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Abstract
We study arrangements of geodesic arcs on a sphere, where all arcs are internally disjoint and
each arc has its endpoints located within the interior of other arcs. We establish fundamental
results concerning the minimum number of arcs in such arrangements, depending on local geometric
constraints such as one-sidedness and k-orientation.

En route to these results, we generalize and settle an open problem from CCCG 2022, proving
that any such arrangement has at least two clockwise swirls and at least two counterclockwise swirls.
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1 Introduction

1.1 Art Gallery Problem and Spherical Diagrams
In Discrete and Computational Geometry, the Art Gallery Problem asks how many “light
sources” are required to “illuminate” a given geometric environment [7, 9]. The environment
may be an enclosure, such as a polygon or a polyhedron, or more broadly, a spatial arrangement
of “opaque” objects that obstruct light rays.

In recent years, a line of research on the Art Gallery Problem has focused on illuminating
3-dimensional polyhedra by choosing a subset of their edges as light sources. In this setting,
the facets of a polyhedron are interpreted as opaque obstacles, and one wants to illuminate
the polyhedron’s interior with as few “edge lights” as possible [1, 2, 4, 11].

To this end, a technique developed in [4] involves selecting a small set of edges whose
endpoints collectively include all vertices of the polyhedron. Interestingly, however, these
edges may not be sufficient to fully illuminate the polyhedron’s interior, as there is an
abundance of polyhedra having internal points that do not directly see any vertices [7, 12, 13].
We say that such points are vertex-hidden. Thus, the study of vertex-hidden points and the
combinatorics of their visibility maps becomes central in [4], as well as in the development of
a general theory of visibility-related problems for polyhedral objects in 3-space [8].

In order to systematize these fundamental investigations, Spherical Occlusion Diagrams
(SODs) were introduced as a model for visibility maps of vertex-hidden viewpoints relative
to polygonal scenes, i.e., arrangements of interior-disjoint polygons in 3-space [12, 13].

We give some preliminary definitions. A geodesic arc on a sphere is the unique shortest
curve connecting two non-antipodal points. Clearly, any geodesic arc lies within a great
circle on the sphere. We say that a geodesic arc a blocks a geodesic arc b if an endpoint of b

lies in the relative interior of a. If a blocks b, we say that b hits a.

▶ Definition 1. A Spherical Diagram (SD) is a finite non-empty collection D of pairwise
interior-disjoint geodesic arcs on the unit sphere in R3, such that each arc of D is blocked by
arcs of D at each endpoint.

▶ Definition 2. A Spherical Occlusion Diagram (SOD) is a Spherical Diagram D with the
additional property that all arcs in D that hit the same arc of D reach it from the same side.
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Figure 1 A polygonal scene of six rectangles (left), where the central point v is vertex-hidden.
The portion of each edge that is visible to v is radially projected onto a sphere centered at v, creating
a geodesic arc. The resulting visibility map is an SOD (right).

SDs may also be referred to as two-sided arrangements of arcs, whereas SODs are one-
sided, to stress the fact that their arcs are hit only from one side (the term “one-sided” was
previously used in [5] in the context of rectangular layouts). While SODs were introduced
and studied in [8, 12, 13], in this paper we also set out to investigate SDs as a natural
generalization. Notably, most of what is currently known about SODs is more generally true
for SDs (refer to Section 2.1), and SDs are interesting geometric objects in their own right.

As illustrated in Figure 1, the visibility map of a vertex-hidden viewpoint in a polygonal
scene is necessarily an SOD (see [13]). Interestingly, the converse is not always the case, as
was shown in [6]. Nonetheless, SODs were instrumental in proving that any vertex-hidden
viewpoint in a polygonal scene must see at least eight distinct edges (this number reduces to
six for viewpoints that are not vertex-hidden). This result was obtained in [8] by showing
that any SOD consists of at least eight arcs. In turn, this follows from the observation that
any SOD (in fact, any SD) must have at least four swirls, which are defined next.

▶ Definition 3. A swirl in an SD is a cycle of arcs, each of which hits the next (and such
that the last hits the first), going either all clockwise or all counterclockwise. The degree of a
swirl is the number of arcs constituting it.

As an example, the SOD in Figure 1 has four clockwise swirls and four counterclockwise
swirls, all of degree three.

1.2 Polyhedra with Restricted Edge Orientations
In the study of the Art Gallery Problem, it is customary to investigate not only polygons
or polyhedra in their full generality, but also specific subclasses with particular geometric
properties. For example, alongside general polyhedra, also orthogonal polyhedra have been
considered (Figure 2a): these are polyhedra whose faces meet at right angles [1, 2, 11].

Similarly, a k-face-oriented polyhedron has the property that there exist k unit vectors
such that the normal of each face is parallel to one of these vectors [10]. Note that orthogonal
polyhedra are 3-face-oriented, and any polyhedron is k-face-oriented for a large-enough k.
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Figure 2 (a) An orthogonal polyhedron. (b) A 7-edge-oriented polyhedron having only vertical
and horizontal edges (and faces). (c) A 4-face-oriented and 6-edge-oriented polyhedron.

In the same vein, we may define a polygonal scene to be k-edge-oriented if there exist
k unit vectors such that every edge of every polygon in the scene is parallel to one of the
vectors. Again, any orthogonal polyhedron is a 3-edge-oriented polygonal scene; in general,
any k-face-oriented polyhedron is also a

(
k
2
)
-edge-oriented polygonal scene (Figure 2c).

Following the seminal result of [8] mentioned in Section 1.1, our motivating question
is: What is the minimum number of edges that are necessarily visible to a
vertex-hidden viewpoint in a k-edge-oriented polygonal scene? In order to model
the visibility maps of such viewpoints, we give the following definition.

▶ Definition 4. An SD D is k-oriented if there exists a set P of k points on the unit sphere,
called poles, no two of which are antipodal, as well as a function f : D → P such that each
arc a ∈ D is collinear with the pole f(a), but contains neither f(a) nor its antipodal point.

With the notation of Definition 4, we refer to the point antipodal to a pole p ∈ P as the
anti-pole of p. Also, for any arc a ∈ D, the pole f(a) and its anti-pole −f(a) are said to be
the vanishing points of a.1 If three of the k poles lie on a same great circle, then D is said to
be degenerate. Otherwise, D is non-degenerate.

It is immediate to recognize that the visibility map of any vertex-hidden point of a
k-edge-oriented polygonal scene is a k-oriented SOD. The converse is not true in general (a
counterexample is found in [6]), but it may be true for sufficiently small values of k.

Thus, we recast our motivating question: What is the minimum number of arcs
that a k-oriented SD or SOD can have? While this formulation may not be strictly
equivalent to the one about polygonal scenes, it stands as a question of independent interest
in extremal graph theory [3], because SDs can be characterized as spherical drawings of
certain graphs. Consider a non-empty 3-regular planar graph G that can be drawn on a
sphere by means of internally disjoint geodesic arcs in such a way that each vertex of G is
incident to two collinear arcs, and any chain of such collinear arcs is itself a geodesic arc.
Such a drawing coincides with an SD in which no two arcs have a common endpoint, and vice
versa. For the purpose of minimizing arcs, this is not a restrictive assumption on SDs; also,
it is easy to see that minimizing arcs in SDs is equivalent to minimizing vertices (or edges)
in such graphs. k-oriented SDs and SODs can be characterized in similar ways, as well.

1 The term “vanishing point” comes from perspective theory, and indicates a point where parallel lines in
3-space appear to converge when projected onto a surface such as a plane or, in this case, a sphere.
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1.3 Statement of Results

In this paper, we give a complete answer to the above question for all non-degenerate SDs
and SODs. That is, for every k, we provide non-degenerate k-oriented SDs and
SODs having the minimum possible number of arcs.

We are also able to do so for degenerate k-oriented SDs and SODs of all possible
configurations, provided that k ≤ 5. For k ≥ 6 we have sporadic results, but classifying and
analyzing the numerous degenerate configurations of the poles remains a challenge.

In addition, we also determine the minimum number of swirls that a k-oriented SD or
SOD may have in all of the aforementioned cases (with one exception; see below).

