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Abstract In this paper we investigate the computa-

tional power of a set of mobile robots with limited visi-

bility. At each iteration, a robot takes a snapshot of its

surroundings, uses the snapshot to compute a destina-

tion point, and it moves toward its destination. Robots

are punctiform and memoryless, they operate in Rm,

they have local reference systems independent of each

other, and are activated asynchronously by an adver-

sarial scheduler. Moreover, robots are non-rigid, in that

they may be stopped by the scheduler at each move be-

fore reaching their destination (but are guaranteed to

travel at least a fixed unknown distance before being

stopped).

We show that despite these strong limitations, it is

possible to arrange 3m + 3k of these weak entities in

Rm to simulate the behavior of a stronger robot that
is rigid (i.e., it always reaches its destination) and is

endowed with k registers of persistent memory, each of

which can store a real number. We call this arrangement
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a TuringMobile. In its simplest form, a TuringMobile

consisting of only three robots can travel in the plane

and store and update a single real number. We also

prove that this task is impossible with fewer than three

robots.

Among the applications of the TuringMobile, we fo-

cused on Near-Gathering (all robots have to gather in

a small-enough disk) and Pattern Formation (of which

Gathering is a special case) with limited visibility. Inter-

estingly, our investigation implies that both problems

are solvable in Euclidean spaces of any dimension, even

if the visibility graph of the robots is initially discon-

nected, provided that a small amount of these robots

are arranged to form a TuringMobile. In the special case

of the plane, a basic TuringMobile of only three robots

is sufficient.

1 Introduction

Framework and background. The investigations of sys-

tems of autonomous mobile robots have long moved

outside the boundaries of the engineering, control, and

AI communities. Indeed, the computational and com-

plexity issues arising in such systems are important re-

search topics within theoretical computer science, es-

pecially in distributed computing. In these theoretical

investigations, the robots are usually viewed as puncti-

form computational entities that live in a metric space,

typically R2 or R3, in which they can move. Each robot

operates in “Look-Compute-Move” (LCM) cycles: it

observes its surroundings, it computes a destination

within the space based on what it sees, and it moves
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toward the destination.1 Each robot as its own local

coordinate system. The only means of interaction be-

tween robots are observations and movements: that is,

communication is stigmergic. The robots, identical and

outwardly indistinguishable, are oblivious: when start-

ing a new cycle, a robot has no memory of its activities

(observations, computations, and moves) from previous

cycles (“every time is the first time”). In other words,

the robots have no persistent memory; for this reason,

they are sometime said to be memoryless. Clearly obliv-

iousness is a desirable property as it ensures a degree

of self-stabilization and fault-tolerance into the system

and its computations. Equally clear is that being mem-

oryless severely constrains the computational capabili-

ties of the robots.

There have been intensive research efforts on the

computational issues arising with such robots, and an

extensive literature has been produced in particular

in regard to the important class of Pattern Forma-

tion problems [10,20,22,23,31,33] as well as for Gather-

ing [1,2,4,9,11–14,16,21,28]; and Scattering [6,24]; see

also [8,15,34]. The goal of the research has been to un-

derstand the minimal assumptions needed for a team

(or swarm) of such robots to solve a given problem,

and to identify the impact that specific factors have on

feasibility and hence computability.

The most important factor is the power of the ad-

versarial scheduler that decides when each activity of

each robot starts and when it ends. The main adver-

saries (or “environments”) considered in the literature

are: synchronous, in which the computation cycles of

all active robots are synchronized, and at each cycle

either all (in the fully synchronous case) or a subset

(in the semi-synchronous case) of the robots are ac-

tivated, and asynchronous, where computation cycles

are not synchronized, each activity can take a different

and unpredictable amount of time, and each robot can

be independently activated at each time instant. An

important factor is whether a robot moving toward a

computed destination is guaranteed to reach it (i.e., it

is a rigid robot), or it can be stopped on the way (i.e., it

is a non-rigid robot) at a point decided by an adversary.

In all the above cases, the power of the adversaries is

limited by some basic fairness assumption. All the ex-

isting investigations have concentrated on the study of

(a-)synchrony, several on the impact of rigidity, some

on other relevant factors such as agreement on local

coordinate systems or on their orientation, etc.; for a

review, see [19].

1 Another model of swarm robotics, alternative to the LCM
one, is the “continuous” model. Some examples are found
in [5,7,25–27].

From a computational point of view, there is an-

other crucial factor: the visibility range of the robots,

that is, how much of the surrounding space they are

able to observe in a Look operation. In this regard, two

basic settings are considered: unlimited visibility, where

the robots can see the entire space (and thus all other

robots), and limited visibility, when the robots have a

fixed visibility radius. In the latter case, it is custom-

ary to assume that all robots have the same visibility

radius, which also implicitly provides a common unit

distance. In Section 6 we will show how to drop this

assumption.

While the investigations on (a-)synchrony and rigid-

ity have concentrated on all aspects of those assump-

tions, this is not the case with respect to visibility. In

fact, almost all research has assumed unlimited visi-

bility; few exceptions are the algorithms for Conver-

gence [4], Gathering [17,18,21], and Near-Gathering [28]

when the visibility range of the robot is limited. The

unlimited visibility assumption clearly greatly simpli-

fies the computational universe under investigation; at

the same time, it neglects the more general and realistic

one, which is still largely unknown.

Let us also stress that, in the existing literature,

all results on oblivious robots are for R1 and R2; the

only exception is the recent result on plane formation

in R3 by semi-synchronous rigid robots with unlimited

visibility [34]. No results exist for robots in higher di-

mensions.

Contributions. In this paper we contribute several con-

structive insights on the computational universe of obliv-

ious robots with limited visibility, especially asynchronous

non-rigid ones, in any dimension.

The first and main contribution is a technique to

construct a “moving Turing Machine” made solely of

oblivious non-rigid robots in Rm with limited visibility,

for any m ≥ 2. More precisely, we show how to arrange

3m+3k identical non-rigid oblivious robots in Rm with

a visibility radius of V + ε (for any ε > 0) and how to

program them so that they can collectively behave as a

single rigid robot in Rm with k persistent registers and

visibility radius V would. This team of identical robots

is informally called a TuringMobile.

We obtain this result by using a fundamental con-

struction called basic component of a TuringMobile,

which is itself a TuringMobile that is able to move in R2

while storing and updating a single real number. Inter-

estingly, we show that three robots are necessary and

sufficient to build such a basic component. The full-

fledged TuringMobile will then be built by arranging

multiple copies of this basic component side by side.
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We stress that the three robots forming a basic Tur-

ingMobile are asynchronous, that is, the scheduler makes

them move at independent arbitrary speeds, and each

robot takes the next snapshot an arbitrary amount of

time after terminating each move; furthermore, they

are anonymous, in that they are indistinguishable from

each other, and they all execute the same program to

compute their destination points. Notably, this program

only performs arithmetic operations, square roots, and

comparisons (hence no transcendental function has to

be computed by the robots).

Even the basic component of a TuringMobile is a

powerful construct that, once deployed in a swarm of

robots, can act as a rigid leader with persistent mem-

ory, allowing the swarm to overcome many handicaps

imposed by obliviousness, limited visibility, and asyn-

chrony. As examples we present a variety of applications

in Rm, with m ≥ 2.

First of all we show how a basic TuringMobile can

explore and search the space. We then show how it can

be employed to solve the long-standing open problem

of (Near-)Gathering with limited visibility in spite of

an asynchronous non-rigid scheduler and disagreement

on the axes, a problem still open without a Turing-

Mobile. Interestingly, the presence of the TuringMobile

allows Gathering to be done even if the initial visibil-

ity graph is disconnected (this does not change the fact

that there are cases in which Gathering is impossible,

as remarked in [4,21]). Finally we show how the arbi-

trary Pattern Formation problem can be solved under

the same conditions (asynchrony, limited visibility, pos-

sibly disconnected visibility graph, etc.).

There are limitations to the use of a TuringMobile
when deployed in a swarm of robots: The TuringMobile

must be always recognizable (e.g., by its unique shape)

so that other robots cannot interfere by moving too

close to the machine, disrupting its structure.

Also, when joining multiple basic components to

form a TuringMobile that simulates a robot with more

than one persistent register, we need to relax some of

our asynchrony assumptions. Namely, we need a subset

of the robots in the TuringMobile (one robot in each

basic component) to always take snapshots at the same

time, and thus have some form of synchrony.

