding

up others). We emphasize that a searcher’s snapshot

contains the full geometry of the visible part of P , in

contrast with other models where only some geometric

information is available (e.g., only angles and no dis-

tances, as in [16]).

Applications. In real-life applications, being in line of

sight may allow robots to communicate in environments

where non-optical means of communication are unavail-

able or impractical. For instance, free-space optical com-

munication [29] is a technology that uses a laser to im-

plement a communication channel that is resilient to

jamming and radio-frequency noise.

Solving the Meeting problem is a necessary prelim-

inary step to more complex tasks, such as space cover-

age [30] or the extensively studied Gathering problem,

where all k robots have to physically reach the same

point and stop there. In the special case of k = 2 robots,

the Gathering problem is also called Rendezvous prob-

lem. Clearly, the terminating condition of the Meeting

problem is more relaxed than that of Gathering; hence,

any solution to the Gathering problem would also solve

Meeting. Unfortunately, no solution to the Gathering

problem in the setting considered here exists in the liter-

ature (see Section 1.3), and to the best of our knowledge

there are no previous results on the Meeting problem.

In fact, given our searchers’ many handicaps, and

especially their lack of memory and orientation, it is

hard to see how they could solve any non-trivial prob-

lem at all. Nonetheless, in this paper we will present the

surprising result that the Meeting problem is solvable

in almost every polygon, even for k = 2 searchers.

1.2 Our Contributions

Techniques. Since our searchers are disoriented and have

no kind of a-priori agreement, they must use the geo-
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metric features of P to implicitly agree on some “land-

marks” which can help them in their task. In order to

identify such landmarks, each searcher has to visit P

and construct a map of it. But this cannot be done

straightforwardly, because searchers are oblivious, and

they forget everything as soon as they move. To cope

with this handicap, they carefully move within P in

such a way as to implicitly encode information as their

distance from the closest vertex.

This positional encoding technique poses some ob-

vious difficulties. First, it greatly limits the freedom of

the searchers: they have to do precise movements to en-

code the correct information, and still manage to visit

all of P and update the map as they go. Second, since

searchers can be located anywhere in P when the execu-

tion starts, they could be implicitly encoding anything.

This includes misleading information, such as a false

map of P that happens to be locally coherent with the

surroundings of the searcher. Therefore, a searcher can

never rely on the information it is implicitly encoding,

but it must constantly re-visit the entire polygon to

make sure that the map it is encoding is correct.3

Hence, searchers cannot simply agree on a land-

mark and sit on it waiting for one another, because

that would prevent them from re-visiting P . This incon-

venience drastically complicates the Meeting problem,

and forces the searchers to follow relatively complicated

movement patterns that make at least two of them nec-

essarily meet.

There is also a subtle problem with the actual en-

coding of complex data as the distance from a point,

which is a single real number. One could naively pack

several real numbers into one by interleaving their dig-

its, but this encoding would not be computable by real

random-access machines [3]. Hence, we propose a more

sophisticated technique, which only requires basic arith-

metic operations. Such a technique can substitute the

naive one under the reasonable assumption that the

vertices of P be points with algebraic coordinates (as

expressed in some global coordinate system, which is

not necessarily the local one of any searcher).4

Statement of results. We prove that the Meeting prob-

lem in a polygon P can be solved by k = σ+1 searchers,

where σ is the order of the rotation group of P (which

is also called the symmetricity of P ). We also give a

matching lower bound, showing that there are poly-

3 For this reason, there is no distributed algorithm that,
for every polygon P , allows a team of memoryless searchers
to either solve the Meeting problem in P or terminate if the
problem is unsolvable in P .
4 A real number is said to be algebraic if it is a root of a

polynomial with integer coefficients [8].

gons of symmetricty σ where σ searchers cannot solve

the Meeting problem.

Then, since all our lower-bound examples are poly-

gons with a hole around the center, we wonder if the

Meeting problem can be solved by fewer searchers if

we exclude this small class of polygons (i.e., the poly-

gons with a hole around the center).5 Surprisingly, it

turns out that in all the remaining polygons only two

searchers are sufficient to solve the Meeting problem. In

particular, these include all the polygons with no holes.

Additionally, searchers can geometrically construct

their destination points with a compass and a straight-

edge, provided that the vertices of P are algebraic points.

Equivalently, searchers only have to compute combina-

tions of basic arithmetic operations and square root ex-

tractions on the coordinates of the visible vertices of P .

This is done via an encoding technique of independent

interest, which we apply to mobile robots for the first

time.

As a subroutine of our algorithms, we employ a self-

stabilizing map construction algorithm that is of inde-

pendent interest, as well.

Paper summary. In Section 2, we formally define all

the elements of the Meeting problem. In Section 3, we

consider the Meeting problem for searchers equipped

with an unlimited amount of persistent internal mem-

ory whose initial contents can be arbitrary (hence possi-

bly “incorrect”). This simplification allows us to present

“cleaner” versions of our algorithms, which are not bur-

dened by the technicalities of our positional encoding

method. In Section 4, we present our encoding tech-

nique and we show how to apply it to the Meeting

algorithms of Section 3, thus extending our results to

oblivious searchers. Finally, in Section 5 we discuss di-

rections for further research.

1.3 Related Work

Static version. If searchers are unable to move, then the

Meeting problem becomes equivalent to asking what is

the maximum number of points that can be placed in

a polygon in such a way that no two of them see each

other. This is called the hidden set problem, and has

been studied in [33], where tight bounds are given in

terms of the number of vertices of the polygon. The

situation with mobile searchers is of course radically

different.

5 Collectively, these polygons constitute a subset of mea-
sure 0 of the set of all polygons with holes.
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Gathering in the plane. The Gathering problem has

been extensively studied in several contexts [1,19]. The

literature can be divided into works considering robots

in a geometric space, and works considering agents on

a graph [1,4,11,14].

Here we focus on Gathering in geometric spaces,

since it is related to our setting. In the Look-Compute-

Move model, asynchronous oblivious robots with unlim-

ited visibility can solve the Gathering problem without

additional assumptions [7].

The case of limited visibility has been studied, as

well. Any given pattern can be formed by asynchronous

robots with agreement on a coordinate system [21].

Without such agreement, it is still possible to converge

to the same point, perhaps without ever reaching it [2].

Fault-tolerant Gathering has been investigated in [12,

15] for oblivious robots with unlimited visibility. Ren-

dezvous has been investigated also when the robots

have a constant amount of “visible memory” [22].

All the aforementioned results hold for robots that

inhabit an unbounded plane where no extraneous ob-

jects can block visibility or movement. In particular,

none of these results pertains robots in a polygon.

Rendezvous in a polygon. The work that is most rele-

vant to ours is represented by a series of papers on Ren-

dezvous and approximate Rendezvous by two robots in

polygons or more general planar enclosures [9,10,11,

13]. The authors show how to guarantee that the two

robots’ trajectories will intersect (or get arbitrary close

to each other in case of approximate rendezvous) within

finite time, in spite of a powerful adversary that controls

the speed and the movements of the robots on their tra-

jectories. However, termination happens implicitly: the

robots are not necessarily aware of each other’s pres-

ence, and Rendezvous is considered solved even if they

are both moving. Moreover, none of these papers con-

siders oblivious robots, and none of them allows the

initial memory contents of the robots to be arbitrary.

Both are simplifications of the problem, because they

allow robots to implicitly agree on a single landmark

and just move there.

In [11,13], the authors study the feasibility of ap-

proximate Rendezvous by two robots with unique ids

(i.e., non-anonymous) in any closed path-connected sub-

set of the plane. Robots have unlimited persistent mem-

ory and do not agree on a system of coordinates.

In [9], they investigate upper and lower bounds on

the movements of two robots solving the Rendezvous

problem in a polygon. The authors give a wealth of re-

sults under different assumptions, but a common hand-

edness (i.e., a common notion of clockwise direction)

and unlimited persistent memory are always assumed.

In [10], feasibility conditions for Rendezvous and

constructive algorithms are given. Here robots have a

constant amount of persistent memory (hence they are

not oblivious) and a common handedness.

Further works include [5,6], addressing the weak

rendezvous problem in a polygon, where all robots have

to attain mutual visibility at the same time. It is shown

that robots can agree on a clique in the visibility graph

of the polygon, and the weak rendezvous protocol is to

reach a vertex of the elected clique and wait. Unfor-

tunately, such an interesting technique cannot be used

in our case. Indeed, we are aiming for a self-stabilizing

meeting procedure, which implies that a searcher can-

not remain forever in a sub-portion of the polygon. This

is clear if we consider an initial memory configuration

that forces two searchers to remain in different parts

of the polygon (e.g, two disjoint cliques of the visibil-

ity graph), each searcher wrongly believing to be in

the “elected portion”. Another drawback of [5,6] is the

need for an upper bound on the number of vertices of

the polygon.

Miscellanea. Another problem for robots in polygons is

the search for an intruder, e.g., [34,35], where one robot

tries to escape while others have to locate it. This set-

ting is clearly quite different, as in the Meeting problem

we consider robots that cooperate to achieve a common

goal.

The model in which robots can obstruct each other’s

view has also been studied. Here, the goal is typically

to make all robots see each other by making sure that

no three of them are collinear [17,31,32]. As with the

literature on Gathering, none of these works considers
robots in a polygon.

Recall that a sub-routine of our Meeting algorithms

consists in drawing a map of the polygon. A related

problem is that of constructing the visibility graph of a

polygon by mobile robots: this has been addressed in [5,

6,16], where great efforts have been devoted to finding

minimal assumptions on the robots’ power that allow

them to solve the problem. In particular, in [16] the

mapping is done without any a-priori knowledge about

the polygon bound, and only using the measurements of

angles (hence without measuring distances). However,

extending this algorithm to the memory-less case is far

from trivial.

Computability issues. The issue of defining a model for

the “local” computations of mobile robots has hardly

ever been addressed in the relevant literature. It is nev-

ertheless interesting to establish what destination points

are computable by mobile robots, and what it means for

a robot to compute a point.
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To the best of our knowledge, only two papers deal

with this problem. In [7], a definition of computation is

not explicitly given, but it is said that a certain point is

not computable, in the sense that its coordinates can-

not be computed with basic arithmetic operations and

extractions of roots of any degree. In [20], computation

is explicitly defined in terms of algebraic functions, al-

though all that is actually needed is the ability to con-

struct regular polygons, as well as all points that can be

geometrically obtained with compass and straightedge.

Interestingly, solutions to geometric problems have

been proposed that involve functions whose computabil-

ity (in an intuitive sense) is unclear. An example is

in [9], where the Rendezvous point computed by one of

the algorithms is either the central vertex or the mid-

point of the central segment of the medial axis of a

polygon. Since the central segment of the medial axis

could be any parabolic arc, its midpoint is a transcen-

dental function of the polygon’s vertices. As such, it is

not constructible with compass and straightedge [24]. It

turns out that this is not a real problem for that partic-

ular algorithm, because the robots can easily agree on

an endpoint of the aforementioned parabolic arc or on

the parabola’s vertex, instead of its midpoint. Still, it

is interesting to observe that the notion of computabil-

ity emerging from [9] is more “comprehensive” than the

one of [20].

Another contribution of this paper is a formal defini-

tion of the concept of computability for mobile robots

(see the beginning of Section 4.2). Accordingly, all of

our geometric constructions can be performed with a

compass and a straightedge.

2 Definitions

Polygons. A polygon in the Euclidean plane R2 is a non-

empty, bounded, connected, and topologically closed 2-

manifold whose boundary is a finite collection of line

segments. The vertices, edges, and diagonals of a poly-

gon are defined in the standard way, as well as the

notion of adjacency between vertices. One connected

component of a polygon’s boundary, called the external

boundary, encloses all others, which are called holes.

If a polygon has an axis of symmetry, we say that

it is axially symmetric. If it has a center of symmetry,

we say that it is centrally symmetrc. The largest inte-

ger σ such that rotating a polygon around its barycen-

ter by 2π/σ radians leaves it unchanged is called the

symmetricity of the polygon.6 In other words, the sym-

6 Here and throughout the paper, we will refer to the
barycenter only because it is a well-defined point in every
polygon. However, this choice is not essential: equivalently,

metricity is the order of the rotation group of the poly-

gon. If σ > 1, the polygon is said to be rotationally

symmetric. (Most of these concepts are introduced, for

instance, in [25].)