Our results are summarized in Table 1.

k-orientation alignment swirls SD arcs SOD arcs

3-oriented (2, 2, 2) 8 12 12
4-oriented (2, 2, 2, 3) 6 9 11
4-oriented (3, 3, 3, 3) 6 9 10
5-oriented (2, 2, 2, 2, 4) 6 9 11
5-oriented (2, 3, 3, 3, 3) 5 8 9
5-oriented (3, 3, 3, 4, 4) 4–5 8 9
5-oriented (4, 4, 4, 4, 4) 4 8 9

(k ≥ 6)-oriented (2, 2, . . . , 2, k − 1) 6 9 11
6-oriented (3, 3, 3, 3, 3, 3) 4 6 8
6-oriented (3, 3, 3, 4, 4, 4) 4 6 8
6-oriented (3, 4, 4, 4, 4, 5) 4 6 8
6-oriented (4, 4, 4, 5, 5, 5) 4 6 8

(k ≥ 6)-oriented (≥ 5, ≥ 5, . . . , ≥ 5) 4 6 8

Table 1 Minimum numbers of swirls and arcs in k-oriented SDs (two-sided arrangements) and
SODs (one-sided arrangements), depending on their alignment. The list includes all non-degenerate
configurations for every k, as well as all degenerate configurations up to k = 5.

To uniformly describe degenerate and non-degenerate k-oriented SDs with respect to the
configuration of their poles, we use the concept of alignment. A k-oriented SD with poles p1,
p2, . . . , pk has alignment (d1, d2, . . . , dk) if, for every 1 ≤ i ≤ k, there are exactly di distinct
great circles that contain pi and another pole (we may assume d1 ≤ d2 ≤ · · · ≤ dk).

Therefore, non-degenerate k-oriented SDs have alignment (k−1, k−1, . . . , k−1). Another
important alignment is (2, 2, . . . , 2, k − 1), which corresponds to the visibility map of a
polyhedron having only vertical and horizontal edges (Figure 2b), as well as (3, 3, 3, 3, 3, 3),
which corresponds to the visibility map of a 4-face-oriented polyhedron (Figure 2c).

Notably, for nearly all of the alignment configurations listed in Table 1, there are SDs and
SODs that simultaneously minimize the number of arcs and the number of swirls. The only
exceptions are (3, 3, 3, 4, 4), where we do not know if four swirls are possible, and (4, 4, 4, 4, 4),
where any SD or SOD minimizing the number of arcs has five swirls (the minimum is four).

Although the last row of Table 1 was partially established in [8, 12, 13], a question was
left open: Does any SOD have at least two clockwise and two counterclockwise swirls? In
this paper we answer it in the affirmative, not only for SODs, but more generally for all SDs.

The technical proofs of most preliminary results are found in Appendices B–E. Concluding
remarks and several open problems are in Appendix F.
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Figure 3 (a) The area in yellow is the right-side region of a sliding walk. The eye of a clockwise
swirl (in purple) can be found within this region by doing a right-handed sliding walk from its
boundary. (b) The initial steps of a clockwise walk with fulcrum p (in red).

2 Basic Constructions and Preliminary Results

2.1 Previous Results

We summarize all previous results on SDs (see also Appendix A). Proofs of the following
statements are found in [8, 13]; although they were stated and proved only for SODs, the
reader may verify that none of the proofs makes use of the one-sidedness of the arrangements.

Every arc in an SD hits exactly two distinct arcs (one at each endpoint), and no two arcs
in an SD intersect in more than one point. The union of all the arcs in an SD is a connected
set. An SD with n arcs partitions the unit sphere into n + 2 spherically convex regions called
tiles, and no tile contains antipodal points. The union of the arcs of a swirl separates the
unit sphere in two regions, exactly one of which is spherically convex; this region is called
the eye of the swirl. Given an SD, the interior of any great semicircle on the unit sphere is
crossed by at least one arc of the SD, and the interior of any hemisphere contains the eye of
at least one swirl. The swirl graph of an SD is the undirected multigraph on the set of swirls
having an edge between two swirls for every arc shared by them; this graph is planar. Every
SD has at least four swirls, including a clockwise one and a counterclockwise one.

In addition to the above properties, SODs also enjoy the following ones. The swirl graph
of any SOD is simple, planar, and bipartite. Also, every SOD has at least eight arcs.

2.2 Sliding Walks

Let D be an SD, and let D be the union of the arcs in D. Note that any point p ∈ D lies in the
interior of exactly one arc r(p) ∈ D. A sliding walk on D is defined as a continuous function
w : [0, +∞) → D such that, for every maximal interval I ⊆ [0, +∞) with |r(w(I))| = 1, I is
left-closed and right-open, and w restricted to I is a unit-speed regular curve.

That is, a sliding walk continues to move in the same direction at unit speed along the
same arc a ∈ D until it reaches one of its endpoints. Then it turns left or right into the
(unique) arc hit by a, follows it until one of its endpoints, and so on indefinitely.
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Since an SD D has finitely many arcs, a sliding walk w cannot be an injective function,
and there exists a minimum x and a unique interval [x, x′] ⊂ [0, +∞) such that the restriction
of w to [x, x′] is a simple closed curve (it is easy to see that either x = 0 or w(x) is an
endpoint of an arc of D). This curve separates the unit sphere into a right-side region and a
left-side region. Note that these two regions are well defined and unique for any sliding walk.

A right-handed walk (resp., left-handed walk) is a sliding walk that always turns right
(resp., left) upon hitting a new arc.

▶ Observation 5. The right-side region (resp., left-side region) of any right-handed walk
(resp., left-handed walk) on an SD D coincides with the eye of a clockwise swirl (resp.,
counterclockwise swirl) of D. ◀

The following lemma is illustrated in Figure 3a; a complete proof is in Appendix B.

▶ Lemma 6. The right-side region (resp., left-side region) of any sliding walk on an SD D
contains the eye of a clockwise swirl (resp., counterclockwise swirl) of D. ◀

If p is a point on the unit sphere, a clockwise walk (resp., counterclockwise walk) with
fulcrum p is a sliding walk that moves clockwise (resp., counterclockwise) around p in a
weakly monotonic fashion, without touching p or the point p′ antipodal to p.2 In Figure 3b,
the initial steps of a clockwise walk with fulcrum p are shown.

We are ready to settle the open problem stated in [12, Conjecture 2], [13, Conjecture 22],
and [8, Section 6]. In fact, we prove it not only for all SODs, but more generally for all SDs.

▶ Theorem 7. Any SD has at least two clockwise swirls and two counterclockwise swirls.

Proof. Let D be an SD; it suffices to prove that D has two clockwise swirls. Let S be any
clockwise swirl of D (found, for instance, as in Observation 5), and let E be the eye of S.
Let p be any point in the interior of E, and let w be a counterclockwise walk with fulcrum p

starting from the boundary of E.
Since S is a clockwise swirl, whenever w is in the interior of an arc a ∈ S, it moves toward

the endpoint of a not on E. In particular, w never reaches the interior of E, and therefore
the left-side region of w contains E. By Lemma 6, the right-side region of w contains the eye
of a clockwise swirl, which cannot be E. Hence, D has a clockwise swirl other than S. ◀

2.3 Swirl Adjacency
The missing proofs of the results in this section are found in Appendix D.

Recall from Section 2.1 that the swirl graph of any SOD is simple, i.e., any two swirls of
an SOD can have at most one arc in common. Moreover, any arc can contribute to at most
two swirls. On the contrary, the swirl graph of a general SD may be a non-simple multigraph,
since two swirls in an SD may share more than one arc, as shown in Figure 4a. Also, a single
arc of an SD can contribute to up to four different swirls (one on each side of each endpoint).

There are essentially two different ways in which two swirls may share multiple arcs. The
first configuration involves two contiguous swirls whose eyes are adjacent along an arc a of
the SD and also share an endpoint of a. An example is given by the yellow and the green
swirl in Figure 4a.

▶ Proposition 8. In any SD, pairs of contiguous swirls share exactly two arcs. ◀

2 In [13], such a walk is called “monotonic walk”, and p is called “pole”. We adopted a different terminology
in this paper to avoid confusion with the poles of k-oriented SDs.
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Figure 4 (a) The swirl in yellow shares two arcs with the contiguous swirl in green and two arcs
with the non-contiguous swirl in purple. (b) An attractor hull and a sliding walk within its interior.

Even if two swirls are not contiguous, they may still share multiple arcs: an example is
given by the yellow and purple swirls in Figure 4a.

▶ Proposition 9. In any SD, a swirl of degree d may share at most ⌊d/2⌋ arcs with the same
non-contiguous swirl. ◀

Two swirls are said to be discordant if one of them is clockwise and the other is counter-
clockwise; they are concordant otherwise.

▶ Proposition 10. In an SD, let S1 and S2 be two swirls that share more than one arc. The
following statements are equivalent: (i) S1 and S2 are not contiguous; (ii) S1 and S2 are
concordant; (iii) the eyes of S1 and S2 have antipodal interior points. ◀

2.4 Attractors
The missing proofs of the results in this section are found in Appendix E.

▶ Definition 11. An attractor of a k-oriented SD is a set of k points, no two of which are
antipodal, chosen among its poles and anti-poles. An attractor hull is the spherical convex
hull of an attractor.