The paper is organized as follows: In Section 2 we

give formal definitions, introducing mobile robots with

or without memory as oracle semi-oblivious real RAMs.2

In Section 3 we illustrate our implementation of the

TuringMobile, starting from the basic 3-robot compo-

2 The real RAM was introduced by Shamos in [29, Chap-
ter 2.3] (see also [30, Chapter 1.4]). It is a modified RAM
(i.e., Random-Access Machine, see [3, Chapter 1.2]) that can
natively operate on real numbers.

nent, and then explaining how to join multiple compo-

nents and how to work in higher dimensions. The cor-

rectness of the proposed construction is proved in Sec-

tion 4. In Section 5 we show how to apply the Turing-

Mobile to solve some fundamental problems for mobile

robots with limited visibility. As a by-product of these

applications, we also obtain a proof that two robots

with limited visibility are insufficient to build a device

that reliably stores and updates a real number and can

freely move in the plane. This implies in particular that

our basic three-robot TuringMobile design is optimal.

In Section 6 we conclude the paper with some extra

remarks and open problems.

2 Definitions and Preliminaries

2.1 Oracle Semi-Oblivious Real RAMs

Real random-access machines. A real RAM is a model

of computation defining a machine that can operate on

real numbers. That is, instead of just manipulating and

storing integers, the machine can handle arbitrary real

numbers and do infinite-precision operations on them.

It has a finite set of internal registers and an infinite or-

dered sequence of memory cells; each register and each

memory cell can hold a single real number, which the

machine can modify by executing its program.3

A real RAM’s instruction set contains at least the

four arithmetic operations, but it may also contain k-

th roots, trigonometric functions, exponentials, loga-

rithms, and other analytic functions, depending on the

application. The machine can also compare two real

numbers and branch depending on which one is larger.

The initial contents of the memory cells are the in-

put of the machine (we stipulate that only finitely many

of them contain non-zero values), and their contents

when the machine halts are its output. So, each pro-

gram of a real RAM can be viewed as a partial function

mapping tuples of reals into tuples of reals.

Remark 1 The real RAMs can at least compute the

Turing-computable partial functions over the integers.

Indeed, it is well known that all these functions can be

computed by traditional RAMs whose programs only

contain integer additions, subtractions, and compar-

isons. It is obvious that a real RAM running such a

program on an integer-valued input behaves exactly as

a traditional RAM, and therefore computes the same

partial function.

3 Nonetheless, the constant operands in a real RAM’s pro-
gram cannot be arbitrary real numbers, but have to be inte-
gers.
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Oracles and semi-obliviousness. We introduce the or-

acle semi-oblivious real RAM, which is a real RAM

with an additional “ASK” instruction. Whenever this

instruction is executed, the contents of all the memory

cells are replaced with new values, which are a function

of the numbers stored in the registers.

In other words, the machine can query an external

oracle by putting a question in its k registers in the form

of k real numbers. The oracle then reads the question

and writes the answer in the machine’s memory cells,

erasing all pre-existing data. The term “semi-oblivious”

comes from the fact that, every time the machine in-

vokes the oracle, it “forgets” everything it knows, ex-

cept for the contents of the registers, which are pre-

served.4

2. SUB =5
1. ADD 1
0. LOAD 0

5. HALT
4. JGZ =0
3. ASK3
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Fig. 1 An oracle semi-oblivious real RAM with a single reg-
ister before and after executing an “ASK” instruction. The
entire memory is overwritten by the oracle based on the num-
ber read from the register, which remains unaltered.

In spite of their semi-obliviousness, these real RAMs

with oracles are at least as powerful as Turing Machines

with oracles.

Theorem 1 Given an oracle Turing Machine, there is

an oracle semi-oblivious real RAM with one register

that computes the same partial function.

Proof Following van Melkebeek [32, Chapter 2.4.1], we

define an oracle Turing Machine as a Turing Machine

with an additional read-only tape containing the an-

swers to all possible oracle queries. The ith cell of the

oracle tape contains a symbol that is read by the ma-

chine whenever the head of the oracle tape is in position

i.

Given such a machine M , we construct an oracle

semi-oblivious real RAM with one registerM ′ that “sim-

ulates” M step by step. As already observed, a real

RAM can compute any Turing-computable partial func-

tion, and M ′ behaves as a real RAM as long as it does

not invoke its oracle. So, M ′ can encode and decode

the entire state of M , including the contents of its non-

oracle tapes and the positions of its heads on the tapes,

4 Observe that, in general, the machine cannot salvage its
memory by encoding its contents in the registers: since its
instruction set has only analytic functions, it cannot injec-
tively map a tuple of arbitrary real numbers into a single real
number.

as a single integer: indeed, the functions that encode

and decode a Turing Machine’s state are themselves

Turing-computable.

To simulate one step of M , M ′ encodes the current

state of M in its register and executes an “ASK” in-

struction. The oracle of M ′ reads the register, decodes

the state of M , fetches the position of the head on the

oracle tape, and answers with the symbol s that M

would read on its oracle tape at that position. Next,

M ′ finds s in the first cell of its own memory. So, M ′

decodes the contents of the register to retrieve the state

of M , and uses it along with s to compute the next state

of M . ut

2.2 Mobile Robots as Real RAMs

Mobile robots. Our oracle semi-oblivious real RAM model

can be reinterpreted in the realm of mobile robots. A

mobile robot is a computational entity, modeled as a

geometric point, that lives in a metric space, typically

R2 or R3. It can observe its surroundings and move

within the space based on what it sees. The same space

may be populated by several mobile robots, each with

its local coordinate system, and static objects.

To compute its next destination point, a mobile

robot executes a real RAM program with input a rep-

resentation of its local view of the space. After moving,

its entire memory is erased, but the content of its k

registers is preserved. Then it makes a new observa-

tion; from the observation data and the contents of the

registers, it computes another destination point, and so

on. If k = 0, the mobile robot is said to be oblivious.

Note that robots have no notion of time or absolute

positions.

The actual movement of a mobile robot is controlled

by an external scheduler. The scheduler decides how

fast the robot moves toward its destination point, and it

may even interrupt its movement before the destination

point is reached. If the movement is interrupted mid-

way, the robot makes the next observation from there

and computes a new destination point as usual. The

robot is not notified that an interruption has occurred,

but it may be able to infer it from its next observation

and the contents of its registers. For fairness, the sched-

uler is only allowed to interrupt a robot after it has cov-

ered a distance of at least δ in the current movement,

where δ is a positive constant unknown to the robots.

This guarantees, for example, that if a robot keeps com-

puting the same destination point, it will reach it in a

finite number of iterations. If δ =∞, the robot always

reaches its destination, and is said to be rigid.
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Mobile robots, revisited. A mobile robot in Rm with k

registers can be modeled as an oracle semi-oblivious real

RAM with 2m+ k + 1 registers as follows.

– m position registers hold the absolute coordinates

of the robot in Rm.

– m destination registers hold the destination point of

the robot, expressed in its local coordinate system.

– 1 timestamp register contains the time of the robot’s

last observation.

– k true registers correspond to the registers of the

robot.

As the RAM’s execution starts, it ignores its input,

erases all its registers, and executes an “ASK” instruc-

tion. The oracle then fills the RAM’s memory with the

robot’s initial position p, the time t of its first observa-

tion, and a representation of the geometric entities and

objects surrounding the robot, as seen from p at time

t.

The RAM first copies p and t in its position registers

and timestamp register, respectively. Then it executes

the program of the mobile robot, using its true registers

as the robot’s registers and adding m+1 to all memory

addresses. This effectively makes the RAM ignore the

values of p and t, which indeed are not supposed to be

known to the mobile robot.

When the robot’s program terminates, the RAM’s

memory contains the output, which is the next des-

tination point p′, expressed in the robot’s coordinate

system. The RAM copies p′ into its destination regis-

ters, and the execution jumps back to the initial “ASK”

instruction.

Now the oracle reads p, p′, and t from the RAM’s

registers (it ignores the true registers), converts p′ in

absolute coordinates (knowing p and the orientation of

the local coordinate system of the robot) and replies

with a new position p′′, a timestamp t′ > t, and ob-

servation data representing a snapshot taken from p′′

at time t′. To comply with the mobile robot model, p′′

must be on the segment pp′, such that either p′′ = p′

or pp′′ ≥ δ. The execution then proceeds in the same

fashion, indefinitely.

Note that in this setting the oracle represents the

scheduler. The presence of a timestamp in the query

allows the oracle to model dynamic environments in

which several independent robots may be moving con-

currently (without a timestamp, two observations from

the same point of view would always be identical). Also

note that in this formulation there are no actual robots

moving through an environment in time, but only RAMs

which query an oracle, which in turn provides a “vir-

tual” environment and timeline by writing information

in their memory.