We say that a point p ∈ P sees a point q ∈ P (or,

equivalently, that q is visible to p) if the line segment

pq lies in P . If, in addition, no vertices of P lie in the

relative interior of pq, then p fully sees q (equivalently,

q is fully visible to p), as Figure 1 illustrates.

v

u ′u

Fig. 1: v can fully see u, and it can see u′ but not fully.

Searchers. Let P be a polygon. By P -searcher we mean

an anonymous robot represented by a point in P , which,

informally, can observe its surroundings and move within

P . If a P -searcher is located in p ∈ P , we say that it

sees all the points of P that are visible to p. When P is

understood, we will omit it and simply refer to search-

ers.

The life cycle of a P -searcher consists of three phases,

which are repeated forever: Look, Compute, and Move.

In a Look phase, the P -searcher takes a “snapshot” of

the subset of P that it currently sees, along with the

locations of the P -searchers that it currently sees. The

snapshot is expressed in the local reference system of

the observing searcher, which is a Cartesian system of

coordinates with the searcher’s current location as the

origin. In a Compute phase, the searcher executes a de-

terministic algorithm whose input is the last snapshot

taken, and the output is a destination point, again ex-

pressed in the local reference system of the searcher.

In the Move phase, the searcher continuously moves

toward the destination point it just computed. Once

it gets there, it stops moving and starts a new Look

phase, and so on. A searcher’s local coordinate system

translates as the searcher moves (to keep the searcher’s

we could take the center of symmetry if the polygon has one,
or any point otherwise.
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location at the origin), but it retains its orientation,

scale, and handedness.7

When several P -searchers are present, we stipulate

that they all execute the same algorithm. Furthermore,

each searcher’s local coordinate system is independent

of the others, and has its own orientation, scale, and

handedness. Therefore, each P -searcher sees a differ-

ently scaled, rotated, translated, and possibly reflected

version of P . Searchers are also asynchronous, in the

sense that their life cycles are completely independent:

each phase of each cycle of each searcher lasts an un-

predictably long (but finite) time, which is decided by

an adversarial scheduler. Also, the speed of a searcher

during a Move phase is not necessarily constant. We

stress that P ’s vertices are “anonymous”, in the sense

that they can be distinguished only by their relative

positions, and no labels are attached to them.

Meeting. We say that two P -searchers are mutually a-

ware at some point in time if they have seen each other

during their most recent Look phases. That is, if searcher

s1 sees searcher s2 during a Look phase at time t1, s2
sees s1 during a Look phase at time t2 ≥ t1, and nei-

ther s1 nor s2 performs another Look phase in the time

interval (t1, t2), then s1 and s2 are mutually aware at

time t2 (and they remain mutually aware until s1 per-

forms a Look phase without seeing s2, or vice versa).

A very similar notion of mutual awareness has been

defined in [28].

Given a team of P -searchers, the Meeting problem

prescribes that at least two of them become mutually

aware. More precisely, the Meeting problem for k search-

ers in P is solvable if there exists an algorithm A such

that, if all k searchers execute A during all their Com-

pute phases, at least two of them eventually become

mutually aware, regardless of how the searchers are ini-

tially laid out in P , and regardless of how the scheduler

decides to control their behavior. Occasionally, we will

say that two searchers meet, as a synonym of becoming

mutually aware.

In Section 3, we are going to assume that each search-

er has an unlimited amount of persistent internal mem-

7 The fact that a searcher retains its local reference frame’s
orientation, scale, and handedness is common in most of the
related literature. However, in this work we will not strictly
need it: in our algorithms, a searcher will always move (close)
to a vertex of P . Hence, after a move, it will always be able
to correctly match its new view with the previous one. This
is possible even if its reference frame has reflected after the
move: it is sufficient to make the searcher stop close enough
to the angle bisector stemming from the destination vertex,
but not exactly on it. On the next turn, the searcher will
be able to tell its new reference frame’s handedness based
on whether it is located to the left or the right of the angle
bisector (cf. Section 4.2).

ory, which can be read and updated by the searcher

during each Compute phase, and is retained for use in

later Compute phases. The initial contents of the in-

ternal memory of each searcher are arbitrary, and pos-

sibly “incorrect”. In Section 4, we will drop the per-

sistent memory requirements, and we will extend our

algorithms to oblivious searchers, whose computations

only rely on the single snapshot taken in the most re-

cent Look phase, and whose internal memory is erased

during each Move phase.

3 Algorithms and Correctness

In this section, we set out to minimize the number of

P -searchers that can solve the Meeting problem in a

polygon P . In Section 3.1, we provide a tight bound in

terms of P ’s symmetricity, by means of a lower-bound

construction (Theorem 1) and an algorithm which, as

a bonus, is independent of P (Theorem 2). As a tool,

we use a self-stabilizing map construction algorithm.

In Section 3.2, we exclude a pathological class of poly-

gons, and we prove that in all remaining polygons the

Meeting problem can be solved by just two searchers

(which is obviously optimal), again with an algorithm

independent of the polygon (Theorem 3).

We first present our algorithms assuming that search-

ers have an unlimited amount of persistent internal

memory, which initially may contain arbitrary data.

Then, in Section 4, we will extend these algorithms to

oblivious searchers.

3.1 General Algorithm

Lower bound. First we give a lower bound on the min-

imum number of searchers required to solve the Meet-

ing problem in a polygon. Our bound is in terms of the

polygon’s symmetricity.

Theorem 1 For every integer σ > 0, there exists a

polygon with symmetricity σ in which σ (or fewer) search-

ers cannot solve the Meeting problem.

Proof If σ = 1, the statement is trivial. If σ > 1, we

construct a polygon with symmetricity σ shaped as a

σ-pointed star with one large hole almost touching the

external boundary, as shown in Figure 2. We then ar-

range σ′ ≤ σ searchers and orient their local coordinate

systems in a symmetric fashion, as in Figure 2. Now,

let the initial memory contents of all the searchers be

equal, and suppose that the scheduler always activates

them synchronously. By the rotational symmetry of our

construction, each searcher gets an identical snapshot of
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the polygon, and therefore all searchers compute sym-

metric destination points and modify their memory in

the same way. This holds true at every cycle, and so, by

induction, the searchers will always be found at σ′ sym-

metric locations throughout the execution. Note that

our polygon has the property that no two of its points

whose angular distance (with respect to the barycen-

ter) is a multiple of 2π/σ can see each other. Hence, no

matter what algorithm the searchers are executing, no

two of them will ever be mutually aware. ut

Note that the above theorem holds for searchers

with memory, and hence a fortiori it holds for obliv-

ious searchers.

Next we will prove that the bound of Theorem 1

is tight, and hence σ + 1 searchers are optimal. Our

Algorithm 1 is illustrated below. We have some persis-

tent variables and the procedure Compute, which takes

as input the current snapshot, i.e., the part of polygon

that is currently visible to the executing searcher plus

the searchers it currently sees. This algorithm assumes

that searchers have unlimited memory, and hence they

can store the entire history of the snapshots they have

taken since the beginning of the execution. In Section 4,

we will show how to drop this requirement and apply

our algorithms to oblivious searchers.

Checking for other searchers. By definition, the Meet-

ing problem is solved when two searchers become mu-

tually aware. So, in our algorithm, whenever a searcher

s1 sees another searcher s2, it stays idle for a cycle and

waits to be noticed by s2. Then, if s1 no longer sees

s2, it realizes that they are not mutually aware, and

resumes the algorithm (this may happen if s2 is in the

middle of a Move phase when it is seen by s1, and it goes

through an area that is invisible to s1 before perform-

ing its next Look phase). Otherwise, s1 and s2 become

mutually aware, and the Meeting problem is solved.

Checking for incongruities. Let P be the polygon in

which the searchers are located. Since the initial mem-

ory contents may be incorrect, if a searcher notices a

discrepancy between the current snapshot of P and the

history of snapshots stored in memory, it forgets every-

thing and restarts the execution from wherever it is.

Note that a searcher can always reconstruct all its pre-

vious movements within P by looking at the history of

snapshots and “simulating” procedure Compute on all

of them. Therefore, when the searcher “believes” to be

re-visiting some region of P , it can compare the new

snapshot with the old ones taken from the same region,

and is able to tell if something looks different. If this is

the case, it must be because its initial memory contents

were “corrupt”, and hence it overwrites everything with

the current snapshot.

Exploring the polygon. We observe that each searcher

must keep re-visiting every part of the boundary of P .

Indeed, if it stops visiting some parts of the boundary,

it can never be sure that the shape of P is actually

the one it has in memory, and it is easy then to prove

that the algorithm cannot solve the Meeting problem

(revisiting the boundary of P is what makes the map

construction subroutine self-stabilizing).

Our main algorithm is divided into two phases: EX-

PLORE and PATROL. Roughly speaking, in the EX-

PLORE phase, a searcher visits all vertices of P ; in

the PATROL phase, it moves back and forth along the

boundary of P , searching for a companion. The EX-

PLORE phase is relatively simple: as the searcher ex-

plores new vertices, it keeps track of the ones that it

has seen but not visited. Then it picks the first of such

vertices and moves to it along a shortest path. Since the

searcher may not have a complete picture of P yet, by

“shortest path” we mean a shortest path in the portion

of P that has been recorded in memory thus far.

Selecting the pivot point. For the PATROL phase, the

searcher must first choose a pivot point of P , which

is the point where the searcher changes direction as it

patrols P ’s boundary. It also has to cope with the fact

that the boundary of P may not be connected, since P

may have holes. The pivot point is chosen in a different

way depending if P is axially symmetric or not.

Let n be the number of vertices of P , and let σ

be its symmetricity. Suppose first that P is not axially

symmetric. Then, the orbit of each vertex under the ro-

tation group of P has size exactly σ, and therefore there

are n/σ different orbits (or rotation classes) of vertices.

The searcher will pick one rotation class of vertices in

a similarity-invariant way. This means that the selec-

tion algorithm should not depend on the scale, rotation,

position, and handedness of P , but it should be a de-

terministic algorithm that only looks at angles between

vertices and ratios between segment lengths.8 This is to

8 As an example, we show how to do it when P has no holes.
Extending this method to the general case is just slightly
more complicated, but the principles are the same. Pick the
(unique) circle of smallest radius that contains all the vertices
of P , and let r be its radius. Name the vertices of P v0, v1,
. . . , vn−1 in clockwise order. Pick any vertex vi, and con-
struct the right-handed coordinate system having origin in
vi, unit r, and x axis oriented like −−−−→vivi+1 (indices are always
taken modulo n). Give a representation of P in this coordi-
nate system, i.e., the ordered list of the x and y coordinates of
vi+1, . . . , vn, v1, . . . , vi−1. Then construct another represen-
tation in the same coordinate system, but taking the vertices
in the reverse order, i.e., vi−1, . . . , v1, vn, . . . , vi+1. Pick the
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Fig. 2: Constructions used in Theorem 1 for σ = 2 and σ = 5

Algorithm 1 Meeting algorithm for general polygons

Persistent variables
SnapshotList
Action
Direction
Polygon
PivotPoint

Procedure Compute (Snapshot)
if Snapshot contains no other searcher then

Append Snapshot to SnapshotList
if SnapshotList is inconsistent or (Action = PATROL and PivotPoint is not consistent with Polygon) then

SnapshotList := Snapshot
Action := EXPLORE

if Action = EXPLORE then
Polygon := Extract (partial) polygon from SnapshotList
U := Unvisited vertices of Polygon
if U 6= ∅ then

v := First vertex of U
Compute a shortest path to v within Polygon, and move to the last visible point along this path

else
Action := PATROL
Direction := CLOCKWISE
S := Set of axes of symmetry of Polygon
if S = ∅ then

C := Select a rotation class of vertices of Polygon in a similarity-invariant way
PivotPoint := Select any vertex in C

else
S′ := Select a class of equivalent axes in S in a similarity-invariant way
` := Select any axis in S′

C := Select a class of equivalent points of ` on the boundary of Polygon in a similarity-invariant way
PivotPoint := Select any point in C

Augment Polygon using PivotPoint as pivot in a similarity-invariant way to make it simply connected

if Action = PATROL then
if I am in PivotPoint then

Invert Direction
Move to the next vertex of Polygon, following its boundary in the direction stored in variable Direction

lexicographically smaller of these two representations (if they
are equal, pick any of them), and call it Ri. Repeating the
same construction with all the vi’s yields the representations
R0, R1, . . . , Rn−1: let Rm be the lexicographically smallest
among them. Now, pick all vertices vi such that Ri = Rm:
these constitute a rotation class of P chosen in a similarity-
invariant way. Indeed, no matter how we rotate, translate,
uniformly scale by a non-zero factor, or reflect P , we will
always pick the same set of vertices.

guarantee that all searchers that have a correct picture

of P in memory (expressed in their respective local co-

ordinates systems) will select the same class of vertices.