Since no two poles are antipodal, a k-oriented SD has exactly 2k distinct attractors.

▶ Observation 12. Given any attractor A of a k-oriented SD D, each arc of D has a unique
vanishing point in A, and is collinear with it. ◀

▶ Proposition 13. The k poles of a k-oriented SD cannot be all collinear. Thus, all attractor
hulls have non-empty interiors. ◀

To state the following results, we have to define the terms intersect, cross, and thrust. By
intersect we simply mean “have a non-empty intersection”. Thus, two arcs intersect even
if they only share an endpoint. Instead, an arc a crosses a curve γ when their intersection
includes an isolated point x internal to a, such that any neighborhood of x contains points
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of γ lying on both sides of a. Let R be a spherical polygon contained in the interior of a
hemisphere. We say that an arc a thrusts the boundary of R at a point x if a intersects the
boundary of R at x, as well as the interior of R.

▶ Proposition 14. If an arc of a k-oriented SD intersects the interior of an attractor hull
H, it intersects the boundary of H in at most one point. ◀

If D is an SD and R is a region of the unit sphere, we say that two points x and y are
R-connected (with respect to D) if there is a path with endpoints x and y that follows the
arcs of D while remaining within R. If such a path is internal to R (except for its endpoints
x and y, which may be on the boundary of R), then x and y are internally R-connected.

▶ Proposition 15. If an arc of a k-oriented SD D intersects the boundary of an attractor hull
H at a point x, then there is an arc of D that crosses the boundary of H at a point y, such
that x and y are H-connected (with respect to D) and lie on a same edge of H. Moreover, if
x ̸= y, then y is not a vertex of H. ◀

We say that an attractor hull is total if it coincides with the entire unit sphere. If an
attractor hull is not total, then it is contained in the interior of a hemisphere.

The following result justifies the choice of the term “attractor”.

▶ Proposition 16. Let H be an attractor hull of a k-oriented SD D. Then, there exist arcs
of D that intersect the interior of H. Moreover, any point of intersection between an arc of D
and the interior of H is internally H-connected with the vertices of the eye of a swirl of D.

Proof. Let A be an attractor of D, and let H be the spherical convex hull of A. If H is total,
there is nothing to prove, because D is connected and it has at least a swirl (see Section 2.1).

Otherwise, assume for a contradiction that no arc of D intersects H. Then, H is contained
in the interior of a spherically convex tile T (see Section 2.1). If a is any arc of D bounding
T , then T lies on one side of the great circle γ containing a, and therefore γ does not
intersect H. Hence, a is not collinear with any point in A ⊂ H, contradicting Observation 12.
Consequently, there is an arc of D that intersects H, and by Proposition 15 there is also an
arc that intersects the interior of H (note that H has an interior, due to Proposition 13).

Now, let x be any point of intersection between an arc of D and the interior of H, and let
w be a sliding walk that starts from x and follows each arc in the direction of its vanishing
point in A, which exists due to Observation 12. An example of such a sliding walk is shown
in Figure 4b. Since H is convex and w always moves toward a point of A ⊂ H without ever
reaching it, we conclude that w never leaves the interior of H. Thus, either the left-side
or the right-side region of w is entirely contained in the interior of H. In turn, this region
contains the eye of a swirl, due to Lemma 6. ◀

▶ Corollary 17. In any k-oriented SD D, the interior of any attractor hull contains the eye
of a swirl of D. ◀

▶ Proposition 18. Given an SD D, any great circle on the unit sphere is crossed by at least
three arcs of D. ◀

▶ Proposition 19. Let H be a non-total attractor hull of a k-oriented SD D, and let x be
a point of intersection between an arc of D and the interior of H. Then, there are three
distinct arcs of D that thrust the boundary of H at three distinct points, not all lying on the
same edge of H, all of which are internally H-connected with x. ◀

The previous result cannot be improved, as there are k-oriented SDs whose arcs thrust
the boundary of an attractor hull at exactly three points, two of which lie on the same edge.
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3 Minimal Arrangements

In this section, we will derive all the results listed in Table 1.

▶ Proposition 20. There are no 1-oriented or 2-oriented SDs.

Proof. The poles of such SDs would be collinear, which contradicts Proposition 13. ◀

An attractor partition for a k-oriented SD D is a collection of internally disjoint non-total
attractor hulls of D that collectively cover the unit sphere. The vertices and edges of an
attractor partition are the vertices and edges of the attractor hulls that constitute it.

▶ Lemma 21. Let D be a k-oriented SD with an attractor partition S consisting of m

attractor hulls. Then, D has at least m non-contiguous swirls, each of which has an eye in
the interior of a different attractor hull of S. Moreover, D has at least ⌈3m/2⌉ arcs that
thrust edges of S, and no arc of D thrusts the boundaries of more than two attractor hulls.

Proof. Since the attractor hulls constituting S are internally disjoint, Proposition 16 guar-
antees that each of their interiors contains a swirl of D. Such swirls are distinct and
non-contiguous, because their eyes do not share any boundary points.

Moreover, Proposition 19 ensures that at least three arcs of D thrust the boundary of
each attractor hull of S. Also, no arc of D thrusts the boundary of any attractor hull of S
at more than one point, due to Proposition 14. Hence, no arc of D thrusts the boundaries
of more than two attractor hulls of S. We conclude that D has at least ⌈3m/2⌉ arcs that
thrust boundaries of attractor hulls of S. ◀

3.1 3-Oriented SDs
Observe that no 3-oriented SDs are degenerate, otherwise their three poles would be collinear,
contradicting Proposition 13. In fact, there is essentially one possible configuration for the
poles of a 3-oriented SD, and the set of its 23 = 8 attractor hulls constitutes an attractor
partition. We call each attractor hull of a 3-oriented SD an octant (see Figure 5a).

▶ Theorem 22. Any 3-oriented SD has at least eight swirls and 12 arcs. Moreover, there
are matching examples that are SODs.

Proof. Since any such SD has an attractor partition consisting of m = 8 octants, it follows
from Lemma 21 that it has at least m = 8 swirls and 3m/2 = 12 arcs. A 3-oriented SOD
with exactly eight swirls and 12 arcs is shown in Figure 5a. ◀

3.2 4-Oriented SDs
There are essentially two possible configurations of four poles on a sphere. Starting from
three poles determining eight octants, a fourth pole can be placed either in the interior of
an octant, giving rise to a non-degenerate configuration with alignment (3, 3, 3, 3), or on
the boundary between two octants, giving rise to a degenerate configuration with alignment
(2, 2, 2, 3). Due to Proposition 13, there are no other configurations.

Every non-degenerate 4-oriented SD has an attractor partition consisting of six strictly
convex quadrilaterals, which we call sextants.3 An example is in Figure 5b.

3 The term “sextant” traditionally refers to a navigation instrument. Its name is derived from the fact
that a sextant’s arc covers 60 degrees, which is one sixth of a circle. In this paper, we use the term to
indicate each of six regions that partition a sphere.
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(a) (b)

Figure 5 (a) A 3-oriented SD with exactly eight swirls and 12 arcs. (b) A non-degenerate
4-oriented SOD with exactly six swirls and ten arcs. Each arc has the same color as its vanishing
points. Dashed lines mark the boundaries of octants and sextants, respectively.

▶ Theorem 23. Any non-degenerate 4-oriented SD has at least six swirls and nine arcs; if it
is an SOD, it has at least ten arcs. The bounds are tight.

Proof. Since any such SD has an attractor partition consisting of m = 6 sextants, it follows
from Lemma 21 that it has at least m = 6 non-contiguous swirls and 3m/2 = 9 arcs. These
six swirls, one per sextant, are called sextant swirls.

It remains to prove that any non-degenerate 4-oriented SOD D has at least ten arcs. Let
G be the subgraph of the swirl graph of D induced by its sextant swirls. As we recalled in
Section 2.1, the swirl graph of D is simple, planar, and bipartite; therefore, so is G. We will
prove that G has at most eight edges.

Recall that G has six vertices. If the partite sets of G have 1 and 5 vertices, then G has
at most five edges. If the partite sets of G have 2 and 4 vertices, then G has at most eight
edges. Finally, if the partite sets of G have 3 and 3 vertices, then G has at most eight edges,
because the complete bipartite graph K3,3 is not planar. Thus, G has at most eight edges.

Since a swirl involves at least three arcs, and each arc of an SOD contributes to at most
two swirls, the arcs of D that are involved in sextant swirls are at least 6 × 3 − 8 = 10, and
hence D has at least ten arcs.