Snapshots and limited visibility. In the mobile robot

model we consider in this paper, an observation is sim-

ply an instantaneous snapshot of the environment taken

from the robot’s position. In turn, each entity and ob-

ject that the robot can see is modeled as a dimension-

less point in Rm. A mobile robot has a positive visibility

radius V : it can see a point in Rm if and only if it is lo-

cated at distance at most V from its current position.5

If V =∞, the robot is said to have unlimited visibility.

As we hinted at earlier in this section, a mobile robot

has its own local reference system in which all the co-

ordinates of the objects in its snapshots are expressed.

The origin of a robot’s local coordinate system always

coincides with the robot’s position (hence it follows the

robot as it moves), and its orientation and handedness

are decided by the scheduler (and remain fixed). Dif-

ferent mobile robots may have coordinate systems with

a different orientation or handedness. (However, when

two robots have the same visibility radius, they also

implicitly have the same unit of distance.)

So, a snapshot is just a (finite) list of points, each

of which is an m-tuple of real numbers.

Simulating memory and rigidity. The main contribu-

tion of this paper, loosely speaking, is a technique to

turn non-rigid oblivious robots into rigid robots with

persistent memory, under certain conditions. More pre-

cisely, if 3m+ 3k identical non-rigid oblivious robots in

Rm with a visibility radius of V + ε (for any ε > 0) are

arranged in a specific pattern and execute a specific al-

gorithm, they can collectively act in the same way as a

single rigid robot in Rm with k > 0 persistent registers

and visibility radius V would. This team of identical

robots is informally called a TuringMobile, from now

on abbreviated as tm.

We stress that the robots of a tm are asynchronous,

that is, the scheduler makes them move at independent

arbitrary speeds, and each robot takes the next snap-

shot an arbitrary amount of time after terminating each

move. The robots are also anonymous, in that they are

indistinguishable from each other, and they all execute

the same program.

Although our technique is fairly general and has a

plethora of concrete applications (some are discussed

in Section 5), a “perfect simulation” is achieved only

under additional conditions on the scheduler or on the

environment. These conditions will be discussed toward

the end of Section 3.2.

5 Note, in particular, that robots do not obstruct each
other’s line of sight: two robots are able to see each other
whenever they are at distance at most V , even if there is a
third robot between them.
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Fig. 2 Basic TuringMobile at rest, not drawn to scale (µ and λ should be smaller); here and in later figures, boldface letters
indicate robots, normal uppercase letters indicate points, and lowercase letters indicate numbers or angles (with the exception
of V in Figure 4, which is uppercase but indicates a visibility radius, i.e., a number)

3 Implementing the TuringMobile

3.1 Basic Implementation

We will first describe how to construct a basic version of

the tm with just three oblivious non-rigid asynchronous

robots in R2. This tm can remember a single real num-

ber and rigidly move in the plane by fixed-length steps:

its layout is sketched in Figure 2. In Section 3.2, we

will show how to combine several copies of this basic

machine to obtain a full-fledged tm.

It should be noted that in Section 5.2 we will prove

that our basic tm design is minimal. That is, it is im-

possible for only two robots with limited visibility to

implement a device that can remember a real number

and rigidly move anywhere in the plane. Intuitively, this

is because two anonymous robots always form a sym-

metric figure, and are unable to break symmetry. Thus,

they can never agree on a direction of movement, and

cannot get too far from their starting positions without

losing vision of each other. By contrast, three robots

can form a scalene triangle, which allows them to break

symmetry and elect a leader, which in turn decides the

direction of movement.

General layout. The elements of the basic tm are three

robots: a Commander robot, a Number robot, and a

Reference robot. We will denote as C, N , and R, respec-

tively, the points where these robots are located. The

three robots have the same visibility radius of V + ε,

where ε� V , and there is always a disk of radius ε con-

taining all three of them. As a consequence, the three

robots will always be able to see one another.

In the following, we will describe the behavior of the

basic tm assuming it is “isolated”, i.e., no fourth robot

is visible to any of its three members. In Sections 3.2

and 5, we will discuss when and how this assumption

can be removed, and how the basic tm can be utilized

in more general and interesting contexts.

Position at rest. When the machine is “at rest”, ∠NRC
is a right angle, the distance between C and R is some

fixed value d� ε, and the distance between R and N is

approximately 2d. More precisely, N lies on a segment

QQ′ of length λ, where λ� d is some fixed value, such

that Q has distance 2d−λ/2 from R and Q′ has distance

2d+ λ/2 from R.

Representing numbers. The distance between the Ref-

erence robot and the Number robot when the tm is at

rest is a representation of the real number r that the

machine is currently storing. There are several possible

ways of defining such a code: an easy one is to encode

the number r as RN = α(r) = 2d+ arctan(r) ·λ/π and

to decode it as r = tan
(
(RN − 2d) · π/λ

)
. A different

method that does not use transcendental functions is

discussed in Section 6.
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Algorithm 1 Basic TuringMobile in R2

1: Identify Commander, Number, Reference (located in C, N , R, respectively)
2: if I am Commander then
3: Compute Virtual Commander C′ (based on R and N) and points Ai, Si, S′i, Bi, Di

4: if I am in C′ then Choose final destination Di and move to Ai

5: else if ∃i ∈ {1, 2, 3} s.t. I am on segment C′Ai but not in Ai then Move to Ai

6: else if ∃i ∈ {1, 2, 3} s.t. I am in Ai then
7: Move to point P on segment SiS′i such that PSi = f(NQ)
8: else if ∃i ∈ {1, 2, 3} s.t. I am in triangle AiSiS′i but not on segment SiS′i then
9: Move to the intersection of segment SiS′i with the extension of line AiC

10: else if ∃i ∈ {1, 2, 3} s.t. I am on SiS′i and NQ = CSi then Move to Bi

11: else if ∃i ∈ {1, 2, 3} s.t. I am in triangle BiSiS′i but not in Bi then Move to Bi

12: else if ∃i ∈ {1, 2, 3} s.t. I am on segment BiDi but not in Di then Move to Di

13: else if I am Number then
14: if CR = d+ µ or CR = d′ then
15: Compute Virtual Commander C′ (based on C and R) and points D′i
16: if CR = d+ µ and I am not in D′1 then Move to D′1
17: else if CR = d′ and ∠NRC > 90◦ and I am not in D′2 then Move to D′2
18: else if CR = d′ and ∠NRC < 90◦ and I am not in D′3 then Move to D′3
19: else
20: Compute Virtual Commander C′ (based on R and N) and points Si, S′i
21: if ∃i ∈ {1, 2, 3} s.t. C is on segment SiS′i then

22: Move to point P on segment QQ′ such that PQ = CSi

23: else if I am Reference then
24: if Commander and Number are not tasked with moving (based on the above rules) then
25: γ = circle centered in C with radius d
26: γ′ = circle with diameter CN
27: Move to the intersection of γ and γ′ closest to R

Movement directions. The Commander’s role is to de-

cide in which direction the machine should move next,

and to initiate the movement. When the machine is at

rest, the Commander may choose among three possible

final destinations, labeled D1, D2, and D3 in Figure 2.

The segments CD1, CD2, and CD3 all have the same

length µ, with λ � µ � d, and form angles of 120◦

with one another, in such a way that D1 is collinear

with R and C.

Around the center of each segment CDi there is a

midway triangle τi, drawn in gray in Figure 2. This

is an isosceles triangle of height λ whose base lies on

CDi and has length λ as well. When the Commander

decides that its final destination is Di, it moves along

the segment CDi, but it takes a small detour in the

midway triangle τi, as we will explain shortly.

Structure of the algorithm. Algorithm 1 is the program

that each element of the basic tm executes every time

it computes its next destination point.

Since the robots are anonymous, they first have to

determine their roles, i.e., who is the Commander, etc.

(line 1 of the algorithm). We make the assumption that

there exists a disk of radius ε containing only the tm

(close to its center) and no other robot. Using the fact

that the two closest robots must be the Commander and

the Reference robot and that the two farthest robots

must be the Commander and the Number robot, it is

then easy to determine who is who (these properties

will be preserved throughout the execution, as we will

see in the next section).

Once it has determined its role, each robot exe-

cutes a different branch of the algorithm (cf. lines 2, 13,

and 23). The general idea is that, when the Comman-

der realizes that the machine is in its rest position, it

decides where to move next, i.e., it chooses a final desti-

nation Di. This choice is based on the number r stored

in the machine’s “memory” (i.e., the number encoded

by RN), the relative positions of the visible robots ex-

ternal to the machine, and also on the application, i.e.,

the specific program that the tm is executing.