Once this rotation class has been selected, the searcher

picks any of its elements as the pivot point.

Suppose now that P is axially symmetric: hence it

has σ distinct axes of symmetry. If σ is odd, all axes

of symmetry are rotationally equivalent (i.e., for any
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two axes of symmetry, there is a rotation of the plane

that maps one into the other and leaves the polygon

unchanged); if σ is even, there are two distinct classes

of rotationally equivalent axes of symmetry, each of size

σ/2. (For instance, the pentagonal star in Figure 2 has

five equivalent axes of symmetry, while the polygon in

Figure 3 has symmetricity 4 and two pairs of equiva-

lent axes of symmetry.) The searcher will select a class

of axes of symmetry in a similarity-invariant way, and

then pick any axis ` in this class. The pivot point will

then be a point in the intersection between ` and the

boundary of P . If σ is odd, all such points are distin-

guishable, so any one of them is chosen by the searcher

in a similarity-invariant way. If σ is even, these points

come in symmetric pairs along ` (see Figure 3). In this

case, one such pair is selected in a similarity-invariant

way, and then any point in the pair is picked by the

searcher as the pivot point. Note that the pivot point

is either a vertex of P or the midpoint of an edge.

Augmenting the polygon. Once a searcher has selected a

pivot point, it adds some “artificial” edges to P in order

to make it simply connected, i.e., remove all its holes.

This may be impossible to do in a similarity-invariant

way (for instance, in the polygons of Figure 2 it is im-

possible), so the pivot point will be used to determine

how symmetries are broken. Also, we will make sure

that no such artificial edges are incident to the pivot

point.

If P is not axially symmetric, then an orientation

(i.e., clockwise or counterclockwise) can be chosen in a

similarity-invariant way. Given the pivot point and an

orientation, then breaking symmetries is trivial. In or-

der to remove a hole, we draw a diagonal of P that con-

nects two different connected components of the bound-

ary (i.e., two different holes or a hole and the external

boundary). The diagonal is selected in a determinis-

tic way, and should not be incident to the pivot point.

Cutting P along such a diagonal merges two connected

components of its boundary, reducing the number of

holes by one. This procedure is repeated until the bound-

ary is connected.

Suppose now that P is axially symmetric, and let

` be the axis of symmetry containing the pivot point.

We will augment P while keeping it symmetric with

respect to `. If a hole of P intersects `, we connect it

to a neighboring hole or to the external boundary of P

in a deterministic way, by drawing a sub-segment of `

not incident to the pivot point. If a hole H of P does

not intersect `, it must have a symmetric hole H ′ on

the other side of `. Then we draw a diagonal (again, in

a deterministic way) not intersecting ` to connect H to

another hole or to the external boundary. We also draw

the symmetric diagonal to connect H ′. Since the two

diagonals do not intersect each other (or they would

intersect `), cutting P along them does not disconnect

it. Figure 3 shows an example of how such diagonals can

be chosen in a symmetric polygon (in this example, ` is

the vertical axis).

Patrolling the polygon. In the previous paragraphs, we

described how to select a finite set of segments in P :

let D be the union of these segments. As a result of

cutting P along such segments, we obtain a degenerate

simply connected polygon P̃ = P \D. By “degenerate”

we mean that its boundary is no longer the boundary

of a topologically closed 2-manifold. However, it is pos-

sible to perform a tour of the boundary of P̃ , by walk-

ing along the external boundary of P , and then taking

a detour along a segment of D and around a hole of

P , as soon as one is found. The resulting tour can be

clockwise or counterclockwise, and traverses each edge

of P once and each segment of D twice (once in each

direction). One such tour is illustrated in Figure 3. In-

tuitively, this would correspond to slightly “thickening”

each segment of D, subtracting D from P , and walking

around the boundary of the resulting (non-degenerate)

polygon.

The PATROL phase of our algorithm consists in

taking a tour of P̃ and switching direction (from clock-

wise to counterclockwise and vice versa) every time the

pivot point is reached. So, all vertices of P are perpet-

ually visited in some fixed order, then in the opposite

order, and so on. At any time, the searcher can always

determine its next destination point based on the his-

tory of snapshots stored in memory.

Correctness of Algorithm 1. We will now prove the cor-

rectness of this algorithm.

Theorem 2 There is an algorithm that, for every in-

teger σ > 0, solves the Meeting problem with σ + 1

searchers (regardless of their initial memory contents)

in every polygon with symmetricity σ.

Proof We will show that Algorithm 1 correctly solves

the Meeting problem for σ + 1 searchers in any poly-

gon P with symmetricity σ. We have to show that, as

the searchers execute the algorithm (asynchronously),

at least two of them will eventually become mutually

aware, regardless of the initial memory contents of the

searchers and their initial locations.

Since the initial memory contents of a searcher may

be incorrect, when a searcher notices a discrepancy be-

tween the current observation and a previous observa-

tion, it erases its own memory and restarts the exe-

cution. The same happens if it realizes that the pivot



10 G. A. Di Luna et al.

ℓ pivot

Fig. 3: Augmenting an axially symmetric polygon and defining a tour of its boundary

point it has chosen does not match the polygon. From

that point onward, the searcher’s memory will only con-

tain correct information, and the execution will never

be restarted again. Hence, in the following, we will as-

sume that no such discrepancy is ever discovered, and

therefore the execution is never restarted.

The EXPLORE phase relies on the connectedness

of the visibility graph of P . Recall that the visibility

graph of P is the graph on the set of vertices of P

whose edges are the edges and diagonals of P . This

graph is connected because from any vertex to any

other vertex there is a shortest path that is a polyg-

onal chain turning only at (reflex) vertices of P . So,

as the searcher walks through the visibility graph, it

maintains a list of vertices that have been discovered

but not visited. It then walks to the first of these ver-

tices along a shortest path while updating the list, and

so on. Note that the “shortest path” may change as new

vertices are discovered. However, this can only happen

finitely many times, and eventually the target vertex is

indeed reached. So, the list of discovered but unvisited

vertices will eventually be depleted. By the connected-

ness of the visibility graph, this happens if and only if

all vertices have been visited. This means that eventu-

ally the searcher will have a complete representation P ′

of the polygon P . Recall that P and P ′ may not be the

same polygon, because the searcher may have an arbi-

trary list of snapshots initially in memory, which may

be coherent with the current snapshot.

Now that the searcher has a representation P ′ of P ,

it makes its boundary connected by choosing a pivot

point and adding some extra segments, and then starts

the PATROL phase. Observe that the pivot point and

the extra segments remain fixed as the searcher moves,

since they have been stored in the persistent memory.

In the PATROL phase, the searcher will repeatedly at-

tempt to visit every vertex of P ′. So, if P 6= P ′, the

searcher will eventually find out: if some vertices of P ′

are not vertices of P or if P has some extra vertices, the

searcher is bound to see the discrepancy, again due to

the connectedness of the visibility graph. But this con-

tradicts our assumptions, hence we may as well assume

that P = P ′.

We can therefore assume without loss of general-

ity that, at some point, all searchers are in the PA-

TROL phase, they all have a correct representation of

P in memory, and they have correctly computed a pivot

point and correctly augmented P to make it simply con-

nected. Suppose that P is not axially symmetric. Since

the rotation class of vertices to which the pivot point

belongs is chosen in a similarity-invariant way by all

searchers, they all have picked the same class. Hence

there are only σ possible choices for the pivot point,

and two searchers must have picked the same, by the pi-

geonhole principle. Suppose now that P is axially sym-

metric, and hence it has σ axes of symmetry. If σ is

odd, two searchers must have picked the same axis of

symmetry, say `. These two searchers have then identi-

fied a pivot point on ` in a similarity-invariant way, and

therefore they have picked the same point. If σ is even,

there are two classes of equivalent axes, each of size σ/2.

All searchers have picked an axis from the same class,

and hence three searchers must have picked the same

axis, say `, by the pigeonhole principle. Then, each of

these three searchers has chosen one of two equivalent

points of `, and therefore two searchers have chosen the

same point.

In any case, there are two searchers s1 and s2 that

have the same pivot point. These two searchers will also

compute the same augmented polygon P̃ , because this

is done in a similarity-invariant way (even if P is ax-

ially symmetric and s1 and s2 do not have the same

notion of clockwise direction). So, both searchers will

perform a clockwise tour of the boundary of P̃ , touch-
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ing all of its vertices is some fixed order, followed by a

counterclockwise tour, touching all vertices in the op-

posite order, and so on. Since they both turn around

at the same pivot point, they do the same tour. As a

consequence, by the time one of them has completed a

full tour, they will have to traverse the same edge e of

P̃ in opposite directions at the same time. So, they will

become mutually aware when reaching the endpoints of

e, solving the Meeting problem. (As a special case, they

may reach the same vertex of P̃ at the same time, and

then they immediately become mutually aware.)

There is one last detail to consider. Recall that a

searcher s1 remains idle for a cycle whenever it sees an-

other searcher s2, even if s2 is not going to notice s1.

This may happen, for instance, if s2 is traveling between

two points that cannot see s1’s location. If this situa-

tion keeps repeating every time s1 takes a snapshot,

then s1 is stuck forever, unable to explore or patrol the

polygon, and perhaps unable to ever become mutually

visible with any other searcher. However, not all search-

ers can remain stuck in the aforementioned way with-

out at least two of them being mutually aware. Hence,

even if s1 is stuck forever and the Meeting problem is

not solved yet, at least one searcher necessarily makes

steady progress in the algorithm, becoming mutually

aware with s1 by the time it completes a full tour of

the polygon. ut

We emphasize that, if a searcher were tasked to con-

struct a map of P , it could do so by simply executing

the above algorithm indefinitely (i.e., ignoring the pres-

ence of other searchers). Since the algorithm eventually

discovers and corrects any possible inconsistency in the

initial memory state of the searcher, it is self-stabilizing.

The importance of exploring holes. The reader may won-

der why we chose to include the holes as part of the

tour of the boundary of P that the searchers perform

in the PATROL phase. Indeed, the searchers could eas-

ily identify the external boundary of P (by computing

the sign of its total curvature), so it would be tempt-

ing to let them patrol only that part of the bound-

ary, ignoring the holes. This, however, may not work if

the initial memory contents of the searchers are incor-

rect. Say P is not rotationally symmetric, but suppose

that it looks rotationally symmetric from the external

boundary. This may be because it has a small irregular

central hole that is hidden from the external bound-

ary by other holes, while everything else is rotationally

symmetric, as in Figure 4. Since P is not rotationally

symmetric, two P -searchers should be able to select the

same pivot point, and hence meet as they patrol the ex-

ternal boundary. However, their internal representation

of P may be incorrect, and show a polygon P ′ that is ro-

tationally symmetric and coincides with P as seen from

the external boundary. So, the searchers may actually

choose different pivot points and never notice any dis-

crepancy between P and P ′ as they patrol the external

boundary. But then, they may fail to meet if they oc-

cupy symmetric locations and the scheduler keeps acti-

vating them synchronously, as explained in Theorem 1.

x
y

x
y

Fig. 4: The polygon has symmetricity 1, but its sym-

metricity looks 2 if it is observed from the external

boundary. The searchers cannot meet if they do not

explore the holes.

3.2 Improved Algorithm for Polygons with Barycenter

not in a Hole

Recall that the worst-case examples given in Theorem 1

are polygons with a hole around the barycenter. It is

natural to wonder if the Meeting problem can be solved

with fewer searchers if we exclude this special type of

polygons. It turns out that in all other cases Algo-

rithm 1 can be drastically improved: only two searchers

are needed whenever the polygon’s barycenter is not

in a hole. Notably, this includes all polygons with no

holes.

Counterexample. Observe that simply making the search-

ers patrol the boundary of the polygon as in the pre-

vious algorithm may not solve the Meeting problem,

even if the polygon has no holes. For instance, assume

that the polygon has symmetricity 4 and has a cen-

tral region with four equal branches, shaped in such a

way that a searcher that is far enough inside a branch

cannot see any of the central region, as in Figure 5.

Suppose that two searchers are patrolling this poly-

gon, and they have different pivot points. Then, the

scheduler can always keep them in different branches of

the polygon and make them move symmetrically within

their respective branches (recall that they are executing

the same deterministic algorithm). When they have to
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move to the next branch, the scheduler will make one

searcher quickly move to the central region and into the

new branch while the other searcher remains hidden in-

side its own branch. Then the scheduler will make the

second searcher move through the central region while

the first one is hidden. This way, the searchers will never

meet.