A non-degenerate 4-oriented SD with exactly six swirls and nine arcs is obtained by
perturbing the poles of the SD in Figure 6a. A non-degenerate 4-oriented SOD with exactly
six swirls and ten arcs is shown in Figure 5b. ◀

As for degenerate 4-oriented SDs, we treat them as special cases of k-oriented SDs with
alignment (2, 2, . . . , 2, k − 1). It turns out that all of these SDs have the same minimum
number of swirls and arcs, for any k ≥ 4. However, since they do not have an attractor
partition for k > 4, analyzing them will require an ad-hoc technique.

▶ Theorem 24. If k ≥ 4, any k-oriented SD with alignment (2, 2, . . . , 2, k − 1) has at least
six swirls and nine arcs; if it is an SOD, it has at least 11 arcs. The bounds are tight.

Proof. All poles lie on a same great circle γ, except for one pole p. Due to Proposition 18, γ

is crossed by at least three arcs, which must have p as a vanishing point. Let H and H ′ be
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Figure 6 (a) A 4-oriented SD with alignment (2, 2, 2, 3) having exactly six swirls and nine arcs.
(b) A 4-oriented SOD with alignment (2, 2, 2, 3) having exactly six swirls and 11 arcs.

the two hemispheres bounded by γ, with p ∈ H. Let w be a clockwise walk with fulcrum p

starting from the interior of H, with the property that the arcs with vanishing point p are
followed in the direction of p (as opposed to the anti-pole −p). Clearly, w always remains
within H, and it takes at least three distinct arcs with vanishing points on γ to do a complete
turn around p. Note that such arcs lie entirely in the interior of H. Similarly, there are at
least three arcs lying in the interior of H ′, which yields nine arcs in total.

There are 2k − 2 distinct attractor hulls in H. By Proposition 16, each of them contains
the eye of a swirl; let E be one of these eyes. Let γ′ be a great circle through p that intersects
the interior of E. Note that γ′ separates H into two parts, each of which contains an attractor
hull, and hence the eye of a swirl distinct from E. Thus, there are at least three swirls whose
eyes are in H; for the same reason, there are at least three swirls whose eyes are in H ′.

Let G be the subgraph of the swirl graph induced by these six swirls; we will prove that,
in an SOD, G has at most seven arcs. Observe that, in any of these swirls, at most two arcs
may have p as a vanishing point (otherwise the eye would not be spherically convex), and at
most one of them may cross γ. Recall from Section 2.1 that G is simple and bipartite. Hence,
at most two arcs may be shared among the three swirls whose eyes are in H, and at most two
arcs may be shared among the other three swirls. Thus, G has at most three arcs crossing γ

and at most four other arcs. Therefore, the six swirls involve at least 6 × 3 − 7 = 11 arcs.
Matching examples for k = 4 are shown in Figure 6; adding “dummy poles” on the great

circle that already contains three of them yields examples for all k > 4, as well. ◀

3.3 5-Oriented SDs
There are essentially four distinct configurations of five poles. By Proposition 13, the poles
cannot all be collinear; nonetheless, four of them may lie on a same great circle, giving rise
to a configuration with alignment (2, 2, 2, 2, 4), which was already discussed in Theorem 24.

If three poles lie on a same great circle γ, we have two possible alignments: (2, 3, 3, 3, 3) if
the two remaining poles are collinear with a pole on γ (see Figure 8a), and (3, 3, 3, 4, 4) other-
wise. Each of these alignments completely determines the combinatorics of the configuration.
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(a) (b)

Figure 7 (a) A 5-oriented SD with alignment (2, 3, 3, 3, 3) having exactly five swirls and eight
arcs. (b) A 5-oriented SOD with alignment (2, 3, 3, 3, 3) having exactly five swirls and nine arcs.

Finally, we have the non-degenerate alignment (4, 4, 4, 4, 4). To see why all configurations
of five poles with this alignment are equivalent, consider four poles with alignment (3, 3, 3, 3).
The great circles through pairs of these poles partition each sextant into four spherical
triangles. Since these 24 triangles are all equivalent, placing a fifth pole in the interior of any
one of them yields combinatorially equivalent configurations with alignment (4, 4, 4, 4, 4).

▶ Theorem 25. Any 5-oriented SD with alignment (2, 3, 3, 3, 3) has at least five swirls.
Moreover, there are SDs with alignment (2, 3, 3, 3, 3) that have exactly five swirls and eight
arcs, and SODs with alignment (2, 3, 3, 3, 3) that have exactly five swirls and nine arcs.

Proof. As shown in Figure 8a, any SD with alignment (2, 3, 3, 3, 3) has an attractor partition
consisting of m = 5 attractor hulls. It follows from Lemma 21 that it has at least m = 5 non-
contiguous swirls. An SD and an SOD with the desired properties are found in Figure 7. ◀

By perturbing the red poles in Figure 7, one obtains configurations of SDs and SODs with
alignments (3, 3, 3, 4, 4) and (4, 4, 4, 4, 4) with the same characteristics. In the latter case,
however, we can actually construct SDs and SODs with only four swirls (which is minimum).

▶ Lemma 26. If a 5-oriented SD has exactly four swirls, then it has at least nine arcs. There
are matching non-degenerate examples.

Proof. It is not restrictive to focus on non-degenerate SDs, because the poles of a degenerate
SD can be perturbed without altering the number of swirls and arcs, making it non-degenerate.

As argued above, there is essentially a unique non-degenerate configuration of five poles,
in the sense that drawing great circles through pairs of such poles yields combinatorially
equivalent partitions of the sphere into spherical polygons. Moreover, it is easy to see that
there is always a spherically convex pentagonal attractor hull. In fact, without loss of
generality, we may assume that the five poles p1, . . . , p5 are the vertices of such an attractor
hull H; likewise, the anti-poles p′

1, . . . , p′
5 are also vertices of a spherically convex pentagonal

attractor hull H ′, as shown in Figure 10.
Assume that there are four swirls; we will identify four interior-disjoint regions of the

sphere where their eyes must be located. By Corollary 17, every attractor hull contains
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(a) (b)

Figure 8 (a) A configuration of five poles with alignment (2, 3, 3, 3, 3) and an attractor partition.
(b) A non-degenerate 5-oriented SD with exactly four swirls and nine arcs.
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Figure 9 Sketch of the two cases in the proof of Lemma 26.
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Figure 10 Case 1 in the proof of Lemma 26.

the eye of a swirl. Hence, H ′ contains the eye of a swirl: this is the first region. Consider
the attractor hull H, as well as the five quadrilateral attractor hulls Q1, . . . , Q5, each of
which shares an edge with H ′ and two non-consecutive vertices with H. For example, Q1
has vertices p′

4, p′
5, p3, p1 and contains p2 in its interior, etc., as shown in Figure 9. The eyes

of the remaining three swirls must be shared among these six attractor hulls.
We will distinguish two cases. In Case 1, no eye lies in the intersection of more than

two of these six attractor hulls. Since the Qi’s are all equivalent, we may assume that the
three eyes are in the regions H ∩ Q1, Q2 ∩ Q3, and Q4 ∩ Q5, as sketched in Figure 9a. Since
the interior of the attractor hull p′

1p′
3p5p4 only intersects the chosen region H ′ (Figure 10a),

there must be an eye in their intersection. However, this implies that the attractor hull
p′

3p′
5p2p1 has no eyes in its interior (Figure 10b), which is a contradiction.
In Case 2, an eye lies in the intersection of three of the six attractor hulls, say H ∩Q1 ∩Q2.

Without loss of generality, the other two eyes are in the regions Q3 and Q4 ∩ Q5, as sketched
in Figure 9b. Again, we can progressively reduce these four regions by finding attractor hulls
whose interiors intersect only one region, as detailed in Figure 11. Finally, we obtain the
four regions R1, R2, R3, R4 shown in Figure 11f, where the only pairs of regions that may
be connected by an arc are (R1, R3), (R2, R4), and (R3, R4). Indeed, observe that R2 and
R3 are equivalent to R1 and R4, respectively. Thus, we only have to verify that no arc can
connect R1 with R2 or with R4. Furthermore, due to Proposition 10, no two swirls may
share more than one arc, since no two regions have antipodal internal points. Hence, there
are at most three arcs that are shared between pairs of swirls. We conclude that the arcs
contributing to the four swirls are at least 4 × 3 − 3 = 9.

An SD with the desired properties is shown in Figure 8b. ◀

▶ Proposition 27. In a k-oriented SD, if two non-collinear arcs a and b have a common
vanishing point, then the great circle containing a does not intersect b, and vice versa.