When the Commander has decided its final destina-

tion Di, the entire machine moves by the vector
−−→
CDi,

and the Number robot also updates its distance from

the Reference robot to represent a different real num-

ber r′. Again, this number is computed based on the

number r the machine was previously representing, the

relative positions of the visible robots external to the

machine, and the specific program: in general, the new

distance between N and Q is a function f of the old

distance.

When this is done, the machine is in its rest position

again, so the Commander chooses a new destination,

and so on, indefinitely.
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Fig. 3 Coordinated movement of the Commander and the Number robot, to cope with their asynchronous and non-rigid
nature. (a) The Commander stops on SiS′i, recording the number that the machine is going to represent next (which is a
function f of the number currently represented by the Number robot). (b) The Number robot moves within QQ′ to match the
Commander’s position in SiS′i. (c) Finally, the Commander reaches Di.

Coordinating movements. Note that it is not possible

for all three robots to translate by
−−→
CDi at the same

time, because they are non-rigid and asynchronous. If

the scheduler stops them at arbitrary points during

their movement, after the structure of the machine has

been destroyed, they will be incapable of recovering all

the information they need to resume their movement

(recall that they are oblivious and they have to com-

pute a destination point from scratch every time).

To prevent this, the robots employ various coordi-

nation techniques. First the Commander moves to the

middle triangle τi, and precisely to its base vertex Ai, as

shown in Figure 3(a) (cf. line 5 of Algorithm 1). Then

it positions itself on the altitude SiS
′
i, in such a way

as to indicate the new number r′ that the machine is
supposed to represent. That is, the Commander picks

the point on SiS
′
i at distance f(NQ) from Si (lines 6

and 7). Even if it is stopped by the scheduler before

reaching such a point, it can recover its destination by

simply drawing a ray from Ai to its current position

and intersecting it with SiS
′
i (lines 8 and 9).

When the Commander has reached SiS
′
i, it waits to

let the Number robot adjust its position on the segment

QQ′ to match that of the Commander on SiS
′
i, as in

Figure 3(b) (lines 21 and 22). This effectively makes the

Number robot represent the new number r′. Note that

the Number robot can do this even if it is stopped by

the scheduler several times during its march, because

the Commander keeps reminding it of the correct value

of r′: since r′ depends on the old number r, the Number

robot would be unable to re-compute r′ after it has

forgotten r.

Once the Number robot has reached the correct po-

sition on QQ′, the Commander starts moving again

(line 10) and finally reaches Di while the other robots

wait, as in Figure 3(c) (lines 11 and 12).

When the Commander has reached Di, the Num-

ber robot realizes it and makes the corresponding move

(lines 14–18) while the other two robots wait. The des-

tination point of the Number robot is D′i, as shown in

Figure 2. Finally, when the Number robot is in D′i, the

Reference robot realizes it and makes the final move to

bring the tm back into a rest position (lines 23–27).

Note that the number r′ stored in the machine is

not erased after these final movements, because both

the Number and Reference robot move by the same

vector. As a consequence of this, the basic tm is able

to retain memory of the real number it is storing, in

spite of the obliviousness of the individual robots that

compose it.

Computing the Virtual Commander. After the Com-

mander has left its rest position and is on its journey

to Di, the tm loses its initial shape, and identifying the

Di’s and the midway triangles becomes a non-trivial

task. To simplify this task, the robots try to guess where

the Commander’s original rest position may have been

by computing a point called the Virtual Commander

C ′.

Assuming that the Reference and Number robots

have not moved from their rest positions, the Virtual

Commander is easily computed: draw a line ` through

R perpendicular to RN ; then, C ′ is the point on ` at

distance d from R that is closest to C. Once we have

C ′, we can construct the points Di with respect to C ′

(in the same way as we did in Figure 2 with respect to

C). This technique is used by Algorithm 1 at lines 3

and 20.
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Fig. 4 Sketch of a complete TuringMobile, not drawn to scale (ε and σ should be smaller). All robots are in the central disk
of radius σ; the one drawn in black is the Leader

In the special case where the Commander has reached

its final destination Di and the Reference robot has not

moved from its rest position (but perhaps the Num-

ber robot has moved), the Virtual Commander can also

be computed. This situation is recognized because the

distance between the Commander and the Reference

robot is either maximum (i.e., d+µ) or minimum (i.e.,

d′ =
√
d2 + µ2 − dµ, by the law of cosines), as Figure 2

shows. If the distance is maximum, then C must coin-

cide with D1; otherwise, C coincides with D2 (if the

angle ∠NRC is obtuse) or D3 (if the angle ∠NRC is

acute). Since we know the position of R and one of the

Di’s, it is then easy to determine the other Di’s. This

technique is used at line 15.

The Reference robot’s behavior. To know when it has

to start moving, the Reference robot simply executes

Algorithm 1 from the perspective of the Commander

and the Number robot: if neither of them is supposed to

move, then the Reference robot starts moving (line 24).

We have seen that the Number robot can determine

its destination D′i solely by looking at the positions of

C and R, which remain fixed as it moves. For the Ref-

erence robot the destination point is not as easy to de-

termine, because the distance between C and N varies

depending on what number is stored in the tm.

However, the Reference robot knows that its move

must put the tm in a rest position. The condition for this

to happen is that its destination point be at distance

d from C (line 25) and form a right angle with C and

N (line 26). There are exactly two such points in the

plane, but one of them has distance much greater than

µ from R, and hence the Reference robot will pick the

other (line 27).

As the Reference robot moves toward such a point,

all the above conditions must be preserved, due to the

asynchronous and non-rigid nature of the robots. This

is not a trivial requirement, and we will prove that it is

indeed fulfilled in Section 4.

3.2 Complete Implementation

We have shown how to implement a basic component

of the tm in R2 consisting of three robots: a Comman-

der, a Number, and a Reference. The basic component

is able to rigidly move by a fixed distance µ in three

fixed directions, 120◦ apart from one another. It can

also store and update a single real number.
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Planar layout. We can obtain a full-fledged tm in R2 by

putting several tiny copies of the basic component side

by side as in Figure 4.

For the machine to work, we stipulate that there ex-

ists a disk of radius σ that contains all the robots con-

stituting the tm and no extraneous robot, where σ � ε.

The distance between two consecutive basic compo-

nents of the tm is roughly s, where d � s � σ. This

makes it easy for the robots to tell the basic components

apart and determine the role of each robot within its

basic component.

Since a basic component of the tm is a scalene trian-

gle, which is chiral, all its members implicitly agree on a

clockwise direction even if they have different handed-

ness. Similarly, all robots can agree that the vector from

the Number robot of any component to the Reference

robot of the same component points in the “left” di-

rection (in spite of the fact that robots, by themselves,

do not have a common frame of reference). Hence, all

robots in the tm can agree on a “leftmost” basic com-

ponent, whose Commander is said to be the Leader of

the whole machine.

Coordinated movements. All the basic components of

the tm are always supposed to agree on their next move

and proceed in a roughly synchronous way. To achieve

this, when all the basic components are in a rest posi-

tion, the Leader decides the next direction among the

three possible, and executes line 4 of Algorithm 1. Then

all the other Commanders see where the Leader is go-

ing, and copy its movement.

When all the Commanders are in their respective

Ai’s, they execute line 7 of the algorithm, and so on.

At any time, each robot executes a line of the algorithm

only if all its homologous robots in the other basic com-

ponents of the tm are ready to execute that line or have

already executed it; otherwise, it waits.

When the last Reference robot has completed its

movement, the machine is in a rest position again, and

the coordinated execution repeats with the Leader choos-

ing another direction, etc.

Simulating a non-oblivious rigid robot. Let a program

for a rigid robot R in R2 with k persistent registers and

visibility radius V be given. We want the tm described

above to act as R, even though its constituting robots

are non-rigid and oblivious.

Our tm consists of 2 + k basic components, each

dedicated to memorizing and updating one real num-

ber. These 2 + k numbers are the x coordinate and the

y coordinate of the destination point of R and the con-

tents of the k registers of R. We will call the first two

numbers the x variable and the y variable, respectively.

When the tm is in a rest position, its x and y vari-

ables represent the coordinates of the destination point

of R relative to the Leader of the machine. Whenever

the tm moves by µ in some direction, these values are

updated by subtracting the components of an appro-

priate vector of length µ from them. Of course, this

update is computed by the Commanders of the first

two basic components of the machine, which communi-

cate it to their respective Number robots, as explained

in Section 3.1.