Our improved Meeting algorithm is given below as

Algorithm 2. It begins by testing for the presence of an-

other searcher, followed by some consistency tests, and

an EXPLORE phase, which are essentially the same as

in the previous algorithm. It then proceeds with a PA-

TROL phase, which is more complex than the old one.

Note that Algorithm 1 already solves the Meeting prob-

lem with two searchers if the polygon is not rotationally

symmetric (i.e., for σ = 1). So, in this special case, our

improved algorithm works exactly as the previous one.

In the following, we will therefore assume that the poly-

gon is rotationally symmetric, and we will discuss only

the new PATROL phase.

Selecting the pivot vertex. Let P be the polygon in

which the two searchers operate. Upon ending the EX-

PLORE phase, a searcher does some pre-processing on

the polygon. First it picks a pivot vertex of P . To do so,

it selects a similarity class of vertices C that are clos-

est to the center of the polygon in a similarity-invariant

way. A similarity class is a set of vertices that are equiv-

alent up to similarity. This means that both searchers

will select the same class of vertices C (assuming they

have a correct picture of P in memory). If the sym-

metricity of P is σ, then C has size either σ or 2σ:

indeed, the points of C must be either the vertices of a

regular σ-gon or of two rotated copies of a regular σ-

gon. Each searcher then arbitrarily picks a pivot vertex

in this class and stores it in its persistent memory.

Augmenting the polygon. The next step is to augment

P with some extra edges. Note that the vertices of C

(as defined in the previous paragraph) form an equian-

gular polygon Q around the center of P (a polygon is

equiangular if all its internal angles are equal). In par-

ticular, Q is convex. Since the center of P is not in a

hole, Q is completely contained in P , i.e., it intersects

the boundary of P only at the vertices. We call each

of the connected components of P \ Q a branch of P .

For each axis of symmetry ` of a branch that is also an

axis of symmetry of P , we cut the branch along `. This

operation may merge different connected components

of the boundary of P , reducing the number of its holes.

However, it is easy to see that it cannot disconnect P ,

because we cut only along axes of symmetry, and we

leave the central area Q uncut.

If some holes are remaining in the branches, we re-

solve them by further cutting P \ Q along some seg-

ments, chosen in a similarity-invariant way, whose end-

points are collinear with the center of P . We do so with-

out disconnecting any branch. Note that, since these

segments are “radial”, they cannot intersect each other

or the axes of P .

The resulting degenerate polygon P̃ has simply con-

nected interior and has the same axes of symmetry and

the same symmetricity as P . Moreover, any searcher

performing the above operations on P obtains the same

P̃ , because everything is computed in a similarity-invar-

iant way.

Triangulating the branches. Each connected component

of P̃ \ Q is called a sub-branch of P . So, each branch

either coincides with a sub-branch or is divided by an

axis of symmetry of P into two twin sub-branches. As

a final pre-processing step, each sub-branch of P is tri-

angulated in a similarity-invariant way. This means, in

particular, that twin sub-branches are triangulated in

symmetric ways. The central polygon Q is not triangu-

lated.

The dual graph of the triangulation of each sub-

branch is a tree. If we add a root node corresponding

to Q and we attach all these trees to it, we obtain a

rooted tree that is the dual of the entire partition of P̃ .

We denote the height of this rooted tree by m.

Figure 6 shows the result of the above operations on

an axially symmetric and centrally symmetric. polygon

with holes. In this example, the symmetricity is 4, the

branches are four, the sub-branches are eight, and m =

8.

Patrolling the polygon. Once P has been augmented

and its sub-branches have been triangulated, the PA-

TROL phase starts. This phase has a “primitive” op-

eration called j-tour, where j is an integer between 0

and m. Let Pj be the union of Q and the triangles

of the triangulation whose corresponding nodes of the

dual graph have depth at most j (with respect to the

root corresponding to Q). So, for instance, P0 = Q and

Pm = P . A j-tour is a tour of the boundary of Pj ,

starting and ending at the pivot vertex, following the

edges of P̃ . For example, a 0-tour is simply a tour of

the boundary of Q, an m-tour is a tour of the bound-

ary of P̃ (much like the tours of Algorithm 1), and Fig-

ure 6 shows a 3-tour and a 6-tour. Obviously, a searcher

can perform a j-tour in two different directions: clock-

wise or counterclockwise. In the following, when we say

“clockwise” and “counterclockwise”, we mean it in the

local reference system of the searcher executing the al-

gorithm.
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Fig. 5: If two searchers patrol the boundary with different pivot points, they may never meet.

Fig. 6: Augmented and triangulated axially symmetric polygon with a 3-tour and a 6-tour. Solid thick segments

represent the cuts that are made to augment the polygon.

The PATROL phase consists of several stages, and

in each stage the searcher performs a j-tour, for some

j. The j-tours are performed according to the follow-

ing list, which is repeated until the Meeting problem is

solved:

– a clockwise 0-tour,

– a clockwise 1-tour,

– a clockwise 2-tour,

– . . .

– a clockwise (m− 1)-tour,

– a sufficiently large number of counterclockwise m-

tours (twice the square of the total number of tri-

angles in the triangulations of all the sub-branches

of P is abundantly enough),

– a counterclockwise (m− 1)-tour,

– a counterclockwise (m− 2)-tour,

– . . .

– a counterclockwise 1-tour.

The first m stages, where the searcher performs clock-

wise j-tours, are called ascending stages. All the other

stages are called descending stages. Moreover, the first

stage is called the central stage, and the stages in which

an m-tour is performed are called perimeter stages. So,

the central stage is an ascending stage, and the perime-

ter stages are descending stages.

Recall that two different searchers executing the al-

gorithm may not have the same notion of clockwise

direction, and therefore in their respective ascending

stages they may actually perform tours in opposite di-

rections. If two searchers have the same notion of clock-

wise direction, they are said to be concordant ; other-

wise, they are discordant.

Correctness of Algorithm 2. We can now proceed with

the proof of correctness of this algorithm.

Remark 1 Similar to the algorithm of Section 3.1, this

one also makes a searcher stop when it sees the other

searcher. However, this cannot cause one of them to

remain stopped indefinitely without being seen by the
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Algorithm 2 Improved Meeting algorithm for polygons with barycenter not in a hole

Persistent variables
SnapshotList
Action
Stage
Polygon
PivotVertex
PolygonTriangles
PolygonLevels

Procedure Compute (Snapshot)
if Snapshot contains no other searcher then

Append Snapshot to SnapshotList
if Persistent variables are inconsistent then

SnapshotList := Snapshot
Action := EXPLORE

if Action = EXPLORE then
Polygon := Extract (partial) polygon from SnapshotList
U := Unvisited vertices of Polygon
if U 6= ∅ then

v := First vertex of U
Compute a shortest path to v within Polygon, and move to the last visible point along this path

else
Action := PATROL
Stage := −1
if Polygon is rotationally symmetric then

C := Select a similarity class of vertices of Polygon closest to the center in a similarity-invariant way
PivotVertex := Select any vertex in C
Augment Polygon in a similarity-invariant way to make it simply connected
Triangulate each branch of augmented Polygon in a similarity-invariant way
PolygonTriangles := Total number of triangles in the triangulation of augmented Polygon
PolygonLevels := Height of the dual tree of the triangulation of each branch of augmented Polygon

else
PivotVertex := Select a vertex of Polygon in a similarity-invariant way

if Action = PATROL then
if Polygon is rotationally symmetric then

if I am in PivotVertex then
Stage := Stage + 1
if Stage ≥ 2 · PolygonLevels + 2 · PolygonTriangles2 then

Stage := 0

if Stage = −1 then
Move to the next vertex in a shortest path to PivotVertex

else if Stage < PolygonLevels then
j := Stage
Move to the next vertex of a clockwise j-tour of Polygon

else
j := 2 · PolygonLevels + 2 · PolygonTriangles2 − Stage
if j > PolygonLevels then

j := PolygonLevels

Move to the next vertex of a counterclockwise j-tour of Polygon

else
if I am in PivotVertex then

Stage := Stage + 1

if Stage is odd then
Move to the next vertex of Polygon, following its boundary in the clockwise direction

else
Move to the next vertex of Polygon, following its boundary in the counterclockwise direction

other searcher, as already explained in the last para-

graph of the proof of Theorem 2. Therefore, for brevity,

in the following proofs we will omit to mention this as-

pect.

Lemma 1 Let two P -searchers be executing Algorithm 2,

let both be in the PATROL phase, and let both have

a correct representation of the polygon P in memory,

which is rotationally symmetric. Then, the searchers

will either become mutually aware or be in a perime-

ter stage at the same time.

Proof Assume that the searchers never become mutu-

ally aware. Then, at some point in time, a searcher s1
must start a full series of perimeter stages. If, at this

point, the other searcher s2 is also in a perimeter stage,

there is nothing to prove. So, let us assume that s2 is not

in a perimeter stage. Now, s1 will perform a full series

of perimeter stages, repeatedly following the boundary

of P̃ , and touching the central polygon Q and every

triangle of the triangulation at each stage. This means

that, in the time s1 performs one complete perimeter

stage, s2 cannot remain in the same triangle of the par-
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tition (or on its boundary), because otherwise it cer-

tainly meets s1.

Let t be the total number of triangles in the trian-

gulation of the sub-branches of P , and let Tj be the set

of such triangles that are in Pj . Recall that a j-tour,

for j > 0, is a tour of the perimeter of Pj . Note that

each triangle of Tj has either one edge or two consecu-

tive edges on the boundary of Pj . It follows that, as s2
performs a j-tour, it moves from one triangle of Tj to

another at most |Tj | ≤ t times. For j = 0, the same is

trivially true: s2 touches at most t triangles in a 0-tour.

So, every time s1 performs t perimeter stages, s2
must complete at least one stage. The number of non-

perimeter stages is 2m− 1 ≤ 2t− 1, which means that

after at most 2t2 − t perimeter stages of s1, also s2
must start a perimeter stage. When this happens, s1
still has some perimeter stages to perform, because they

are 2t2 in total. Hence, both s1 and s2 will be found in

a perimeter stage at the same time. ut

Corollary 1 Let two discordant P -searchers be execut-

ing Algorithm 2, let both be in the PATROL phase,

and let both have a correct representation of the poly-

gon P in memory, which is rotationally symmetric. The

searchers will eventually become mutually aware.

Proof Suppose for a contradiction that the two search-

ers s1 and s2 never become mutually aware. Follow-

ing the proof of Lemma 1, we argue that s1 still has

some perimeter stages to perform when s2 is finally

forced to start its first one. So, they will both do at

least one complete m-tour in opposite directions (be-

cause they are discordant), thus necessarily crossing

each other and becoming mutually aware. Note that our
proof goes through even if s2 is performing a perimeter

stage when s1 begins the first one. Indeed, s2 must move

on to a non-perimeter stage before s1 completes its first

perimeter stage, or else they would meet. From now on

the proof is the same as in Lemma 1, with the only

difference that s1 has at most one less perimeter stage

to perform, which is irrelevant (we chose the number of

perimeter stages to be much higher than needed). ut

Lemma 2 Let two concordant P -searchers be execut-

ing Algorithm 2, let both be in the PATROL phase,

and let both have a correct representation of the poly-

gon P in memory, which is rotationally symmetric. If

one searcher begins a j-tour in an ascending stage while

the other searcher is performing a (j + 1)-tour in a de-

scending stage, with 0 ≤ j < m, they eventually become

mutually aware. Similarly, if one searcher begins a j-

tour in a descending stage while the other searcher is

performing a (j − 1)-tour in an ascending stage, with

0 < j < m, they eventually become mutually aware.

Proof We will only discuss the case in which searcher s1
is starting a j-tour in an ascending stage while searcher

s2 is performing a (j+1)-tour in a descending stage. The

other case is symmetric and the proof is essentially the

same (it is actually simpler, because it does not involve

a j = 0 or a j = m case). We are going to show that, by

the time s1 has finished the current stage, it becomes

mutually aware with s2. Note that, since the search-

ers are concordant, their notion of clockwise direction

is the same, and we may assume that this notion also

agrees with the “global” one. So, the searchers are trav-

eling in opposite directions: s1 is ascending (hence going

clockwise) and s2 is descending (hence going counter-

clockwise).

Because s1 has just started a j-tour, it will perform

a complete clockwise tour of the boundary of Pj , while

s2 is somewhere in the middle of a counterclockwise

tour of the boundary of Pj+1 and will then proceed

with a tour of Pj , as well (because s2 is descending).