Proof. The vanishing points of a and b are the two intersection points between the great
circles containing a and b. By definition of k-oriented SD, b does not intersect its vanishing
points, and thus it cannot intersect the great circle containing a, and vice versa. ◀
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Figure 11 Case 2 in the proof of Lemma 26.
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Figure 12 (a) If an arc a contributes to four swirls, the SD has at least eight arcs. (b) In an SD
with seven arcs, if a contributes to three swirls, only b and g may have a common vanishing point.

▶ Theorem 28. Any 5-oriented SD has at least eight arcs; if it is an SOD, it has at least
nine arcs.

Proof. Due to Theorem 7 and Lemma 26, we may assume that there are at least five swirls.
Recall from Section 2.3 that, since swirls may be contiguous, each arc of an SD may

contribute to up to four different swirls. If an arc a contributes to four swirls, it must hit
two arcs, and it must block (at least) four arcs, all of which are distinct (see Figure 12a).
Of these seven arcs, only the two hit by a cross the great circle containing a. Thus, by
Proposition 18, there must be another arc crossing this great circle, implying that there are
at least eight arcs in the SD.

Consider now an SD where an arc a is shared by exactly three swirls (two of which are
contiguous), and assume that there are fewer than eight arcs. As shown in Figure 12b, two
arcs b and e block a (where b contributes to the two contiguous swirls), and three arcs c, d,
f hit a. As in the previous case, there must be a seventh arc g crossing the great circle γ

containing a, otherwise the only two arcs crossing γ would be b and e. Since there are at
least five swirls, the arcs c, d, e, f , g must form two swirls away from a, with eyes located on
opposite sides of γ (we recalled in Section 2.1 that the interior of any hemisphere contains
the eye of a swirl). We argue that only two of these seven arcs may have a common vanishing
point. Indeed, by Proposition 27, incident arcs cannot have a common vanishing point. Also,
the extensions of some arcs necessarily hit other arcs, as the dashed lines in Figure 12b
illustrate. Again, Proposition 27 implies that such pairs of arcs do not have a common
vanishing point. In fact, the only two arcs that may have the same vanishing points are b

and g. Hence, there must be at least six distinct poles, and the SD cannot be 5-oriented.
Finally, assume that each arc contributes to at most two swirls, and recall that there are

at least five swirls, each of which has degree at least three. Then, the arcs that contribute to
such swirls are at least ⌈(5 × 3)/2⌉ = 8. Consequently, a 5-oriented SD has at least eight arcs.

As for SODs, recall that their swirl graphs are simple and bipartite, and each arc
contributes to at most two swirls. Since each of the five swirls has degree at least three, and a
bipartite graph on five vertices has at most six edges, we conclude that the arcs contributing
to the five swirls are at least 5 × 3 − 6 = 9. Thus, a 5-oriented SOD has at least nine arcs. ◀
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(a) (b)

Figure 13 (a) A 6-oriented SD with alignment (3, 3, 3, 3, 3, 3) having exactly four swirls and six
arcs. (b) A 6-oriented SOD with alignment (3, 3, 3, 3, 3, 3) having exactly four swirls and eight arcs.

3.4 6-Oriented SDs and Beyond

As it turns out, 6-oriented SDs and SODs with alignment (3, 3, 3, 3, 3, 3) already achieve the
absolute minimum in terms of the number of swirls, as well as the number of arcs.

▶ Theorem 29. Any SD has at least two clockwise swirls, two counterclockwise swirls, and
six arcs. Any SOD has at least eight arcs. Moreover, there are matching examples that are
6-oriented with alignment (3, 3, 3, 3, 3, 3).

Proof. We recalled in Section 2.1 that any SOD has at least eight arcs; this was proved in [8].
Also, we have proved in Theorem 7 that any SD has at least two clockwise swirls and two
counterclockwise swirls. It remains to prove that any SD has at least six arcs.

Let S1 and S2 be two clockwise swirls of an SD D, of degrees d1 ≥ 3 and d2 ≥ 3,
respectively. Without loss of generality, assume that d1 ≥ d2. Due to Proposition 10, S1 and
S2 cannot be contiguous, because they are concordant.

Thus, by Proposition 9, S1 and S2 share at most ⌊d2/2⌋ arcs. As a consequence, the arcs
involved in these two swirls are at most d1 + d2 − ⌊d2/2⌋ = d1 + ⌈d2/2⌉. If d1 ≥ 4, then
d1 + ⌈d2/2⌉ ≥ 6, and D has at least six arcs.

So, assume that d1 = d2 = 3 and exactly d1 + ⌈d2/2⌉ = 5 arcs are involved in S1 and S2.
In this case, the two swirls share exactly one arc a ∈ D. Let γ be the great circle containing
a. Of the arcs involved in S1 and S2, two hit a and two block a; only the latter cross γ. Due
to Proposition 18, there must be a third arc that crosses γ, and so D has at least six arcs.

Matching examples with alignment (3, 3, 3, 3, 3, 3) are found in Figure 13. ◀

By perturbing the poles of the SDs in Figure 13, one obtains a continuum of configurations
of 6-oriented SDs and SODs having the absolute minimum number of swirls and arcs. These
include degenerate and non-degenerate configurations of all the alignments listed in Table 1
for k = 6 (except for (2, 2, 2, 2, 2, 5), which is covered in Theorem 24). Adding “dummy
poles” to these configurations yields similar results for k > 6. In particular, this covers all
non-degenerate configurations for any k ≥ 6, i.e., those with alignment (k−1, k−1, . . . , k−1).
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A Previous Results

A.1 Properties of SDs
We summarize what is currently known about SDs. Proofs of the following statements are
found in [13]; although they were stated and proved only for SODs, the reader may verify
that none of the proofs makes use of the one-sidedness of the arrangements.

▶ Proposition 30. Every arc in an SD hits exactly two distinct arcs, one at each endpoint. ◀

▶ Proposition 31. No two arcs in an SD intersect in more than one point. ◀

▶ Proposition 32. Given an SD D, the relative interior of any great semicircle on the unit
sphere is crossed by at least one arc of D.4 ◀

▶ Proposition 33. An SD partitions the unit sphere into spherically convex regions. ◀

▶ Definition 34. A tile is each of the (spherically convex) regions into which the unit sphere
is partitioned by an SD.

▶ Corollary 35. In an SD, no tile (including its boundary) contains two antipodal points. ◀

▶ Proposition 36. Removing any one arc from an SD and taking the union of the remaining
arcs yields a connected subset of the unit sphere. ◀

▶ Corollary 37. The union of all the arcs in an SD is a connected set. ◀

▶ Proposition 38. An SD with n arcs partitions the unit sphere into n + 2 tiles. ◀

▶ Proposition 39. In an SD D, let S be a swirl of degree d.
The union of the d arcs of S separates the unit sphere in two regions, exactly one of which
is spherically convex; this region is a spherical d-gon called the eye E of S.
The only points of intersection between pairs of arcs of S are the vertices of E. ◀

▶ Proposition 40. In an SD, if the eyes of two distinct swirls have intersecting interiors,
then their boundaries are disjoint. ◀

▶ Definition 41. The swirl graph of an SD D is the undirected multigraph on the set of
swirls of D having an edge between two swirls for every arc in D shared by the two swirls.

▶ Theorem 42. The swirl graph of any SD is planar; moreover, any SD has at least one
clockwise swirl and at least one counterclockwise swirl. ◀

The following results on SDs were proved in [8]. Again, they were stated only for SODs,
but their proofs do not require the one-sidedness of the arrangements.

▶ Lemma 43. Given an SD D, the relative interior of any hemisphere contains the eye of at
least one swirl of D. ◀

▶ Theorem 44. Every SD has at least four swirls. ◀

4 In [13], the word “intersect” is used instead of “cross”. However, the proof therein actually yields this
slightly stronger result.
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A.2 Properties of SODs
In addition to the previous properties, SODs also enjoy the following ones. All proofs are
found in [13].

▶ Proposition 45. In an SOD, any arc coincides with an edge of a tile. ◀

▶ Proposition 46. In an SOD D, let S be a swirl of degree d, and let E be its eye. Then,
the tiles of D adjacent to E are exactly d; any two such tiles are either disjoint or intersect
only along a single arc of S. ◀

▶ Theorem 47. The swirl graph of any SOD is a simple planar bipartite graph with non-empty
partite sets. ◀

Since there are at least four swirls in an SOD (Theorem 44) and the swirl graph of an
SOD is simple, planar and bipartite (Theorem 47), it easily follows that any SOD has at
least eight arcs. A proof is found in [8].

▶ Corollary 48. Every SOD has at least eight arcs. ◀

B Sliding Walks

We will prove Lemma 6; our technique is inspired by the proof of Lemma 43 (cf. [8, Lemma 9]).