Let P be the destination point of R. Since the tm

can only move by vectors of length µ in three possible

directions, it may be unable to reach P exactly. So, the

Leader always plans the next move trying to reduce its

distance from P until this distance is at most 2σ (this

is possible because µ� d� σ).

When the Leader is close enough to P , it “pretends”

to be in P , and the tm executes the program of R to

compute the next destination point. Recall that the vis-

ibility radius of R is V , and that of the robots of the

tm is V + ε. Since σ � ε, each member of the tm can

therefore see everything that would be visible to R if it

were in P , and compute the output of the program of

R independently of the other members. The only thing

it should do when it executes the program of R is sub-

tract the values of the x and y variables to everything

it sees in its snapshot, discard whatever has distance

greater than V from the center of the snapshot, and of

course discard the robots of the tm and replace them

with a single robot in the center of the snapshot (rep-

resenting the robot itself). Then, the robots that are

responsible for updating the x and y variables add the

relative coordinates of the new destination point of R
to these variables. Similarly, the robots responsible for

updating the k registers of R do so.

Note that the above simulation works also in the

special case where R is supposed to update its registers

without moving. The Leader will move by µ in any di-

rection, followed by the entire machine (because this is

the only way the tm can update its registers), and the

x and y variables will be updated with the old position

of the Leader.

Restrictions. The above tm correctly simulatesR under

certain conditions. The first one is that, if all robots are

indistinguishable, then no robot extraneous to the tm

may get too close to it (say, within a distance of σ of

any of its members). This kind of restriction cannot

be dispensed with: whatever strategy a team of obliv-

ious robots employs to simulate a single non-oblivious

robot’s behavior is bound to fail if extraneous robots

join the team creating ambiguities between its mem-

bers. Nevertheless, the restriction can be removed if we



TuringMobile: A Turing Machine of Oblivious Mobile Robots with Limited Visibility and Its Applications 11

stipulate that the members of a tm are distinguishable

from all other robots.

Another difficulty comes from the fact that, if the

tm is made of more than one basic component and its

Commanders are all in their respective Ai’s and ready

to update the values represented by the machine, they

may get their snapshots at different times, due to asyn-

chrony. If the environment moves in the meantime, the

snapshots they get are different, and this may cause the

machine to compute an incorrect destination point or

put inconsistent values in its simulated registers.

There are several possible solutions to this problem:

we will only mention two trivial ones. We could for

instance assume the Commanders to be synchronous,

that is, make the scheduler activate them in such a

way that all of them take their snapshots at the same

time. This way, all Commanders get compatible snap-

shots and compute consistent outputs. Another possible

solution is to make the tm operate in an environment

where everything else is static, i.e., no moving entities

are present other than the tm’s members.

We stress that these restrictions make sense if a per-

fect simulation of R is sought. However, as we will see

in Section 5, there are several applications of the tm

technique where no such restrictions are required.

Higher dimensions. Let us now generalize the above

construction of a planar tm to Rm, for any m ≥ 2. We

start with the same tmM with 2 +k basic components

laid out on a plane γ ⊂ Rm. Since M has only two

basic components for the x and y variables, we will add

m− 2 basic components to it, positioned as follows.

Let vectors v1 and v2 be two orthonormal generators

of γ, and let us complete {v1, v2} to an orthonormal ba-

sis {v1, v2, . . . , vm} of Rm. Now, for all i ∈ {3, 4, . . . ,m},
we make a copy of the basic component of M contain-

ing the Leader, we translate it by s ·vi ·i/m, and we add

it to the tm (s is the same value used in the construc-

tion of the planar tm at the beginning of Section 3.2).

Note that the Leader of this new tmM′ is still easy to

identify, as well as the plane γ when M′ is at rest.

Clearly, m basic components allow the machine to

record a destination point in Rm, as opposed to R2. Ad-

ditionally, the positions of the basic components with

respect to γ give the machine an m-dimensional sense

of direction.

For instance, say that m = 3, γ is a horizontal plane,

and v3 points upward. Then, when the Leader decides

to move up, it moves by µ in the direction of the basic

component of the tm not lying on γ (first stopping in a

midway triangle, as per Algorithm 1). The rest of M′
can reconstruct the direction of v3, for instance by in-

specting the relative positions of the Reference robots,

and move as required when the time comes. In the sub-

sequent moves, the Leader still retains a consistent no-

tion of up and down, and can therefore lead M′ close

enough to the destination point.

The same restrictions that apply to the planar tm as

a simulator of course extend to its higher-dimensional

versions. The next section will be devoted to proving

the following theorem, which summarizes the results

obtained so far.

Theorem 2 Under the aforementioned restrictions, a

rigid robot in Rm with k persistent registers and visi-

bility radius V can be simulated by a team of 3m + 3k

non-rigid oblivious robots in Rm with visibility radius

V + ε.

4 Correctness

This section is devoted to the proof of Theorem 2. The

crux of the proof is the following lemma, which states

that a single basic component of the TurnigMobile, as

described in Section 3.1, works as intended.

The fundamental lemma. To state the next lemma, the

following definition will be useful: A robot is frozen at

time t if it has already reached the last destination point

that it has computed before time t, and it has not taken

the next snapshot before time t (although it may be

taking the snapshot exactly at time t).

Lemma 1 Let a tm in R2 consisting of a single ba-

sic component execute Algorithm 1, and assume that

throughout the execution no object extraneous to the
machine approaches any of its members by less than

σ. If at some point in time t the tm is in a rest position

and all of its members are frozen, then, at a point in

time t′ > t, the tm is in a rest position again, its Com-

mander and Reference robot have translated by a vector

of length µ in one of three predefined directions (as in

Figure 2), its Number robot has correctly updated its

distance from the Reference robot (according to some

function f of the previous distance and the tm’s sur-

rounding environment as observed by the Commander

in a single snapshot taken between times t and t′), and

all members of the tm are frozen.

Note that for Lemma 1 we do not make all the re-

strictions of Theorem 2, because we do not have to syn-

chronize several basic components of the machine.

If Lemma 1 holds, then a tm in R2 with only one

basic component correctly performs a single step of the

execution, rigidly moving by µ and updating the real

number that it is storing. By repeatedly applying this
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lemma, we have the correctness of the entire execution

of a basic component.

Then, the proof of Theorem 2 follows as expected,

because the coordination of several basic components

in Rm for m ≥ 2 is done as described in Section 3.2.

Proof structure. Let us prove Lemma 1. The intended

behavior of the machine is for the execution to go through

the following five phases in chronological order:

1. The Commander moves to SiS
′
i (lines 4–9 of Algo-

rithm 1);

2. The Number robot moves withinQQ′ (lines 21 and 22);

3. The Commander moves to Di (lines 10–12);

4. The Number robot moves to D′i (lines 14–18);

5. The Reference robot moves, bringing the machine

in a rest position (lines 24–27).

During each phase, only one robot is supposed to move,

while the other two wait. If we can ensure this behavior,

then Lemma 1 follows.

Recall that the robots constituting the tm are asyn-

chronous and non-rigid. This means that we have to

guarantee two things for each of the above phases:

– If a robot moves as per phase i and another robot

sees it at any time before it has finished (due to

asynchrony), the second robot correctly recognizes

the current phase as being i, and hence it waits.

– If a robot moves as per phase i and the scheduler

stops it before it has reached its destination (due to

non-rigidity), the robot takes another snapshot, and

correctly resumes phase i.

Phase 1. If the assumptions of Lemma 1 are satisfied,

the first robot to take a snapshot after time t (or ex-

actly at time t) will see a tm in a rest position. As

a consequence, the Virtual Commander coincides with

the Commander, and therefore only the Commander is

allowed to move toward some Ai.

While the Commander moves, its distance from the

Reference robot never gets as small as d′ or as large as

d + µ (cf. Figure 2), hence the conditions of line 14 of

Algorithm 1 are never satisfied. Also, the Virtual Com-

mander computed with respect to R and N always coin-

cides with the starting position C ′ of the Commander,

which means that the Commander will be seen on the

segment C ′Ai, implying that only the Commander will

be allowed to move.