The set difference between Pj+1 and Pj is a collection

of triangles T of the triangulation of the sub-branches

of P . Each triangle in T has an edge in common with

Pj . So, as s1 travels around Pj , it also gets to see all

of T , including all the locations in which s2 could be

as it performs the (j + 1)-tour. Therefore, if s1 finishes

the j-tour before s2 has completed the (j + 1)-tour (or

at the same time), they must become mutually aware.

This happens in particular if s1 reaches the pivot vertex

of s2 before s2 does (or at the same time).

Suppose now that s1 reaches the pivot vertex of s2
strictly after s2. So, when s2 reaches its pivot vertex,

it finishes its (j + 1)-tour and starts a j-tour, while s1
is still performing its j-tour. If j = 0, both searchers

are on the boundary of the central polygon Q, and so

they become mutually aware. If j > 0, this is again a

descending stage for s2, and so the j-tour it performs is

counterclockwise. Observe that s1 cannot terminate the

current stage before reaching the pivot vertex of s2. But

since now both searchers are walking on the boundary

of Pj in opposite directions, they are bound to bump

into each other and become mutually aware. ut

Remark 2 Lemma 2 also holds when both searchers

start a j-tour in opposite directions at the same time,

because this can be considered the very end of the sec-

ond searcher’s previous (j + 1)-tour (or (j − 1)-tour).

Theorem 3 There is an algorithm that solves the Meet-

ing problem with two searchers (regardless of their ini-

tial memory contents) in every polygon whose barycen-

ter does not lie in a hole.

Proof We will show that Algorithm 2 correctly solves

the Meeting problem for two searchers in any polygon
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P whose barycenter does not lie in a hole. The proof of

correctness is the same as that of Theorem 2, except for

the PATROL phase. Also, as a searcher still visits every

vertex of the polygon during the PATROL phase, it still

eventually finds out if its memory is inconsistent with

P , and in that case it restarts the execution. This can

happen only once, because afterwards its memory con-

tents are going to be always correct. So, in the follow-

ing, we will assume that both searchers already have a

correct picture of P in memory, and are both in the PA-

TROL phase. Moreover, since the new algorithm works

in the same way as the old one if P is not rotationally

symmetric (and the proof of correctness is the same as

in Theorem 2), we will assume that P is rotationally

symmetric.

If the two searchers are discordant, they must be-

come mutually aware, due to Corollary 1. Let us then

assume that they are concordant, and that they never

become mutually aware. Therefore, by Lemma 1, they

are eventually found in a perimeter stage at the same

time. Then, they will perform all the remaining de-

scending stages, followed by the ascending stages, start-

ing with the central stage. If they start the central stage

at the same time, they necessarily become mutually

aware, because they are on the boundary of the central

polygon Q, which is convex and empty. So, one searcher

must begin the central stage while the other is still in

a descending stage. Then, as one searcher ascends and

the other descends, the hypotheses of Lemma 2 are go-

ing to be satisfied (also due to Remark 2), which means

that the searchers eventually become mutually aware.

ut

Polygons with even symmetricity. Observe that, if a

polygon P is centrally symmetric and its center lies in

a hole, then two P -searchers placed in symmetric loca-

tions and activated synchronously will never see each

other (regardless of the shape of the hole). Therefore,

Theorem 3 yields a characterization of the polygons of

even symmetricity in which the Meeting problem can

be solved with two searchers.

Corollary 2 If P has even symmetricity, then the Meet-

ing problem for two P -searchers is solvable if and only

if the barycenter of P does not lie in a hole. ut

4 Memoryless Implementations

The Meeting algorithms given in the previous section

assumed that the searchers were able to memorize the

entire history of the snapshots they had taken since the

beginning of the execution. With a little extra effort, we

could have made a more efficient use of memory, and

we could have designed equivalent algorithms that used

only a number of variables that is linear in the number

of vertices of the polygon.

In this section, we are going to do much better:

we will show that we can re-implement our algorithms

without using any persistent memory at all. So, our

searchers will be oblivious, in the sense that the des-

tination point computed in each Compute phase will

depend only on the snapshot taken in the most recent

Look phase, while all previous snapshots and computa-

tions are forgotten.

We achieve this in two steps: in Section 4.1, we will

discuss two ways of encoding all the permanent vari-

ables as a single real number; in Section 4.2, we will

show how to apply these encoding techniques to our

algorithms.

4.1 Encoding Persistent Variables

As a first step, we want to be able to encode all the

persistent variables used in our algorithms as a single

real number. We will briefly discuss a naive approach,

which works for every polygon but yields a code that

is not computable on a real random-access machine.

Then, we will present an improved code that can be

computed with basic arithmetic operations but requires

the vertices of the polygon to be algebraic points.

Representing snapshots. We have used several types of

persistent variables in Algorithms 1 and 2, such as in-

tegers, reals, and snapshots. However, since the algo-

rithms are deterministic, only the snapshots are really

necessary. If a searcher remembers the history of the

snapshots taken during the execution, it can reconstruct

at any time all its past computations, including the

history of all the modifications to the other persistent

variables (recall that the values of these variables are

fixed after each memory “reset”, when a searcher erases

its own memory and restarts the execution). So, since

the non-snapshot variables are redundant, we will focus

on representing snapshots. Up to this point, we have

treated snapshots as primitive data types that could

somehow be processed by searchers, but now we have

to define them exactly in terms of more elementary vari-

ables.

Recall that a snapshot is a representation of the vis-

ible portion of the polygon plus a list of visible search-

ers. The visible searchers are not very important in our

Meeting algorithms, and do not even have to be stored

in the persistent memory of the observing searcher.

Their exact locations are irrelevant, as well. In fact,

we may assume that each snapshot that a searcher gets
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as input simply contains a flag indicating the presence

or absence of other searchers in the visible area.

The part of snapshot representing the visible por-

tion of the polygon demands more attention: it encodes

a sub-polygon of P expressed in the coordinate sys-

tem of the observing P -searcher. This region is fully

described by the portion of P ’s boundary that is seen

by the searcher, which in turn is a union of line seg-

ments, each of which is a sub-segment of an edge of P .

So, we can stipulate that a snapshot takes the form of

a finite array of real numbers, say

(x1, y1, x
′
1, y
′
1, x2, y2, x

′
2, y
′
2, . . . ),

where (xi, yi) and (x′i, y
′
i) are the endpoints of the ith

segment of the portion of P ’s boundary that is visible

to the searcher (note that none of these points is neces-

sarily a vertex of P ). Snapshots are received as input by

the searcher in this form (plus the visible searchers flag

defined in the previous paragraph), and they are also

represented by the searcher in this form when they are

stored in memory (without the visible searchers flag).

It is easy then for the searcher to manipulate this

data type in its computations. For instance, it can read-

ily merge different snapshots and eventually construct

a full representation of P as a list of its edges.

General idea. As an oblivious P -searcher has no persis-

tent memory and can only see its current surroundings,

the only way it can implicitly memorize information

is by carefully positioning itself within P . Specifically,

suppose that, among the vertices of P that are visible

to the searcher, there is a unique vertex v that is clos-

est to it, and let d be their distance in the searcher’s

coordinate system (recall that different searchers may

have difference units of distance). Then, we say that the

searcher encodes the number d, and its virtual vertex is

v. Note that, since v is the closest visible vertex, it is

also fully visible to the searcher (cf. Figure 1), which

is therefore always able to identify it as a vertex of P

by examining a snapshot taken from its current loca-

tion, even if the snapshot is represented as we explained

above (hence not explicitly marking the vertices of P ).

Once the searcher has identified v, then it can easily

retrieve d.

So, a P -searcher can encode a range of non-negative

real numbers that depends on its unit of distance and

the shape of P . Also, not all virtual vertices allow to

encode the same set of values. However, if d can be

encoded under some virtual vertex v, then any value in

the range [0, d] can be encoded, by letting the searcher

approach v by a suitable amount.

Since this method only allows a searcher to encode

one number at a time, our goal is to “pack” a whole list

of snapshots into a single non-negative real number. We

would also like to define our packing in such a way that

the numbers d and d/2 have the same meaning, for ev-

ery d ≥ 0. This is to make sure that everything that can

be packed into a number (which may be very large) can

actually be encoded by any searcher under any virtual

vertex, regardless of the searcher’s unit of distance. This

“scalability” property also gives a searcher the ability

to get arbitrarily close to its virtual vertex without los-

ing information, by repeatedly moving halfway towards

it (note that the virtual vertex is still the closest visible

vertex after this move).

Naive code. To pack our data into a single real number,

we use the number’s binary digits. Let us restrict our

attention to the real numbers in the interval [0, 1). Each

of these numbers is identified by the fractional part of

its binary representation, which is an infinite sequence

of binary digits. Moreover, if we forbid binary represen-

tations ending with an infinite sequence of digits 1, the

binary representation of any real number is unique.

It is straightforward to pack a finite sequence of real

numbers (a1, a2, . . . , an) into a real number in [0, 1).

We first express each ai as a sign bit si, which is 0

if ai ≥ 0 and 1 otherwise, an infinite binary mantissa(
b
(i)
1 , b

(i)
2 , . . .

)
, and a non-negative binary exponent ei,

such that

ai = (−1)si ·
∞∑
j=1

b
(i)
j · 2

ei−j .

Then we express each exponent ei, which is a non-

negative integer, as the infinite sequence of binary digits(
e
(i)
1 , e

(i)
2 , . . .

)
, such that

ei =

∞∑
j=1

e
(i)
j · 2

j−1.

Hence we have n sign bits to pack, plus 2n infinite

binary sequences. We also want to fulfill the scalability

requirement of our code, and so we add a scale λ, which

is a non-negative integer. Our final result is the real

number whose binary representation is

0.0λ1n0s1s2 . . . snb
(1)
1 e

(1)
1 b

(2)
1 e

(2)
1 . . .

. . . b
(n)
1 e

(n)
1 b

(1)
2 e

(1)
2 b

(2)
2 e

(2)
2 . . . b

(n)
2 e

(n)
2 . . . .

By 0λ we mean a sequence of λ digits 0, and by 1n

we mean a sequence of n digits 1. It is clear that the

original sequence (a1, a2, . . . , an) can be reconstructed

from this number, and that the number can be made

arbitrarily small by increasing λ.
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Since we know how to represent a snapshot by a fi-

nite array of coordinates, we can also pack it into a sin-

gle real number. Then, to pack an array of m snapshots,

we can simply pack each snapshot separately, and then

pack the resulting m numbers into a single number.

Real random-access machines. Let us see how our naive

encoding (and decoding) strategy could possibly be com-

puted, and what it means to compute a real number.

Of course, a traditional Turing machine with n tapes

containing the binary representation of every ai could

compute any digit of the naive code in finite time. How-

ever, computing all of its digits requires an infinitely

long computation.

To overcome this limitation of Turing machines, some

models of computation that operate directly on real

numbers have been introduced. These include the Blum-

Shub-Smale machine [3], which is a random-access ma-

chine whose registers can store arbitrary real numbers.

Its computational primitives are the four basic arith-

metic operations on real numbers, and it can test (and

branch) if a real number is positive. Each of these op-

erations takes one unit of time.

Depending on the application, it is also customary

to extend the basic model with additional primitives,

such as root extractions, trigonometric functions, etc.

Of course, the extra primitives that we include should

be somewhat well-behaved and intuitively computable,

or else we would defeat the purpose of using these ma-

chines as models of computation. For instance, it would

be reasonable to require at the very least that our unary

primitives be real functions of a real variable whose set

of discontinuities is nowhere dense. This would admit

all the algebraic functions, the trigonometric functions,
the exponential functions, the logarithms, and many

more.

Non-computability of the naive code. As it turns out,

our naive encoding method is not implementable on an

extended Blum-Shub-Smale machine. Let us consider

the simple case in which we want to pack the two num-

bers a = 0.b1b2 . . . and a′ = 0.b′1b
′
2 . . . into the num-

ber f(a, a′) = 0.110b1b
′
1b2b

′
2 . . . . Being able to compute

f(a, a′) for every a and a′ is equivalent to having a prim-

itive operator g(x) that interleaves the binary digits of

x with 0’s (assuming that 0 ≤ x < 1). Indeed, g(x) =

8 · f(x, 0)− 6 and f(a, a′) = g(a)/8 + g(a′)/16 + 3/4.