▶ Lemma 49. The right-side region (resp., left-side region) of any sliding walk on an SD D
contains the eye of a clockwise swirl (resp., counterclockwise swirl) of D.

Proof. Let w be any sliding walk and let A be its right-side region. Consider a right-handed
walk w′ starting from any point on the boundary of A, as shown in Figure 3a. Note that
w′ never leaves A, because it is a right-handed walk: upon reaching the boundary of A, w′

follows it clockwise until it reaches one of its vertices. Then it turns right, either remaining
on the boundary of A or entering its interior. In particular, the right-side region E of w′ is
contained in A. By Observation 5, E is the eye of a clockwise swirl.

For a similar reason, the left-side region of w contains the eye of a counterclockwise
swirl. ◀

C Arc Doubling

An overlap in an SD is any endpoint shared by two arcs.5 Observe that an overlap must lie
in the relative interior of some arc.

Let D be an SD, and let a ∈ D. For a sufficiently small positive real number ϵ, we define
the ϵ-doubling of a. This operation consists of replacing a with two disjoint arcs a′ and a′′

defined as follows. Let x and y be the endpoints of a, located in the relative interiors of arcs
b ∈ D and c ∈ D, respectively. Then, a′ and a′′ also hit b at x′ and x′′, respectively, such
that the geodesic arc x′x′′ has length ϵ and its midpoint is x. Similarly, a′ and a′′ hit c at
points ϵ apart with midpoint y. Moreover, any arc of D that hit a or shared and endpoint
with a is now slightly shortened to hit either a′ or a′′.

▶ Observation 50. ϵ-doubling an arc of an SD preserves the number of its swirls. ◀

5 In [13], SODs with overlaps are called “degenerate”. We adopted a different terminology in this paper
to avoid confusion with degenerate k-oriented SDs.
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▶ Proposition 51. Any SD, possibly with overlaps, can be converted into an SOD without
overlaps by ϵ-doubling of arcs.

Proof. Observe that ϵ-doubling an arc eliminates any overlaps involving that arc without
introducing new overlaps, provided that ϵ is sufficiently small. Furthermore, if an arc is hit
from both sides, the ϵ-doubling operation replaces it with two arcs, each of which is hit only
from one side. ◀

D Swirl Adjacency

These are the missing proofs from Section 2.3.

▶ Proposition 52. In any SD, pairs of contiguous swirls share exactly two arcs.

Proof. Let S1 and S2 be contiguous swirls sharing two arcs a and b, with a hitting b at
point p. The great circles containing a and b subdivide the unit sphere into four spherical
lunes. Each of the eyes of S1 and S2, being spherically convex, lies in one such spherical lune;
moreover, the two eyes lie in lunes that are adjacent along a. Thus, if there is a third arc c

shared by S1 and S2, then a must hit c at the endpoint opposite to p. However, any arc of a
swirl hits exactly one other arc in the same swirl, meaning that c cannot be shared by S1
and S2. ◀

▶ Corollary 53. If two swirls S1 and S2 of an SD D are contiguous along an arc a ∈ D, then
ϵ-doubling a separates the eyes of S1 and S2 and results in a swirl graph where S1 and S2
are connected by a single edge.

Proof. By Proposition 52, the swirls S1 and S2 share exactly two arcs a and b. Thus,
ϵ-doubling a yields two swirls that share only b. ◀

▶ Proposition 54. In any SD, non-contiguous swirls may only share arcs that are not
consecutive in either swirl.

Proof. Assume that two swirls S1 and S2 share two arcs a and b that are consecutive in S1,
with a hitting b at a vertex p of the eye of S1. By Proposition 39 applied to S2, we have that
p must be a vertex of the eye of S2, as well. It follows that S1 and S2 are contiguous. ◀

▶ Corollary 55. In any SD, a swirl of degree d may share at most ⌊d/2⌋ arcs with the same
non-contiguous swirl.

Proof. In a cycle of d arcs, any subset of more than ⌊d/2⌋ arcs contains a pair of consecutive
arcs. If these arcs were shared with the same non-contiguous swirl, Proposition 54 would be
contradicted. ◀

▶ Proposition 56. In an SD, let S1 and S2 be two swirls that share more than one arc. The
following statements are equivalent.

S1 and S2 are not contiguous.
S1 and S2 are concordant.
The eyes of S1 and S2 have antipodal interior points.

Proof. Contiguous swirls are obviously discordant. Also, their eyes lie on the same side of
one of the two arcs shared by the two swirls. Hence, both eyes lie in the same hemisphere
determined by that arc, and therefore cannot have antipodal (interior) points.
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We have proved that the first statement is implied by the second and by the third. We will
now prove the converse. Let S1 be a swirl with eye E1, and let E′

1 be the spherical polygon
antipodal to E1. Let a and b be two arcs that are shared between S1 and a non-contiguous
swirl S2; by Proposition 54, a and b are disjoint.

The two great circles containing a and b subdivide the unit sphere into four spherical
lunes, one of which, say L1, contains E1. Assume that the lune containing the eye E2 of S2
is adjacent to L1. Without loss of generality, E1 and E2 lie on the same side of a and on
opposite sides of b. However, this implies that S1 and S2 are contiguous along b, which is a
contradiction.

We conclude that E2 lies in the lune L2 opposite to L1. Note that a and b, departing
from E1, follow the edges of L1 in opposite directions. Then, they continue along the edges
of L2 in the same directions, implying that S1 and S2 are concordant swirls.

Let p1 ∈ L1 and p2 ∈ L2 be the endpoints of a, and let q1 ∈ L1 and q2 ∈ L2 be the
endpoints of b. Since p1 and q1 are vertices of E1, the segment p1q1 is contained in E1.
Likewise, p2q2 is contained in E2. Since a and b are shorter than great semicircles, the points
p′

2 and q′
2, antipodal to p2 and q2 respectively, lie outside of a and b. Nonetheless, p′

2, q′
2 ∈ L1.

It follows that p1q1 and p′
2q′

2 cross each other at a point x internal to E1. The point x′

antipodal to x lies in p2q2, and is therefore internal to E2. ◀

E Attractors

These are the missing proofs from Section 2.4.

▶ Observation 57. Given any attractor A of a k-oriented SD D, each arc of D has a unique
vanishing point in A, and is collinear with it. ◀

▶ Proposition 58. The k poles of a k-oriented SD cannot be all collinear. Thus, all attractor
hulls have non-empty interiors.

Proof. Assume for a contradiction that all poles of a k-oriented SD D (and therefore all
its anti-poles) lie on the same great circle γ. Due to Proposition 32, there is an arc a ∈ D
that crosses γ, say at x. By definition of k-oriented SD, a is collinear with a pole f(a) ̸= x.
However, since f(a) and x lie on γ, then so does a, contradicting the fact that a crosses γ at
x.

Thus, no k points among poles and anti-poles can be collinear, and therefore their
spherical convex hull must have a non-empty interior. It follows that all attractors hulls have
non-empty interiors. ◀

▶ Proposition 59. If an arc of a k-oriented SD intersects the interior of an attractor hull
H, it intersects the boundary of H in at most one point.

Proof. By Observation 57, any arc a is collinear with a vanishing point p within H. Also, by
definition of k-oriented SD, a does not contain p. It follows that, if a intersects the interior of
H, it cannot intersect its boundary in two points, because such points would be on opposite
sides of p (or coincident with p). ◀

▶ Proposition 60. If an arc of a k-oriented SD D intersects the boundary of an attractor hull
H at a point x, then there is an arc of D that crosses the boundary of H at a point y, such
that x and y are H-connected (with respect to D) and lie on a same edge of H. Moreover, if
x ̸= y, then y is not a vertex of H.
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Proof. If D has an arc that crosses H at x, there is nothing to prove. Otherwise, Observa-
tion 57 implies that D has an arc a collinear with an edge e of H containing x. Moreover, x

lies in the interior of a; thus, a partially overlaps with e. Hence, there is a vanishing point
v ∈ e that a cannot reach, by Observation 57. So, a hits an arc a′ ∈ D at a point y ∈ e,
strictly between x ∈ e and v ∈ e. Therefore, y is internal to e, it is H-connected with x, and
a′ crosses e at y. ◀

▶ Proposition 61. Let H be an attractor hull of a k-oriented SD D. Then, there exist arcs
of D that intersect the interior of H. Moreover, any point of intersection between an arc of D
and the interior of H is internally H-connected with the vertices of the eye of a swirl of D.

Proof. Let A be an attractor of D, and let H be the spherical convex hull of A. If H is total,
there is nothing to prove, because D is connected and it has at least a swirl (cf. Corollary 37
and Theorem 7).