Since the Commander approaches Ai by at least δ at

every movement (cf. Section 2.2), it eventually reaches

it. When it reaches Ai, it chooses a destination point

on SiS
′
i based on a single snapshot of the environment

(as required by Lemma 1): once a destination point has

been chosen, it never changes even if the Commander is

stopped before reaching it, due to lines 8 and 9. Since

the Number robot and the Reference robot have not

moved yet, the number stored in the machine is still

the same as it was a time t, and therefore the point on

SiS
′
i chosen by the Commander is correctly computed

by applying function f to QN . Again, only the Com-

mander is allowed to move, and it eventually reaches

SiS
′
i, for the same reasons as before.

Phase 2. When the Commander is on SiS
′
i, it waits

until the Number robot has a distance from Q of CSi.

Observe that, as the Number robot moves within QQ′,

the slope of the line RN does not change, and therefore

the Virtual Commander C ′ computed with respect to

R and N is always the position that C occupied at time

t. So, the point Si is always the same, and the Number

robot keeps consitently moving toward the same desti-

nation point on QQ′.

As for phase 1, CR never becomes as small as d′

or as large as d + µ, and therefore the Number robot

always executes line 21 until it reaches the correct point

on QQ′.

Phase 3. When NQ = CSi, the Commander knows

it has to start moving again, first to Bi and then to

Di, due to lines 10–12. Again, while this happens the

Virtual Commander computed based on R and N is

always the same point C ′, so the positions of Si, Bi,

Di, etc. remain consistent, and the distance between R

and C never gets as small as d′ or as large as d + µ

until the Commander has reached Di. In particular the

Number robot never sees the Commander on SiS
′
i after

it has left it, and so it does not move. Eventually, the

Commander reaches Di.

Phase 4. When the Commander reaches Di, its dis-

tance from R finally becomes d + µ (if i = 1) or d′

(if i = 2 or i = 3), and so the Number robot exe-

cutes lines 15–18 and starts moving. While the Number

robot moves, the Commander does not: indeed, as long

as the Number robot is tasked with moving, the Ref-

erence robot never moves (cf. line 24), and hence CR

remains the same. Therefore, if the Commander com-

putes a Virtual Commander C̃ based on N and R, and

then computes the points Di and the midway triangles

τi with respect to C̃, it will never believe to be in C̃ or

in the interior of the segment C̃Di or in τi, no matter

where N is. This is because all such points have dis-

tance greater than d′ and smaller than d + µ from R

(cf. Figure 2). So, the conditions of lines 5–12 are never

satisfied.

Suppose that the Commander is in D1. This config-

uration is correctly identified by the Number robot no
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matter how it moves, because it is the only one in which

CR = d+ µ. So the Number robot computes the point

D′1 correctly (it does so only based on C and R) and

keeps moving toward D′1 until it reaches it (line 16).

Suppose now that the Commander is in D2. The

Number robot recognizes this configuration because CR =

d′ and ∠NRC > 90◦. Again, it correctly computes D′2
and moves toward it (line 17). As the Number robot

moves, the angle ∠NRC grows (cf. Figure 2), and so

the condition of line 17 keeps being satisfied. Eventu-

ally, the Number robot reaches D′2.

Finally, suppose that the Commander robot is in

D3. Now CR = d′ and ∠NRC < 90◦, and so the Num-

ber robot starts moving toward D′3 (cf. Figure 2). We

have to prove that, if it stops on its way to D′3 and gets

a new snapshot, the inequality ∠NRC < 90◦ keeps be-

ing satisfied, and so the Number robot re-computes D′3
as its destination point, until it reaches it. This is not

trivial, since the angle ∠NRC grows as N approaches

D′3.

60°

90°

µ

d

C

R

N

′d

′′d

′C

′N ′µ
150°

θ

′θ

d>

3
′D

Fig. 5 As N moves toward D′3, we have θ > θ′, and hence
∠NRC < 90◦

The situation is illustrated in Figure 5, where C ′

represents the starting position of the Commander and

N ′ the starting position of the Number robot. Since

∠N ′RC ′ = 90◦, proving that ∠NRC < 90◦ is equiva-

lent to proving that θ > θ′ (where θ′ = ∠NRN ′).
By the law of sines applied to triangle RCC ′,

d′

sin 60◦
=

µ

sin θ
,

implying that

sin θ =

√
3µ

2d′
. (1)

Again for the law of sines applied to triangle RNN ′,

d′′

sin 150◦
=

µ′

sin θ′
,

where µ′ = N ′N . Hence

sin θ′ =
µ′

2d′′
. (2)

Observe that µ > µ′, because N lies on N ′D′3, and

therefore
√

3µ > µ′ (i.e., the numerator of (1) is greater

than that of (2)). Recall that µ � d, and so d′ < d.

Moreover, since RN ′ ≥ 2d − λ/2 (cf. Figure 2) and

λ � d, it follows that d < RN ′. Also observe that

RN ′ < d′′, from which we obtain that 2d′ < 2d′′ (i.e.,

the denominator of (1) is smaller than that of (2)). As a

consequence, sin θ > sin θ′. Since µ� d, both θ and θ′

are acute, which means that θ > θ′ (the function sinx

increases monotonically when x ∈ [0, 90◦]).

Phase 5. Since in the previous phases either the Com-

mander or the Number robot was always tasked with

moving, the condition of line 24 was never satisfied,

and hence the Reference robot never moved. Now that

the Commander is in Di and the Number robot is in

D′i, they are no longer tasked with moving, and so the

Reference robot executes lines 25–27.

Ideally, the Reference robot should complete the

translation of the tm in order to put it in a rest posi-

tion again. This is achieved by moving by vector
−−→
C ′′C,

where C ′′ is the initial position of the Commander (i.e.,

its position when phase 1 starts). Instead of trying to

reconstruct C ′′, the Reference robot constructs two cir-

cumferences γ and γ′ and moves to their nearest inter-

section point. Note that γ′ passes through the center

of γ, and hence it has at most two intersection points

with it. At least one intersection point exists: this is the

point P = R′+
−−→
C ′′C, where R′ is the initial position of

the Reference robot (which coincides with its position

when phase 5 starts). If there is another intersection

point P ′ between the two circles, it must be symmet-

ric to P with respect to line CN , because such line

passes through the centers of both circles (recall that

the segment CN is a diameter of γ′). So, assuming that

the Commander and the Number robot do not move in

this phase, P remains the destination point of the Ref-

erence robot as long as the robot never crosses the line

CN . But this is impossible, since the segment R′P has

length µ � d, and therefore it cannot cross the line

CN , whose distance from R′ is roughly 2d/
√

5� µ.

It remains to prove that, as the Reference robot

moves toward P , the Commander and the Number robot

remain still. Recall that, when phase 5 starts, either

CR = d + µ > d or CR = d′ < d. As R approaches P

(and C does not move), CR converges monotonically to

d. It follows that CR never becomes d+ µ or d′ again,

and so the condition of line 14 is never satisfied.
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Consider now the Virtual Commander C ′ computed

with respect to R and N when R is strictly between R′

and P , and construct the three segments C ′Di and the

three midway triangles τi around C ′. If we can prove

that, no matter where R is located in the interior of

the segment R′P , C never lies on any of these segments

and triangles, we are finished: indeed, this would mean

that the conditions of lines 5–12 and line 21 are never

satisfied.

Suppose that the Number robot has moved to D′1
during phase 4, which means that at the beginning of

phase 5 we have CR = d+ µ: this case is illustrated in

Figure 6. We have to show that C does not lie on any

of the solid gray lines and triangles around the Virtual

Commander C ′. It is obvious that the lines C ′′C and

RC ′ are not parallel and intersect each other at R. Also,

C ′ and N are always on opposite sides of RC ′. This

already implies that C cannot be on the segments C ′D1

and C ′D2 or on their respective midway triangles.

C

R

N

′C

1D

2D 3D′′C

3τ

µ

′R

1τ

2τ

Fig. 6 Correctness of phase 5 when the Number robot has
moved to D′1

To show that C does not lie on C ′D3 or τ3, consider

the circle through C ′ centered at R. Note that C is

always outside the circle, because its radius is d, but d <

RC < d+µ. Since µ can be arbitrarily small compared

to d, the angle between C ′′C and RC ′ can be made

arbitrarily small, as well (cf. Figure 6). If we take a

small-enough µ, the segment C ′D3 is entirely contained

in the circle, and hence it cannot contain C. Moreover,

since τ3 has height λ� µ, by taking a small-enough λ

we ensure that τ3 is contained in the circle, too.

Suppose now that the Number robot has moved to

D′2 during phase 4: then, at the beginning of phase 5,

CR = d′ and ∠NRC > 90◦. On the other hand, when

R reaches P , we have CR = d and ∠NRC = 90◦.