Assume that x 6= 0 has a finite binary representa-

tion, i.e., x = 0.b1b2 . . . bm, with bm = 1. Then, g(x) =

0.b10b20 . . . 0bm. Now, let xi = x − 2−m−i. Clearly,

limi→∞ xi = x. We have xi = 0.b1b2 . . . bm−101i, and

hence g(xi) = 0.b10b20 . . . 0bm−100(01)i. So,

lim
i→∞

g(xi) = 0.b10b20 . . . 0bm−10001 6= g(x).

Therefore, he have

g
(

lim
i→∞

xi

)
= g(x) 6= lim

i→∞
g(xi),

which means that g is not continuous at x. Recall that

x was a generic number with a finite binary represen-

tation. Hence, g is discontinuous on the set of rationals

of the form m/2n, with 0 < m < 2n, which is dense in

(0, 1). So, according to our discussion on computability,

g is not a reasonable primitive for an extended Blum-

Shub-Smale machine. It is not hard to generalize our

argument to the naive encoding of more than two num-

bers, as well as the decoding functions.

Polygons with algebraic vertices. We now propose a more

sophisticated encoding strategy, which is computable

even on a basic Blum-Shub-Smale machine (i.e., the

one with the four basic arithmetic operations only). A

small drawback is that we can only apply this method if

the vertices of the polygon P have algebraic coordinates

(i.e., they are algebraic points) in some global coordi-

nate system. (Recall that a real number is algebraic if it

is a root of a polynomial with integer coefficients.) Note

that we do not require that the searchers’ positions be

algebraic points at any time during the execution. Their

local units of distance do not have to be algebraic, ei-

ther. As a consequence, even under our assumptions,

the snapshots of P that the searchers get do not neces-

sarily have vertices with algebraic coordinates.

In practice, we are not imposing a big limitation on

our inputs, in that basically all the polygons we can

reasonably think of fall into this class. Indeed, the al-

gebraic numbers include the rationals and are closed

under basic arithmetic operations and extractions of
roots of any degree [8]. Moreover, a simple consequence

of de Moivre’s formula is that the sines and cosines of

all the rational multiples of π are algebraic [27]. Hence,

the vertices of all the regular polygons inscribed in the

unit circle and having a vertex in (1, 0) are algebraic

points. So, for instance, we could construct the vertex

set of our polygon P by putting together copies of these

“unit polygons”, rotated by rational multiples of π and

scaled by rational factors. This simple scheme already

yields a very rich class of polygons of all symmetricities.

Representing algebraic reals. The reason why we insist

on working with algebraic numbers is that they have

concise representations that can be manipulated effi-

ciently. To understand our technique, it is worth consid-

ering the rational numbers first. The polygons with ra-

tional vertices do not constitute a very interesting class,

because their symmetricity can only be 1, 2, or 4 (in-

deed, this is equivalent to the fact that, for n /∈ {1, 2, 4},
there are no regular n-gons in the plane whose vertices
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have integer coordinates, which in turn can be proved

by standard algebraic methods [26]). Nonetheless, dis-

cussing rational numbers allows us to expose some of

the key ideas of our encoding method without getting

involved with technicalities. Let p/q be a rational num-

ber, with q > 0. We can describe it by three non-

negative integers: a sign bit for p, the absolute value

|p|, and q. We represent each non-negative integer n as

the bit string 0n1, and then we simply concatenate the

representations of all three numbers as the fractional

part of a real number expressed in binary. For instance,

the rational 5/3 becomes 0.10000010001 (because the

sign bit of 5 is 0), and −5/3 becomes 0.010000010001

(because the sign bit of −5 is 1).

The advantage of this code over the standard binary

representation is that this one is always finite. We can

then retrieve the most significant bit b1 of this represen-

tation by multiplying the number by 2 and testing if the

result is less than 1. We then subtract b1 from the result

and we repeat the same process to retrieve b2, etc. We

know that all the remaining bits are 0 when the number

itself becomes 0. With a similar technique we can mod-

ify any bit of the code, and therefore we can transform

the entire code by any Turing-computable function. In

particular, given the representations of two rationals

p/q and p′/q′, we can do basic computations on them

without ever reconstructing the actual numbers. For in-

stance, once we have the two pairs of integers (p, q) and

(p′, q′), we can compute the sum p/q+ p′/q′ as the pair

of integers (pq′+p′q, qq′), without actually constructing

the real number p/q or the real number p′/q′. Note that

the low-level bit manipulations that we do to achieve

this are computable by a basic Blum-Shub-Smale ma-

chine.

Representing generic algebraic numbers is done in

a similar way, although the procedure is complicated

by some technical issues. Since the algebraic number

α is a root of the polynomial with integer coefficients

Q(x) = anx
n + an−1x

n−1 + · · ·+ a1x+ a0, we could at-

tempt to represent it as the array of the coefficients of

Q, i.e., (an, an−1, . . . , a0). We may also assume that Q

is the minimal polynomial of α, which is unique. How-

ever, since Q has n complex roots (counted with their

multiplicity), we also have to tell which of these roots

we are representing. Fortunately, the real roots of Q

can be ordered. If α is the ith real root of Q, we there-

fore represent it by the sequence (n, i, an, an−1, . . . , a0),

which can easily be expressed as a single real number

with a finite binary representation by encoding the sign

bit and the absolute value of each of the integers, as we

did with the rationals. Observe that we explicitly stored

the number n as a first thing, so we know when to stop

during the decoding procedure (we may be given “by

accident” a number with infinitely many 1’s in its bi-

nary representation, and we do not want to get stuck

in an infinite loop trying to decode it).

As we did with the rationals, once we have some

algebraic numbers expressed in this finite form, we can

do Turing-computable bit manipulations to compute all

kinds of common functions on them. In particular, there

are standard ways of computing the basic arithmetic

operations, as well as root extractions of any degree.

Moreover, since we are using minimal polynomials, each

algebraic number has a unique code, and therefore test-

ing if two of them are equal is trivial. A comprehensive

exposition of these techniques, along with their theoret-

ical background, is found in [8]. Essentially, this is also

one of the several ways in which mathematical soft-

ware such as Sage, Mathematica, and CGAL handles

algebraic numbers and does exact computations with

them.

The key point to keep in mind is that, once a number

is encoded in this form, we cannot necessarily retrieve

it in finite time; we can only approximate it arbitrarily

well, for instance via Sturm’s theorem [8]. However, we

can still evaluate computable predicates on these num-

bers exactly, and have them influence the flow of our

algorithms [8].

Computable code. Suppose a basic Blum-Shub-Smale

machine has an algebraic number α stored in a register;

let us see how it can effectively construct its code. The

machine starts generating all finite sequences of bits in

lexicographic order. For each sequence, it checks if it

is a well-formed code of an algebraic number; if it is,

it extracts the coefficients of the polynomial Q from

it, as explained above. Then it computes Q(α), which

requires only additions and multiplications of real num-

bers. Since α is algebraic, eventually a polynomial Q is

found such that Q(α) = 0. It is well known that Q must

be a multiple of the minimal polynomial of α; hence, it

is sufficient to factor Q over Z and pick the irreducible

factor that has α as a root: this factor Q′ must be the

minimal polynomial of α. Then Sturm’s theorem can

be applied to find out how many real roots of Q′ are

smaller than α, and this number is used along with the

coefficients of Q′ to encode α (the details of this process

are explained in [8]).

Now that we know how to compute the code of a

single algebraic number, let us see how we can encode

an entire snapshot of a polygon P with algebraic ver-

tices taken from a point p ∈ P by some searcher s.

Formally, this is the set of points of P that are visible

to p, transformed by an affine map fp : R2 → R2. This

map translates points from the global coordinate sys-

tem to the coordinate system of s: it translates p into
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the origin and then scales (by a non-zero factor) and

rotates the plane about the origin. Note that p is not

necessarily an algebraic point, and the parameters of

fp are not necessarily algebraic numbers. However, as

fp is a similarity transformation, it preserves the ratios

between segment lengths. Observe that the distance be-

tween any two vertices of P is algebraic, because it is

computable by basic arithmetic operations and extrac-

tions of square roots (by the Pythagorean theorem),

and algebraic is therefore also the ratio between two

such distances. It follows that the distances between

vertices of fp(P ) may not be algebraic, but all their ra-

tios are. The same reasoning can be extended from the

vertices of P to all the points that are algebraic in the

global coordinate system. These include the projection

of any vertex of P onto the line through two other ver-

tices of P , because the coordinates of such a point can

be computed by a rational function of the coordinates

of the three vertices involved.

Now let v and v′ be two vertices of fp(P ), and

let gv,v′ : R2 → R2 be the (unique) similarity trans-

formation with positive scale factor that maps v into

(0, 0) and v′ into (1, 0). Based on the previous para-

graph’s reasoning, we can conclude that the vertices of

gv,v′(fp(P )) are algebraic points. Indeed, let u be one

such vertex, let u′ = g−1v,v′(u), and let u′′ be the projec-

tion of u′ onto vv′. We have that f−1(u′′) is algebraic,

and hence |u.x| = ‖vu′′‖/‖vv′‖ is also algebraic. Simi-

larly, if u′′′ is the projection of u′ onto the line through

v that is orthogonal to vv′ (hence f−1(u′′′) is algebraic),

we have that |u.y| = ‖vu′′′‖/‖vv′‖ is algebraic, as well.

This basically means that, if s picks two visible ver-

tices of fp(P ), say v and v′, it takes the line vv′ as
the x axis and the length ‖vv′‖ as the unit of dis-

tance, and expresses all the visible vertices of fp(P )

in this new coordinate system, then these will be alge-

braic points, which can be encoded with our method

by a basic Blum-Shub-Smale machine. The problem is

that the snapshot taken from p may not only contain

vertices of fp(P ). Recall that this snapshot is a list of

sub-segments of the edges of fp(P ): if an edge is only

partially visible to s, it is seen by s as a segment (or a

collection of segments) with different endpoints. These

endpoints may not be algebraic in the new coordinate

system, and hence they cannot be encoded with our

technique.

Our solution is to identify these potentially non-

vertex endpoints and simply mark them with an “unde-

fined” tag. These turn out to be precisely the endpoints

that are not fully visible to s (cf. Figure 1). For instance,

let S = (x1, y1, x
′
1, y
′
1, x2, y2, x

′
2, y
′
2, . . . ) be the snapshot

received by s, and suppose that (xi, yi) = c · (xj , yj) for

some 0 < c < 1. Then, we mark (xj , yj) with a special

tag. More precisely, we add an “undefined” bit to all the

entries of the snapshot, and we set it to 0 or 1, depend-

ing if the corresponding point is certainly a vertex of

fp(P ) or possibly not a vertex. Note that this check can

be done by a basic Blum-Shub-Smale machine. Then we

can pick any two “defined” points v and v′ of S (which

obviously exist), use vv′ as the x axis, and transform

all the “defined” points of S as detailed above. Each

“undefined” point of S is simply replaced with a (0, 0)

(preserving its “undefined” tag), or any algebraic point

of our choice. The result is a transformed snapshot S′

whose points are guaranteed to be all algebraic. Hence

we can effectively encode their coordinates with a fi-

nite number of bits, and then concatenate all these se-

quences of bits into the binary representation of a single

real number. We also encode the “undefined” bits and

the indices of v and v′ in S. Everything is preceded by

the total number of elements in the code: as usual, this

is to let the decoding procedure know when to stop. We

denote the final result by C(p, v, v′).

Now, given C(p, v, v′), the searcher s can decode it

and reconstruct the “defined” vertices of the snapshot,

as well as the edges between them. The coordinates

of these vertices are still in our implicit form, but the

searcher can operate on them, computing new algebraic

points, again in the same implicit form. However, if s is

currently in p, and therefore has access to the original

snapshot S, it can easily retrieve the actual coordinates

of v and v′, because their indices are stored in C(p, v, v′)

(and they are plain integers). So, suppose that s has

computed a point q in implicit form based on C(p, v, v′).

By Sturm’s theorem, it can explicitly construct a point

q′ that is arbitrarily close to q (i.e., q′ is not encoded

in our implicit form, but it is a real number on which

the machine can directly operate). Then, knowing the

coordinates of v and v′, s can transform q′, via rational

functions, back into the coordinate system in which S

is expressed (which is the local coordinate system of

s). Knowing how close q′ is to q (which is a parameter

of Sturm’s theorem that s can set), and knowing the

determinant of the transformation, s can infer how close

the resulting point is to the real one. In particular, if

q is supposed to represent a fully visible vertex of the

polygon, s can determine which vertex it is in finite

time, by computing a good-enough approximation of

it, and comparing it with the points in S.