Otherwise, assume for a contradiction that no arc of D intersects H. Then, H is contained
in the interior of a spherically convex tile T (cf. Proposition 33). If a is any arc of D bounding
T , then T lies on one side of the great circle γ containing a, and therefore γ does not
intersect H. Hence, a is not collinear with any point in A ⊂ H, contradicting Observation 57.
Consequently, there is an arc of D that intersects H, and by Proposition 60 there is also an
arc that intersects the interior of H (note that H has an interior, due to Proposition 58).

Now, let x be any point of intersection between an arc of D and the interior of H, and let
w be a sliding walk that starts from x and follows each arc in the direction of its vanishing
point in A, which exists due to Observation 57. An example of such a sliding walk is shown
in Figure 4b. Since H is convex and w always moves toward a point of A ⊂ H without ever
reaching it, we conclude that w never leaves the interior of H. Thus, either the left-side
or the right-side region of w is entirely contained in the interior of H. In turn, this region
contains the eye of a swirl, due to Lemma 49. ◀

▶ Corollary 62. In any k-oriented SD D, the interior of any attractor hull contains the eye
of a swirl of D.

Proof. If H is an attractor hull, by Proposition 61 there is a point x of intersection between
an arc of D and the interior of H. Also, there is an eye E of a swirl of D whose vertices lie
in the interior of H and are H-connected with x. Since H is spherically convex, its interior
contains E. ◀

It is easy to see that, for a fixed k-oriented SD, any hemisphere contains an attractor hull.
Such an attractor hull is unique, provided that no poles lie on the hemisphere’s boundary.
Thus, we may view Corollary 62 as a stronger version of Lemma 43 for k-oriented SDs.

▶ Proposition 63. Let R be a spherical polygon contained in the interior of a hemisphere
of the unit sphere, and let x be a point of an SD D that lies in the interior of R. Then,
for every great circle γ through x, there are arcs of D that thrust the boundary of R at two
distinct points y and z located on opposite sides of γ (or on γ). Moreover, y and z, are
internally R-connected with x.

Proof. Let p be a point of intersection between γ and the boundary of a hemisphere containing
R. Let y (resp., z) be the first point where a clockwise (resp., counterclockwise) walk with
fulcrum p starting from x intersects the boundary of R. In the special case where x lies on
an arc of D contained in γ, we choose the two walks to go in different directions, so y and z

are necessarily distinct. Also, y and z clearly satisfy the desired conditions. ◀
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▶ Proposition 64. Let R be a spherical polygon contained in the interior of a hemisphere of
the unit sphere, and let D be an SD having an arc with an endpoint x internal to R. Then,
there are arcs of D that thrust the boundary of R in at least three distinct points that are all
internally R-connected with x.

Proof. Let x be an internal point of R where an arc of D hits another arc. Let γ be any
great circle through x; by Proposition 63, there are two distinct points y and z where arcs of
D thrust the boundary of R. Moreover, x, y, and z are R-connected.

Assume that y and z are not collinear with x. Then there is a great circle γ′ through x

such that y and z are strictly on the same side of γ′. By Proposition 63, there is a third
point w lying on the opposite side of γ′ (or on γ′) where an arc of D thrusts the boundary of
R. Moreover, x and w are internally R-connected, implying that y, z, and w are internally
R-connected.

Assume that y and z are collinear with x. Because x is shared by two arcs a, b ∈ D, there
is a point x′ in R ∩ (a ∪ b) such that x′ is not collinear with y and z. Hence, there is a great
circle γ′ through x′ such that y and z are strictly on the same side of γ′ (because y and z

are not antipodal, since R lies in the interior of a hemisphere). Now we can conclude the
proof as in the previous case, observing that x and x′ are internally R-connected. ◀

Observe that Propositions 63 and 64 do not require R to be spherically convex or even
simply connected.

We can also prove a version of Proposition 64 in the limit case where R is an entire
hemisphere.

▶ Proposition 65. Given an SD D, any great circle on the unit sphere is crossed by at least
three arcs of D.

Proof. Let γ be a great circle, and let p, p′ ∈ γ be two antipodal points which divide γ into
two great semicircles. By Proposition 32, the interior of each of these two semicircles is
crossed by an arc of D. Note that the two crossing points x and y are distinct, because the
two semicircles have disjoint interiors. Now, x and y divide γ into two arcs, at least one of
which is not shorter than a great semicircle. The interior of this arc is crossed by an arc of
D, again by Proposition 32. Thus, we have found three distinct points where arcs of D cross
γ. Since a geodesic arc cannot cross a great circle in more than one point, there must be
three distinct arcs of D crossing γ. ◀

We can improve Propositions 63 and 64 in the case where R is an attractor hull.

▶ Proposition 66. Let H be a non-total attractor hull of a k-oriented SD D, and let x be a
point of D that lies in the interior of H. Then, for every great circle γ through x, there are
three distinct arcs of D that thrust the boundary of H at three distinct points, all internally
H-connected with x, two of which lie on strictly opposite sides of γ (i.e., not on γ).

Proof. Since any non-total attractor hull is a spherical polygon contained in the interior
of a hemisphere, Proposition 64 implies that there are at least three points, all internally
H-connected with x, where arcs of D thrust the boundary of H. Moreover, each of these
points belongs to a distinct arc of D, due to Proposition 59. To conclude the proof, it suffices
to show that two such points lie on opposite sides of γ.

Proposition 30 implies that x is internal to a unique arc a ∈ D. By Proposition 59, at
least one endpoint x′ of a lies in the interior of H; a hits another arc a′ ∈ D at x′.
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Assume first that a crosses γ at x, i.e., a does not lie on γ. Proceeding as in the proof of
Proposition 63, we construct two paths from x, following a in opposite directions away from
γ. The points y and z thus obtained are therefore on strictly opposite sides of γ.

Assume now that a does not cross γ, hence it lies on it. Therefore, a′ crosses γ at x′,
which is internally H-connected with x. Thus, we can repeat the previous argument with x′

and a′ in lieu of x and a. ◀

▶ Proposition 67. Let H be a non-total attractor hull of a k-oriented SD D, and let x be
a point of intersection between an arc of D and the interior of H. Then, there are three
distinct arcs of D that thrust the boundary of H at three distinct points, not all lying on the
same edge of H, all of which are internally H-connected with x.

Proof. By Proposition 66, there are three arcs of D that thrust the boundary of H at distinct
points, all internally H-connected with x. If no edge of H contains all such points, we are
finished. Otherwise, all such points lie on the same edge e of H. Also, e is unique, because at
least one of the three points is internal to e. Let γ be a great circle through x that does not
intersect e (note that γ exists because e is shorter than a great semicircle). By Proposition 66
there is a point, internally H-connected with x and not lying on e, where an arc of D thrusts
the boundary of H. Such an arc is distinct from the previous ones due to Proposition 59. ◀

It is easy to see that the previous results cannot be improved, as there are k-oriented SDs
whose arcs thrust the boundary of an attractor hull at exactly three points, two of which lie
on the same edge of the attractor hull.

Let A be an attractor of and SD D, and let H be the attractor hull relative to A, i.e.,
the spherical convex hull of A. A point of A is a boundary point if it lies on the boundary of
H, and is an internal point if it lies in the interior of H.

▶ Proposition 68. Let H be a non-total attractor hull relative to an attractor A of an SD D,
and let h1, h2, . . . , hm be the boundary points of A, taken in clockwise order. Let 3 ≤ i ≤ m,
and let p be the point of intersection between h1hi−1 and h2hi. Assume that the interiors of
the triangles h1h2p and hi−1hip are devoid of points of A, while the triangle h1phi contains
at most one internal point of A. Then, if a point x of D lies in the interior of h1phi, there
exists an arc of D that crosses the interior of h1hi at a point internally H-connected with x.

Proof. Let q be the unique internal point of A contained in h1phi, if such point exists. Let
w be a sliding walk starting from x with the following properties. As long as w is in the
interior of an arc a ∈ D with a vanishing point v ∈ h1hihi+1 . . . hm, w proceeds along a in
the direction of v. Instead, if a has a vanishing point v ∈ ph2h3 . . . hi−1, then w follows a in
the direction away from v. If q is a vanishing point of a, then w follows a in the direction of
q if and only if w is outside of the triangle h1qhi.