It follows that, when R is strictly between R′ and P ,

d′ < CR < d and ∠NRC > 90◦ (because both quan-

tities change monotonically), as Figure 7 shows. Since

∠NRC > 90◦, C cannot be located on C ′D1 or C ′D3

or τ3, because all their points X satisfy ∠NRX ≤
90◦. Also, all the points in τ1 have distance at least

d + µ/2 − λ/2 > d from R (recall that λ � µ), and so

C cannot lie in τ1, because CR < d.

C

N

R

′C

1D

2D 3D

′′C
1τ

µ

3τ

2τ

′R

Fig. 7 Correctness of phase 5 when the Number robot has
moved to D′2

Let us show that C does not lie on C ′D2 or τ2. Ob-

serve thatR′C ′′ = RC ′ = d, that ∠RC ′D2 = ∠R′C ′′C =

60◦, and that R′R and C ′′C are parallel (cf. Figure 7).

It follows that the line C ′′C is obtained by rotating line

C ′D2 about R by some angle θ > 0. These two lines are

not parallel, and hence they intersect in a single point

K. As R approaches P , θ tends monotonically to 0, and

K approaches the foot U of the altitude from R to the

line C ′′C. So, if we take µ small enough with respect
to d, we can keep K as close as we want to U . The dis-

tance between U and C ′′ is obviously minimum when

R = R′, in which case C ′′U = d/2. It follows that, for

small-enough values of µ, C ′′K is always as close as we

want to d/2. Hence we have C ′′K > µ = C ′′C, proving

that C 6= K, and so C cannot be on C ′D2. Also, since

∠NRC > 90◦, C and τ2 are always on opposite sides

of C ′D2 (cf. Figure 7), and so C cannot be in τ2.

Lastly, suppose that the Number robot has moved

to D′3 during phase 4: then, at the beginning of phase 5,

CR = d′ and ∠NRC < 90◦, as shown in Figure 8. Sim-

ilarly to the previous case, we can prove that C cannot

lie on C ′D3 or τ3 because the line C ′′C is obtained

by rotating line C ′D3 about R by some angle θ > 0

that can be made arbitrarily small by just decreasing µ.

Again, this implies that the intersection point between

the lines C ′′C and C ′D3 can be kept at a distance from

C ′′ arbitrarily close to d/2, and can therefore never co-

incide with C, which is only µ away from C ′′. Also, be-

cause ∠NRC < 90◦ (∠NRC increases monotonically
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and converges to 90◦ as R converges to P ), C and τ3
are always on opposite sides of C ′D3, and so C cannot

be in τ3.

R

C

N

′C

1D

2D 3D

′′C

2τ

µ
′R

1τ

3τ

′N

P

′µ

d>

Fig. 8 Correctness of phase 5 when the Number robot has
moved to D′3

To conclude the proof, it suffices to show that C and

R′ lie on strictly opposite sides of line RC ′: indeed, this

would imply that C is not on the segments C ′D1 and

C ′D2 or in their respective midway triangles, because

these lie on the same side of RC ′ as R′ or on the line

RC ′ itself (cf. Figure 8). To prove this claim, consider

a Cartesian coordinate system with origin in R and x

axis oriented as
−−−→
R′N ′. Let 0 < µ′ = R′R < µ. Since

the line RR′ forms an angle of 60◦ with the y axis, the

coordinates of R′ are

R′ =

(
−
√

3µ′

2
,
µ′

2

)
.

We therefore have

C ′′ = R′ + (0, d) =

(
−
√

3µ′

2
,
µ′

2
+ d

)
and

C = C ′′+

(√
3µ

2
, −µ

2

)
=

(√
3(µ− µ′)

2
, d− µ− µ′

2

)
.

We also have

N ′ = R′ +
(
R′N ′, 0

)
=

(
R′N ′ −

√
3µ′

2
,
µ′

2

)
and

N = N ′ +

(√
3µ

2
, −µ

2

)
=

=

(
R′N ′ +

√
3(µ− µ′)

2
,
µ′ − µ

2

)
. (3)

It follows that the line RN has equation

y =
µ′ − µ

2 ·R′N ′ +
√

3(µ− µ′)
x.

Since the line RC ′ is orthogonal to RN , it has equation

y =

(
2 ·R′N ′
µ− µ′

+
√

3

)
x. (4)

Observe that RC ′ passes through the origin and its

slope is positive. Hence R′ lies above this line, because

its x coordinate is negative and its y coordinate is pos-

itive.

Let us now plug the x coordinate of C in (4):

y =

(
2 ·R′N ′
µ− µ′

+
√

3

)
·
√

3(µ− µ′)
2

=

=
√

3 · R′N ′ + 3(µ− µ′)
2

. (5)

Recall from the discussion on phase 4 that R′N ′ > d

(it corresponds to RN ′ in Figure 5), and therefore the y

in (5) is abundantly greater than d. On the other hand,

the y coordinate of C is d− (µ−µ′)/2, which is smaller

than d, implying that C lies below the line RC ′. We

conclude that C and R′ lie on opposite sides of RC ′.

We have just proved that the Reference robot keeps

moving until it reaches P , thus bringing the tm in a rest

position again, say at time t′. We ultimately observe

that the real number stored in the machine at time t′ is

the same the one the Commander computed in phase 1

and that the Number robot copied during phase 2. This

is because the Number robot and the Reference robot,

during phases 4 and 5 respectively, have moved by µ in

the same direction: so, at the end of phase 5, they have

the same distance they had at the end of phase 2. Also,

all members of the tm are clearly frozen at time t′. ut

5 Applications

In this section we discuss some applications of the tm.

We also prove that the basic tm constructed in Sec-

tion 3.1 is minimal, in the sense that no smaller team

of oblivious robots can accomplish the same tasks (The-

orem 4).

5.1 Exploring the Plane

The first elementary task a basic tm in R2 can fulfill is

that of exploring the plane. The task consists in making

all the robots in the tm see every point in the plane

in the course of an infinite execution. We first assume

that the three members of the tm are the only robots
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in the plane. Later in this section, we will extend our

technique to other types of scenarios and more complex

tasks.

Theorem 3 A basic TuringMobile consisting of three

robots in R2 can explore the plane.

Proof Recall that a basic tm can store a single real num-

ber r and update it at every move as a result of exe-

cuting a real RAM program with input r. In particular,

the tm can count how many times it has moved by sim-

ply starting its execution with r = 0 and computing

r := r + 1 at each move.

Moreover, the Commander chooses the direction of

the next move (in the form of a point Di, see Figure 2)

by executing another real RAM program with input r.

If r is an integer, the Commander can therefore com-

pute any Turing-computable function on r, and so it

can decide to move to D1 the first time, then to D2

twice, then to D3 three times, to D1 four times, and so

on. This pattern of moves is illustrated in Figure 9, and

indeed it results in the exploration of the plane, because

the visibility radius of the robots is much greater than

the step µ. ut

C

µ

R N

Fig. 9 Exploration of the plane by a basic TuringMobile

5.2 Minimality of the Basic TuringMobile

We can use the previous result to prove indirectly that

our basic tm design is minimal, because no team of fewer

than three oblivious robots in R2 can explore the plane.

Theorem 4 If only one or two oblivious identical robots

with limited visibility are present in R2, they cannot ex-

plore the plane, even if the scheduler lets them move

synchronously and rigidly.

Proof Assume that a single oblivious robot is given in

R2 (hence no other entities or obstacles are present).

Since the robot always gets the same snapshot, it al-

ways computes the same destination point in its local

coordinate system, and so it always translates by the

same vector. As a consequence, it just moves along a

straight ray, and therefore it cannot explore the plane.

Let two oblivious robots be given, and suppose that

their local coordinate systems are oriented symmetri-

cally. Whether the robots see each other or not, if they

take their snapshots simultaneously, they get identical

views, and so they compute destination points that are

symmetric with respect to their midpoint O. If they

keep moving synchronously and rigidly, O remains their

midpoint. So, if the robots have visibility radius V , they

see each other if and only if they are in the circle γ of

radius V/2 centered in O.

Now consider a Cartesian coordinate system with

origin O. Without loss of generality, when the robots

do not see each other, they move by vectors (1, 0) and

(−1, 0), respectively. Let ξ be the half-plane y ≥ V , and

observe that ξ lies completely outside γ.