We can pack any list of m snapshots into a single

real number by encoding m, followed by the codes of all

the snapshots. Along with the snapshots, we can also

pack as many other finitely described elements as we

want. We may add a fixed-length “label” to the code

of each element, describing its content and specifying if

it represents a snapshot, an integer, etc. As with naive
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encoding, we also put a sequence of the form 0λ1 as a

first thing in our code, where λ is the scale.

Observe that our encoded snapshots are not exact

copies of the real ones, because some information about

the “undefined” points is lost. In the second part of

this section, we will show that the information that we

encode is enough for the purpose of our application to

the Meeting problem.

4.2 Adapting the Algorithms

Next we are going to apply our encoding methods to the

Meeting algorithms of Section 3, and we will show how

oblivious searchers can solve the Meeting problem, as

well. We will be using the improved encoding, so we will

need searchers to be able to compute only basic arith-

metic operations on real numbers, as well as extract

square roots. Hence, internally, each searcher will run

a Blum-Shub-Smale machine extended with a square-

root primitive. Only the four basic arithmetic opera-

tions are required for our computable encoding method,

but square roots are needed in the geometric computa-

tions. It is well known that the points whose coordinates

can be computed by composing these five operations

are precisely the ones that can be constructed with a

compass and a straightedge [24]. (In turn, the Mohr-

Mascheroni theorem states that these points can also

be constructed with a compass alone [23].)

Main ideas. Recall that both our Meeting algorithms

work by making searchers jump from one vertex of

the augmented polygon P̃ to another. This behavior is

roughly compatible with the idea of simulating memory
by moving close enough to a vertex of P and encoding

information as the distance from it (in the terminology

of Section 4.1, this is called the virtual vertex ). When

activated, a searcher will compute its distance from the

virtual vertex (note that this requires the extraction of

a square root), and it will decode this distance, thus re-

trieving its lost memory. It will then execute one of the

old algorithms, “pretending” to be located exactly on

the virtual vertex. Instead of moving onto the destina-

tion vertex, it will move close enough to it, re-encoding

its entire memory plus the newest snapshot. Of course,

this technique introduces several issues.

– Recall that some information is lost in the encoding

of our snapshots, because some points are marked

as “undefined”. We have to make sure that this loss

of information does not invalidate the correctness of

our algorithms. (Indeed, we will show that the algo-

rithms work as intended even if the vertices recorded

in the encoding of a snapshot are just the fully vis-

ible ones.)

– As explained later, each snapshot is encoded by first

re-casting it into a different coordinate system, which

is not necessarily the searcher’s local one. A searcher

may not be able to reconstruct this special coor-

dinate system after it moves and its virtual vertex

changes. We have to show how a searcher can “trans-

port” snapshots around P without compromising

their usability. (The solution is to use a coordinate

system where the x axis is marked by the current

and next virtual vertices, so the searcher can recon-

struct it after moving.)

– The EXPLORE phase of the algorithms relies on

the connectedness of the visibility graph of P . If a

searcher explores P by approaching its vertices but

without properly touching then, it may be unable

to discover some unexplored vertices. We have to

show how to avoid this situation. (This is resolved

by making the searcher move close enough to all

vertices of P and to their angle bisectors.)

– The tours performed in the PATROL phase turn at

the pivot point and at the vertices of the augmented

polygon P̃ , which are not necessarily vertices of P .

Unfortunately, oblivious searchers cannot approach

generic points without losing information. (We will

show how to modify their paths to make them turn

only at vertices, without compromising the correct-

ness of the PATROL phase.)

– During the PATROL phase, two searchers are sup-

posed to become mutually aware, either because

they travel on the same edge or diagonal of P or

because they reach the same triangle of a special

triangulation. Once again, if searchers follow their

predefined routes only approximately, they may fail

to meet. (We will show how to avoid this by making

the searchers move within a thin-enough band that

approximates the intended path.)

In the following, we will address all these issues in greater

detail.

Approaching vertices. In order to apply our encoding

strategy, we must first ensure that a searcher has a

well-defined virtual vertex. If a searcher has more than

one closest visible vertex, it just moves to one of them.

Similarly, if at any time a searcher realizes that the in-

formation it is currently encoding is either internally

incoherent or contrasts with the current snapshot, it

moves onto its virtual vertex. So, when a searcher finds

itself on a vertex, it knows that it has to restart the

execution from the beginning.

In all other cases, a searcher has a destination ver-

tex, and it moves close enough to it. It may not be able

to determine right away how close it has to move, but it

can reduce this distance later, if needed. In Section 4.1
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we introduced the scale of a code, and we argued that a

searcher can always get as close as it wants to its virtual

vertex (by adjusting the scale) without losing informa-

tion. This “approaching move” keeps the searcher on

the same ray emanating from the virtual vertex, and

it is therefore useful when the searcher wants to main-

tain a certain angle with respect to the virtual vertex’s

incident edges.

In general, during the EXPLORE phase, before choos-

ing its next destination vertex, a searcher s will first

adjust its position around its virtual vertex v in such

a way that all the points of its two incident edges vv′

and vv′′ become fully visible to s (cf. Figure 1). This is

relatively easy to do, since s has access to the current

snapshot. If the interior of one of the incident edges of

v, say vv′′, is completely invisible to s, it means that

v is a reflex vertex of P , and s can see at least part of

the edge vv′. In this case, s moves to the line through v

perpendicular to vv′. The destination point p′ is chosen

in such a way that the circle through v centered in p′

intersects the boundary of P only in v (see Figure 7).

This guarantees that v will be the virtual vertex again.

From there, if the interior of vv′′ is still completely in-

visible, s moves to the extension of the segment vv′,

again keeping v as the virtual vertex (this move is al-

ways possible, although the destination of s may have

to be much closer to v than p′ is: i.e., the two circles

in Figure 7 do not necessarily have the same radius).

After this move, both incident edges of v will be at least

partially visible. Then, s approaches v until it can see

vv′ and vv′′ entirely.

v′v

′′v

s

′p

Fig. 7: Moving around the reflex vertex v to see both

its incident edges

When s finally sees both incident edges of v, it de-

cides what its next virtual vertex u will be. Let s be

currently located in p. Then, u has to be a vertex of

P that is fully visible to every point on the segment

vp. s also has to choose a destination point p′, again

fully visible to every point on vp. Moreover, among the

vertices that are visible to p′, u should be the closest

to p′. Since by our assumption u is fully visible to p, a

suitable point p′ can always be found by s. Namely, if

u is a convex vertex of P , then p′ will be chosen close

enough to u on its angle bisector (an entire neighbor-

hood of u is visible to p, so this is easy to do). If u is a

reflex vertex, then p′ will be the center of a circle that

touches the boundary of P only in u.

Transporting snapshots. Recall that snapshots are en-

coded in a coordinate system defined by two vertices of

P , which guarantees that the vertices in the snapshot

can be encoded as algebraic points (provided that the

vertices of P are algebraic in some global coordinate

system to begin with). Using the notation introduced

in Section 4.1, we will assume that all the n snapshots

that searcher s is currently encoding are of the form

C(pi, v, v
′), with 1 ≤ i ≤ n. In our notation, pi is the

point from which the ith snapshot was taken, v is the

current virtual vertex of s, and v′ is another vertex of P

that is fully visible to all the points in the segment vp,

where p = pn+1 is the current location of s. So, all the

snapshots that s “remembers” are encoded in the same

coordinate system, defined by v and v′. Along with the

snapshots, s also remembers a rational approximation

of v′ − v, expressed in the local coordinate system of

s. This approximation is assumed to be so good that s

can retrieve the coordinates of v′ (in its local coordinate

system) by looking at its current snapshot. Knowing

the coordinates of v and v′, s can then re-map every

C(pi, v, v
′) into its local coordinate system, and com-

pute arbitrarily good approximations of any algebraic

point that it constructs implicitly.

Of course, as s moves around v and approaches it as

explained before, it must always make sure that, when-

ever it moves from p to p′, every point of vp′ is fully

visible to v′. This is done by choosing p′ close enough

to v, and it is possible because v′ is fully visible to all

points of vp, by our assumption.

Suppose now that s, currently located in p = pn+1,

intends to change virtual vertex from v to u. By our as-

sumption, it does so only if u is fully visible to all points

of vp. In order to preserve the readability of the snap-

shots that s is encoding, it has to convert them from

the coordinate system in which they are expressed into

a different one, which will allow s to reconstruct the

snapshots from a neighborhood of u. To do so, s con-

verts each C(pi, v, v
′) into C(pi, u, v). Since s knows the

exact positions of the three vertices involved (i.e., u, v,

v′), because they are all in the current snapshot, it can

perform this conversion, which is simply a change of

coordinates computable with a rational function. Then

s encodes the current snapshot in the same coordinate

system as the others, obtaining C(pn+1, u, v). Finally,
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s computes (v + p)/2 − u and suitably truncates the

binary representation of its coordinates, obtaining a fi-

nite approximation w of it. The approximation must

be good enough, so that the point u + w is in the in-

terior of P and closer to v than any vertex of P that

is currently visible to s (apart from v itself). Then, s

computes a destination point p′ whose distance to u

encodes w (whose binary representation is finite), fol-

lowed by the snapshots C(pi, u, v), with 1 ≤ i ≤ n + 1

(note that constructing p′ involves a square root extrac-

tion). When s gets to p′, it finds its virtual vertex u and

retrieves w (as an explicit rational vector) from ‖up′‖.
Then it computes u+ w, which is an approximation of

the midpoint of the segment vp. Since by our assump-

tion all points of vp are fully visible to p′, it is easy

for s to identify v. Now s can retrieve the snapshots

C(pi, u, v) from ‖up′‖ and use u and v to re-map them

into its own coordinate system.

Exploring the polygon. Suppose a P -searcher s has suc-

cessfully decoded its distance from its virtual vertex v,

obtaining a history of snapshots. Since all these snap-

shots are expressed in the same coordinate system, it is

trivial for s to merge them all together and check if the

common parts of two different snapshots match. If they

do not match, it means that the current position of s

does not encode anything meaningful, and so s moves

to v. We have already explained how s can reconstruct

the coordinate system of these snapshots, and use it

to encode the new snapshot taken from its current lo-

cation in the same fashion. When all these snapshots

(including the current one) have been tested against

each other and merged, the result is a self-consistent

collective snapshot S, which is supposed to represent

the part of P that s has already visited.

Also, whenever s encodes its current snapshot, it

marks the position of its virtual vertex with a special

“visited” flag. This flag is preserved when a snapshot

is transported and converted to a different coordinate

system. So, when s constructs the collective snapshot

S, it also knows what vertices of S have already been

visited.

The EXPLORE phase begins with s on a vertex v,

and the strategy is to keep following the connected com-

ponent C of the boundary of P that contains v, always

in the same direction (either clockwise or counterclock-

wise), while encoding all the snapshots taken. This is

easy to do, because we have explained how s can ad-

just its position around its virtual vertex so that both

its incident edges become fully visible.

Upon completing its first tour of C, s has a full pic-

ture of it in the collective snapshot S, and starts a sec-

ond tour of C in the same direction, this time carefully

choosing its destination points, as explained next. Let

v = v1, v2, . . . , vm be the vertices of C, in the order s is

following them. In the second tour, for each vi, s wants

to reach a point pi close enough to it, so that the polyg-

onal chain C = (p1, p2, . . . , pm) does not self-intersect

(i.e., it is the boundary of a simple polygon), and does

not intersect the boundary of P . For instance, pi may

be chosen on the angle bisector of vi and close enough

to it. So, upon reaching the angle bisector of vi (during

the second tour), s uses the information in S to com-

pute how close to vi it has to get to construct a suitable

pi. An adequate distance d is computed implicitly, and

then s can get an approximation of it in explicit form

and choose a distance that is certainly smaller than d.

When the second tour is complete and s has touched

all vertices of C, it picks the first vertex v′ of P that

is in S but is not yet marked as visited. Then s follows

a shortest path to v′ in which each vertex touched is

fully visible to the previous one. Note that this path

obviously exists, because if a vertex in the path does

not fully see the next one, it can preliminarily move

toward the closest vertex that is on the same line and

is obstructing its vision. Once v′ has become the vir-

tual vertex, s follows the same exploration procedure

on the connected component of the boundary of P that

contains v′, say C ′, which is necessarily disjoint from C.

During the second tour of C ′, s traces an approximated

polygonal chain C
′

as before, but with the additional

requirement that it does not intersect C. This can be

done in the same way as with C, by computing a thin-

enough “band” around C ′ and making sure to move

within it.