Observe that h1phi is the intersection of all the triangles of the form h1vhi, with v in
the spherical polygon ph2h3 . . . hi−1. Therefore, w always remains within the interior of
h1phi, approaching the triangle h1qhi as long as it is outside of it, and then approaching
h1hi while it is in h1qhi. Thus, w eventually crosses the interior of h1hi at a point internally
H-connected with x. ◀

Note that Proposition 68 cannot be improved, as there are counterexamples where h1h2p

or hi−1hip contains an internal attractor point or h1phi contains two internal attractor
points.
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▶ Corollary 69. With the notation of Proposition 68, if a point x of D lies in the interior of
h1h2h3, and h1h2h3 contains at most one internal point of A, then there is an arc of D that
crosses the interior of h1h3 at a point internally H-connected with x.

Proof. It is immediate from Proposition 68 with i = 3. Note that p = h2, and therefore the
triangles h1h2p and hi−1hip degenerate to the edges h1h2 and h2h3. Since the interiors of
such edges are empty, they are automatically devoid of points of A. ◀

We say that an attractor hull of a k-oriented SD is void if it is a spherical k-gon, i.e.,
there are no poles or anti-poles in its interior. In the case of void attractor hulls, we have an
improved version of Proposition 67.

▶ Proposition 70. Let H be a void non-total attractor hull of a k-oriented SD D, and let x

be a point of D that lies in the interior of H. Then, there are at least three distinct arcs of
D that cross (respectively, thrust) the boundary of H at distinct points, not all lying on the
same two edges of H, all of which are H-connected (respectively, internally H-connected)
with x.

Proof. Note that it suffices to prove that there are arcs of D that thrust (rather than cross)
the boundary of H in at least three distinct points, not all lying on the same two edges of H,
all of which are internally H-connected with x. Indeed, given these points, Proposition 60
easily implies that there are also at least three crossing points with the desired properties.
In addition, Proposition 59 implies that all such points lie on distinct arcs of D.

Let Y be the set of points on the boundary of H such that, for all y ∈ Y there is an
arc of D that thrusts the boundary of H at y, and y is internally H-connected with x. By
Proposition 67, Y contains at least three points, and no single edge of H contains all of them.
Assume for a contradiction that all points of Y lie within two edges of H, say e1 = h1h2 and
e2 = hi−1hi. Without loss of generality, e1 contains at least two points of Y , say y1 and y2,
and e2 contains at least one point of Y , say y3.

Recall that y1 and y3 are internally H-connected (with respect to D) by a path P1 along
D. Similarly, y2 and y3 are internally H-connected (with respect to D) by a path P2. It is
easy to recognize that the union of P1 or P2 (whose points are all internal to H, except for
y1, y2, y3) contains a point x′ such that either x′ = p or x′ lies in the interior of one of the
triangles h1phi and h2hi−1p.

We can exclude the case x′ = p, because any arc a ∈ D that has p in its interior and
avoids the interiors of h1phi and h2hi−1p must overlap with h1hi−1 or with h2hi. This is
because a is collinear with a vertex of H, and there are no vertices of H in the interior of
h1h2 or in the interior of hi−1hi. Then, by Proposition 59, a has an endpoint in the interior
of h1hi−1 or in the interior of h2hi, where it hits another arc a′ ∈ D, which in turn intersects
the interior of h1phi or h2hi−1p, respectively.

Therefore, without loss of generality, we may assume that x′ is in the interior of h1phi.
Also, x′ is internally H-connected with x, because it lies on P1 or on P2. Note that H and
x′ satisfy the hypotheses of Proposition 68, because H is void. Thus, there is an arc of D
that crosses h1hi at an internal point x′′, which is internally H-connected with x′ (hence
with x). If h1hi is an edge of H, we have reached a contradiction, because x′′ ∈ Y , but x′′ is
not in e1 or in e2.

Otherwise, h1hi is a diagonal of H; let γ be the great circle containing h1hi. By
Proposition 66, since x′′ lies in the interior of H, there is an arc of D that thrusts the
boundary of H at a point z on the side of γ opposite to e1 and e2. Moreover, z is internally
H-connected with x′′, and therefore with x. Hence z ∈ Y , which contradicts the fact that z

is not in e1 or in e2.
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We conclude that no two edges of H contain all points of Y , as desired. ◀

Again, Proposition 70 cannot be improved, in the sense that there are counterexamples
where exactly one attractor point lies in the interior of H.

F Open Problems

We conclude this paper with some directions for future research.
Although we have proved all the results listed in Table 1, which include all non-degenerate

configurations of k-oriented SDs and SODs, several degenerate configurations are still
unexplored. These include 6-oriented SDs with alignment (2, 3, 3, 3, 4, 4) and (4, 4, 4, 4, 4, 4),
both of which have two triplets of collinear poles (in the former case, one pole lies at the
intersection of the two great circles containing all other poles). In fact, even classifying all
degenerate configurations of k ≥ 6 poles is a challenge in itself.

▶ Open Problem 1. Extend Table 1 to all degenerate k-oriented SDs and SODs for k ≥ 6.

In particular, Table 1 still leaves a small uncertainty on the minimum number of swirls
in a 5-oriented SD with alignment (3, 3, 3, 4, 4), which is either four or five. Although the
analysis in Lemma 26 can give insights on this configuration, it is not quite sufficient.

▶ Open Problem 2. Determine if there are 5-oriented SDs with alignment (3, 3, 3, 4, 4)
having exactly four swirls.

Figure 8b shows a non-degenerate 5-oriented SD with exactly four swirls and nine arcs.
By ϵ-doubling the green and the red arc, we obtain a non-degenerate 5-oriented SOD with
exactly four swirls and 11 arcs. However, there is still a gap between this number and the
absolute minimum number of arcs in a non-degenerate 5-oriented SOD, which is nine.

▶ Open Problem 3. Determine if there exist non-degenerate 5-oriented SODs with exactly
four swirls and fewer than 11 arcs.

In Section 1.1, we remarked that, for any sufficiently large k, there are k-oriented SODs
that are not the visibility map of any vertex-hidden point in a polygonal scene, due to the
main result of [6]. It would be interesting to determine if this is true for all k.

▶ Open Problem 4. Determine all values of k such that any k-oriented SOD is the visibility
map of a vertex-hidden point in a k-edge-oriented polygonal scene.

Furthermore, to address our original motivating question in Section 1.2, we would like to
find examples of k-edge-oriented polygonal scenes matching the numbers in the last column
of Table 1. The main contribution of [8] is a first step in this direction, as it provides a
polygonal scene where a vertex-hidden point sees exactly eight edges.

▶ Open Problem 5. For every k, determine whether there are k-edge-oriented polygonal
scenes where a vertex-hidden point sees a number of edges that matches the minimum number
of arcs in a non-degenerate k-oriented SOD.

In Theorem 7, we proved that any SD has at least two clockwise swirls and two counter-
clockwise swirls. However, this says nothing about whether these swirls are contiguous.

▶ Open Problem 6. Determine if all SDs have at least two clockwise swirls and two
counterclockwise swirls, all of which are non-contiguous.
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Theorem 7 cannot be improved for 4-oriented SDs, since it is possible to slightly modify
the SD in Figure 6a to obtain a 4-oriented SD with alignment (2, 2, 2, 3) having exactly two
clockwise swirls. Doubling some of its edges also yields an SOD with the same property.
However, perhaps Theorem 7 can be improved for 3-oriented SDs.

▶ Open Problem 7. Determine if all 3-oriented SDs have at least four clockwise swirls and
four counterclockwise swirls.

Since every octant of a 3-oriented SD is a void attractor hull, it immediately follows from
Corollary 69 that the interiors of all three edges of each octant must be crossed by arcs. Thus,
the swirl graph of any 3-oriented SD with exactly 12 arcs has an induced subgraph isomorphic
to the cubical graph. However, this is not enough to characterize the swirl graphs of such
minimal 3-oriented SDs: in fact, there are 3-oriented SDs that have more than eight swirls in
spite of having exactly 12 arcs (some swirls may revolve around poles and be contiguous to
some of the other swirls).

▶ Open Problem 8. Characterize the swirl graphs of 3-oriented SDs with exactly 12 arcs.

Observe that, in a k-oriented SD, the degree of a swirl cannot exceed 2k, because at most
two arcs in the swirl may have the same vanishing points. Nonetheless, the degree of a swirl
may very well exceed k, although it is shown in [13] that any swirling SOD must have a swirl
of degree exactly three. Still, not much is known about non-swirling SODs.

▶ Open Problem 9. Determine if there is a k-oriented SOD where all swirls have degrees
exceeding k.

Theorem 29 implies that there is a continuum of configurations of six poles that allow for
the construction of 6-oriented SDs with exactly six arcs. In principle, however, there may be
non-degenerate configurations of six (or more) poles that make this construction impossible.

▶ Open Problem 10. Determine if it is always possible to construct a non-degenerate
6-oriented SD with exactly six arcs, given the locations of its six poles.
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