It is obvious that the robots cannot explore the en-

tire plane if neither of them ever stops in ξ. The first

time one of them stops in ξ, it takes a snapshot from

there, and starts moving parallel to the x axis, thus

never seeing the other robot again, and never leaving

ξ. Of course, following a straight line through ξ is not

enough to explore all of it. ut

5.3 Near-Gathering with Limited Visibility

The exploration technique can be applied to several

more complex problems. The first we describe is the

Near-Gathering problem, in which all robots in the

plane must get in the same disk of a given radius ε

(without colliding) and remain there forever. It does

not matter if the robots keep moving, as long as there

is a disk of radius ε that contains them all.

It is clear that solving this problem from every ini-

tial configuration is not possible, and hence some re-

strictive assumptions have to be made. The usual as-

sumption is that the initial visibility graph of the robots

be connected [21,28]. Here we make a different assump-

tion: there are three robots that form a basic tm some-

where in the plane, and each robot not in the tm has

distance at least ε from all other robots. (Actually we

could weaken this assumption much more, but this sim-

ple example is good enough to showcase our technique.)

Also, in the existing literature on the Near-Gathering

problem it is always assumed that the robots agree on

at least one coordinate axis, but here we do not need

this assumption.



TuringMobile: A Turing Machine of Oblivious Mobile Robots with Limited Visibility and Its Applications 17

Theorem 5 Let a swarm of asyncronous, anonymous,

oblivious robots with limited visibility be in an initial

configuration in R2 where three robots form a basic Tur-

ingMobile at rest, and each robot not in the TuringMo-

bile is at distance at least ε from all other robots. Then,

the swarm can solve the Near-Gathering problem. (Note

that we make no assumption on the visibility graph and

its connectedness.)

Proof Say that all robots in the plane have a visibility

radius of V � ε, and that the tm moves by µ � ε at

each step. The tm starts exploring the plane as above,

and it stops in a rest position as soon as it finds a

robot whose distance from the Commander is smaller

than V/2 and greater than ε. On the other hand, if a

robot is not part of the tm, it waits until it sees a tm in

a rest position at distance smaller than V/2. When it

does, it moves to a designated area A in the proximity

of the Commander. Such an area has distance at least

3d from the Commander, so no confusion can arise in

the identification of the members of the tm. If several

robots are eligible to move to A, only one at a time does

so: note that the layout of the tm itself gives an implicit

total order to the robots around it. Observe that the

robots cannot form a second tm while they move to A:

in order to do so, two of them would have to move to A
at the same time and get close enough to a third robot.

Once they enter A, the robots position themselves on a

segment much shorter than d, so they cannot possibly

be mistaken for a tm.

Once the eligible robots have positioned themselves

in A, the tm resumes its exploration of the plane, and

the robots in A copy all its movements. Of course, at

each step the tm waits for all the robots in A to catch

up before carrying on with the exploration. Now, if the

total number of robots in the plane is known, the tm can

stop as soon as all of them have joined it. Otherwise,

the machine simply keeps exploring the plane forever,

eventually collecting all robots. In both cases, the Near-

Gathering problem is solved. ut

5.4 Pattern Formation with Limited Visibility

Suppose n robots are tasked with forming a given pat-

tern consisting of a multiset of n points: this is the Pat-

tern Formation problem, which becomes the Gathering

problem in the special case where the points are all co-

incident. For this problem, it does not matter where the

pattern is formed, nor does its orientation or scale.

Again, the Pattern Formation problem is unsolvable

from some initial configurations, so we make the same

assumptions as with the Near-Gathering problem.

Theorem 6 Under the assumptions of Theorem 5, the

swarm can solve the Pattern Formation problem, as

well. (Again, we make no assumption on the visibility

graph and its connectedness.)

Proof The algorithm starts by solving the Near-Gathering

problem as in Theorem 5. The only difference is that

now there is a second tiny area B, attached to A (and

still far enough from the tm), which the robots avoid

when they join A. This is because this second area will

later be used to form the pattern.

Since n is known (as it is the size of the pattern),

the tm knows when it has to interrupt the exploration

of the plane because all robots have already been found.

At this point, the robots switch algorithms: one by one,

they move to B and form the pattern. This task is made

possible by the presence of the tm, which gives an im-

plicit order to all robots, and also unambiguously de-

fines an embedding of the pattern in B. So, each robot

is implicitly assigned one point in B, and it moves there

when its turn comes.

If n = 3 or n = 4, there are uninteresting ad-hoc

algorithms to do this; so, let us assume that n ≥ 5.

The first to move are the robots in A: this part is easy,

because they all lie on a small segment, which already

gives them a total order, and allows them to move one

by one. The robots only have to be careful enough not

to collide with other robots before reaching their final

positions. Again, this is trivial, because only one robot

is allowed to move at a time.

When this part is done, there are at least two robots

in B, all of which have distance much smaller than d

from each other. Then the members of the tm join B
as well, in order from the closest to the farthest. Each

of them chooses a position in B based on the robots

already there and the remnants of the tm. Moreover,

the members of the tm that have not started moving

to B yet cannot be mistaken for robots in B, because

they are at a greater distance from all others (and vice

versa).

Note that, when the last robot leaves the tm and

joins B, it is able to find its final location because there

are already at least four robots there, which provide

a reference frame for the pattern to be formed. When

this last robot has taken position in B, the pattern is

formed. ut

5.5 Higher Dimensions

Everything we said in this section pertained to robots

in the plane. However, we can generalize all our results

to robots in Rm, for m ≥ 2. Recall that, at the end of

Section 3.2, we have described a tm for robots in Rm,
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which can move within a specific plane γ exactly as a

bidimensional tm, but can also move back and forth by

µ in all other directions orthogonal to γ.

Now, extending our results to Rm actually boils

down to exploring the space with a tm: once we can do

this, we can easily adapt our techniques for the Near-

Gathering and the Pattern Formation problem, with

negligible changes.

There are several ways a tm can explore Rm: we will

only give an example. Consider the exploration of the

plane described at the beginning of this section, and let

Pi be the point reached by the Commander after its ith

move along the spiral-like path depicted in Figure 9 (P0

is the initial position of the Commander).

Ourm-dimensional tm starts exploring γ as if it were

R2. Whenever it visits a Pi for the first time, it goes

back to P0. From P0, it keeps making moves orthogonal

to γ until it has seen all points in Rm whose projection

on γ is P0 and whose distance from P0 is at most i. Then

it goes back to P0, moves to P1, and repeats the same

pattern of moves in the section of Rm whose projection

on γ is P1. It then does the same thing with P2, etc.

When it reaches Pi+1 (for the first time), it goes back

to P0, and proceeds in the same fashion. By doing so,

it explores the entire space Rm.

Note that this algorithm only requires the tm to

count how many moves it has made since the begin-

ning of the execution: thus, the machine only has to

memorize a single integer. The direction of the next

move according to the above pattern is then obviously

Turing-computable given the move counter.

6 Conclusions

We have introduced the TuringMobile (tm) as a special

configuration of oblivious non-rigid robots that can sim-

ulate a rigid robot with memory. We have also applied

the tm to some typical robot problems in the context of

limited visibility, showing that the assumption of con-

nectedness of the initial visibility graph can be dropped

if a unique tm is present in the system. Our results hold

not only in the plane, but also in Euclidean spaces of

higher dimensions.

The simplest version of the tm (Section 3.1) consists

of only three robots, and is the smallest possible config-

uration with these characteristics (Theorems 3 and 4).

Our generalized tm (Section 3.2), which works in Rm

and simulates k registers of memory, consists of 3m+3k

robots (Theorem 2). We believe we can decrease this

number to m+ k+ 3 by putting all the Number robots

in the same basic component and adopting a more com-

plicated technique to move them. However, minimizing

the number of robots in a general tm is left as an open

problem.

Our basic tm design works if all robots have the

same radius of visibility, because that allows them to

implicitly agree on a unit of distance. We could remove

this assumption and let each of them have a different

visibility radius, but we would have to add a fourth

robot to the tm for it to work (as well as keep the tm

small compared to all these radii). The fourth robot is

placed directly below the Reference robot at distance

d/2 from it, and defines the unit distance. This robot is

allowed to move, following the other three, only when

the tm is at rest.

Recall that, in order to encode and decode arbitrary

real numbers we used the α function and its inverse,

which in turn are computed using the arctan and the

tan functions. However, using transcendental functions

is not essential: we could achieve a similar result by us-

ing only comparisons and arithmetic operations. The

only downside would be that such a real RAM program

would not run in a constant number of machine steps,

but in a number of steps proportional to the value of the

number to encode or decode. With this technique, we

would be able to dispense with the trigonometric func-

tions altogether, and have our robots use only arith-

metic operations and square roots to compute their des-

tination points.
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