This general procedure is repeated as long as new

vertices of P are discovered and appear in S as unvis-

ited. Each time a new connected component Cj of the

boundary is discovered, s follows it and constructs an

approximation Cj that does not intersect any of the

previously constructed ones and is also disjoint from

the boundary of P . So, when the procedure ends, s has

touched the vertices of some mutually disjoint simple

closed polygonal chains Cj , with 1 ≤ j ≤ m, and each

vertex of P is either undiscovered or marked as visited.

To prove the correctness of the EXPLORE phase, we

have to show that in this situation all vertices of P have

indeed been discovered. Let us construct a new polygon

P ′ by removing every Cj from the boundary of P and

replacing it with Cj . P
′ is indeed a polygon because of

the way the Cj ’s have been constructed. Also, if two

points fully see each other in P ′, they must also fully

see each other in P . Moreover, the unvisited vertices

of P are also vertices of P ′. If some unvisited vertices

exist, then one of them, say u, must be fully visible to

a vertex u′ of some Cj , because P ′ is connected. Since
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u′ is a vertex of Cj , s must have been exactly in u′ and

must have taken a snapshot from there. Recall that

fully visible vertices are never marked as “undefined”

in the encoded snapshots, and so s must have carried

around the implicit coordinates of u, which therefore

must appear in the collective snapshot S. This is a con-

tradiction, and therefore our exploration procedure is

correct.

Basic patrolling. Let us show how to adapt the PA-

TROL phase of Algorithm 1 to oblivious searchers. Each

P -searcher that executes the EXPLORE phase correctly

ends up with a collective snapshot S that is a faithful

copy of P expressed in implicit form in a different coor-

dinate system. So, all the similarity-invariant geometric

constructions made by our old algorithm can be per-

formed again by oblivious searchers. The first technical

issue here is that some of the points generated by these

constructions are not vertices of P but midpoints of

edges. Since we typically want the destination point of

a searcher to be as close as possible to a vertex, we can-

not make searchers turn at midpoints of edges as they

patrol the boundary of P , but only turn at vertices.

Let us see how we can modify the tour of the bound-

ary of P so that it only turns at vertices, without in-

validating the correctness of the algorithm. Patrolling

the boundary of P is what makes the map construc-

tion algorithm self-stabilizing: as a searcher repeatedly

touches every vertex of P , it is able to tell if its memory

contents are incorrect. So, we do not necessarily have

to augment P exactly as we did in Section 3.1; we only

have to make each searcher follow a path that touches

every vertex. Of course, we also want two searchers with

the same pivot point to follow the same path, so they

necessarily meet while patrolling it. If P is not axi-

ally symmetric, this is simple, and Algorithm 1 already

does it. If P is axially symmetric, we just make each

searcher’s path symmetric with respect to the axis that

passes through its pivot point, in any (deterministic)

way that we want. This is to make sure that if two

searchers have that pivot point, they will compute the

same path even if they have a different notion of clock-

wise direction. Figure 8 shows an example of how such a

path may be constructed in an axially symmetric poly-

gon. Observe that the pivot point in this example is in

the middle of an edge, and the tour covers that edge

twice. This makes the last vertex of the clockwise tour

coincide with the first vertex of the counterclockwise

tour, and vice versa.

There are two remaining issues. First, a searcher

performing a tour of the boundary of P without actu-

ally touching its vertices may be unable to ever detect

if the collective snapshot that it is encoding has any

Fig. 8: Axially symmetric tour that visits all vertices

and only turns at vertices

mistakes. Second, two searchers may fail to meet even

if they have the same pivot point and perform the same

tour in opposite directions, because they only trace an

approximation of that tour. Fortunately, both these is-

sues have the same solution, which is the one we al-

ready described for the EXPLORE phase. Namely, as

a searcher already has a full picture of P (or what it

“believes” to be P ) it can pre-compute a thin-enough

“band” around the path it intends to follow, and always

move within this band. This can be done even if the

band is only computed implicitly, as we showed for the

EXPLORE phase. Also, whenever a searcher reaches a

new virtual vertex, it makes sure to stop on its angle

bisector and take a snapshot from there. This way, if

P and the collective snapshot of the searcher have dis-

crepancies, the searcher will eventually see a missing

vertex, a misplaced vertex, or an extra vertex, and this

is proven exactly as we did for the EXPLORE phase.

Moreover, as both searchers remain within the same

thin band, they must become mutually aware as soon

as they cross each other on the same edge or around the

same vertex. Note that computing a band with these

properties is a straightforward geometric problem that

can be solved locally by the searchers given a represen-

tation of P .

The rest of the proof of correctness is the same as for

Theorem 2, which is thus extended to oblivious search-

ers.

Theorem 4 There is an algorithm that, for every in-

teger σ > 0, solves the Meeting problem with σ + 1

oblivious searchers in every polygon with symmetricity

σ. If the polygon’s vertices are algebraic points, the al-

gorithm is implementable on a real random-access ma-

chine that can compute basic arithmetic operations and

extract square roots. ut

Improved patrolling. We can adapt the improved pa-

trolling strategy of Algorithm 2 to oblivious searchers

almost in the same way as we did with the basic one.
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However, the j-tours and their “hierarchy” must be de-

fined carefully. The problem is once again that we have

to decide what to do with the triangles of the triangu-

lation of P̃ whose vertices are midpoints of edges or of

diagonals of P (cf. Figure 6). If P is not axially sym-

metric, this is not a real problem: we can augment P

by cutting it along some diagonals, never creating those

improper vertices. The polygons Pj and the j-tours are

then defined in the same way as in Section 3.2.

Let us now focus on the case in which P is axially

symmetric, and let a branch be a connected component

of P \ Q, where Q is the central polygon, as defined

in Section 3.2. In this case, we want our j-tours to be

axially symmetric, as well. Our solution is to prelimi-

narily construct an axially symmetric partition of each

branch of P into triangles and isosceles trapezoids (a

trapezoid is isosceles if its base angles are the same).

This is done in a similarity-invariant way by drawing

diagonals between vertices of P that can fully see each

other, as shown in Figure 9. Note that this is made pos-

sible by the presence of isosceles trapezoids, because a

symmetric branch may not have a symmetric triangu-

lation.

Let us cut each branch along its axis of symmetry,

obtaining two sub-branches. Let us add cuts along sym-

metric edges of the partition constructed before until we

obtain a simply connected augmented polygon P̃ . As in

Section 3.2, the dual graph of the resulting partition of

P̃ is a tree rooted in the central polygon Q. We then

define a j-tour as the tour of the pieces of the partition

whose depth in the tree is at most j; such a tour must

never cross the edges of P̃ , with one exception. Let `

be the axis of symmetry of a branch. When the tour

is in that branch and it is supposed to follow a sub-

segment of ` that splits a triangle or a trapezoid in two

symmetric parts, the j-tour includes both parts. This

construction is illustrated in Figure 9. Our new j-tours

have the required axes of symmetry and only turn at

vertices of P . Note that a j-tour may now self-overlap

and touch some vertices of P multiple times, but this

is not going to be a problem.

These new j-tours have the relevant property that

was required by Lemma 2: if a piece T of the partition

is included in the (j + 1)-tour but not in the j-tour,

then an edge e of T is part of the j-tour. Since T is

either a triangle or a trapezoid, it is convex. Therefore,

a searcher performing a j-tour completely sees T when

it touches e. Due to this property, the proof of Lemma 2

goes through even for our new j-tours. The same holds

for Lemma 1, which only requires the convexity of the

pieces.

It remains to explain how the new j-tours can be

approximated by oblivious searchers without losing the

aforementioned properties. We view a j-tour as a closed

polygonal chain enclosing some pieces of the partition.

The key idea is to make a searcher perform a j-tour

by following this polygonal chain without ever properly

crossing it. This way, the searcher never enters pieces

of the partition where it is not supposed to go, yet.

Also, when the j-tour covers an edge e as defined above,

the searcher makes sure to effectively touch e (with-

out crossing it), so to see any searcher that may be

in T . Note that the searcher cannot explicitly compute

a point on e based on its implicit collective snapshot.

However, by approaching one endpoint of e, it even-

tually gets to see the other one, as well (because the

endpoints fully see each other). When both endpoints

are visible, and hence readable in explicit form from the

current snapshot, a precise move on e is possible.

Other than this, j-tours are approximated as with

basic patrolling, i.e., remaining within implicitly de-

fined thin-enough bands around them. All these fea-

tures combined enforce the properties that make Lem-

mas 1 and 2 valid for approximated j-tours. We still

have to guarantee that any discrepancy between P and

the collective snapshot of a searcher s will be detected

during a perimeter tour. This is done as with basic pa-

trolling, by making s stop on the angle bisector of each

vertex v (and close enough to v). This may not be pos-

sible right away, because when s reaches v for the first

time it may be forced to remain within a piece of the

partition that does not contain the angle bisector of v.

However, since the perimeter tour encloses all pieces of

the partition, eventually s will reach v again and will

be allowed to stop on the angle bisector.

This concludes the proof that Theorem 3 can be

extended to oblivious searchers.

Theorem 5 There is an algorithm that solves the Meet-

ing problem with two oblivious searchers in every poly-

gon whose barycenter does not lie in a hole. If the poly-

gon’s vertices are algebraic points, the algorithm is im-

plementable on a real random-access machine that can

compute basic arithmetic operations and extract square

roots. ut

5 Conclusions and Further Work

Summary. We have minimized the number of search-

ers that are required to solve the Meeting problem in

an unknown polygon as a function of its symmetricity.

Additionally, we showed that two searchers are suffi-

cient in all but a small class of polygons (namely, the

rotationally symmetric ones with center in a hole). We

have done so even if the searchers are anonymous, asyn-

chronous, memoryless, and can be initially located any-
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Fig. 9: Symmetric partition of a branch with a 5-tour and part of a perimeter tour

where in the polygon. Moreover, if the vertices of the

polygon are algebraic points in a global coordinate sys-

tem, the searchers only have to compute basic arith-

metic operations and square roots. As a main tool, we

have used a self-stabilizing map construction algorithm

of independent interest.

Termination detection. An interesting question is wheth-

er two searchers can realize when they have become

mutually aware and actually terminate the execution

of the Meeting algorithm. This is not a trivial problem,

because searchers are asynchronous: a searcher s1 that

sees another searcher s2 cannot in general be sure that

s2 is not going to disappear behind a corner, because s2
may currently be in the middle of a movement. So, s1
may have to wait indefinitely to find out. However, we

can show that termination is possible if the searchers

execute a slightly modified version of Algorithm 1, pro-

vided that the polygon has no holes. On the other hand,

the termination problem remains open with regard to

Algorithm 2 and polygons with holes.

Limited visibility. We may wonder if the Meeting prob-

lem can be solved if searchers have limited visibility, i.e.,

they can only see up to a fixed distance, which is the

same for all searchers. If the searchers have memory, we

can adapt our algorithms of Section 3 by making each

searcher take small-enough steps and also explore the

interior of the polygon, as opposed to just its boundary,

in order to detect hidden holes. The improved PATROL

phase works by splitting each branch into thin-enough

sub-branches and then finely triangulating each sub-

branch. If searchers are memoryless, our algorithm with

basic patrolling can also be adapted, provided that the

polygon has no holes, and that data is encoded as the

distance from the boundary of the polygon (as opposed

to the distance from the closest vertex). In all other

cases, the Meeting problem for memoryless searchers

with limited visibility is open.

Non-rigid movements. Our algorithms for searchers with

memory also work in the non-rigid setting, i.e., when a

searcher can be stopped by the scheduler during each

Move phase before reaching its destination point, but

not before having moved by at least a constant δ (for

details on this model, refer to [19]). However, since our

oblivious searchers have to make precise movements to

implicitly encode memory, we cannot extend our mem-

oryless algorithms to this model.

Optimizing movements. An interesting optimization prob-

lem is to improve our algorithms so that the total dis-

tance traveled by the searchers or the number of steps

they take is minimized. In the EXPLORE phase we

could visit the visibility graph of the polygon in depth-

first order, which would yield a linear number of steps

with respect to the number of vertices of the poly-

gon. Our basic PATROL phase is worst-case optimal,

because the searchers must visit the entire boundary

of the polygon (due to their possibly incorrect initial

memory states), and they indeed meet after a constant

number of tours. Our improved PATROL phase could

be optimized, because we chose to perform many more

perimeter stages than needed. In fact, we could reduce

this number from quadratic to linear in the number of

vertices of the polygon.
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