
Noname manuscript No.
(will be inserted by the editor)

Fault-Tolerant Simulation of Population Protocols

Giuseppe A. Di Luna · Paola Flocchini · Taisuke Izumi · Tomoko

Izumi · Nicola Santoro · Giovanni Viglietta

Abstract In this paper we investigate the computa-

tional power of population protocols under some un-

reliable or weaker interaction models. More precisely,

we focus on two features related to the power of inter-

actions: omission failures and one-way communications.

An omission failure, a notion that this paper introduces

for the first time in the context of population protocols,

is the loss by one or both parties of the information

transmitted in an interaction. The failure may or may

A preliminary version of this article has appeared in [25].

G. Di Luna
Aix-Marseille University, LiS Laboratory,
Campus de Luminy, 163 Avenue de Luminy, Marseille,
France.
E-mail: giuseppe.diluna@lis-lab.fr

P. Flocchini
School of Electrical Engineering and Computer Science, Uni-
versity of Ottawa,
800 King Edward Avenue, Ottawa, ON, Canada.
E-mail: paola.flocchini@uottawa.ca

T. Izumi
Department of Computer Science and Engineering, Nagoya
Institute of Technology
Gokisocho, Showa Ward, Nagoya 466-8555, Japan
E-mail: t-izumi@nitech.ac.jp

T. Izumi
College of Information Science and Engineering, Ritsumeikan
University
56-1 Tojiin Kitamachi, Kita-ku, Kyoto, Japan.
E-mail: izumi-t@fc.ritsumei.ac.jp

N. Santoro
School of Computer Science, Carleton University,
1125 Colonel By Drive, Ottawa, ON, Canada.
E-mail: santoro@cs.carleton.ca

G. Viglietta
Jaist,
1-1 Asahidai, 923-1211 Nomi City,
Ishikawa Prefecture, Japan.
E-mail: johnny@jaist.ac.jp

not be detected by either party. In one-way models, on

the other hand, communication happens only in one

direction: only one of the two agents can change its

state depending on both agents’ states, and the other

agent may or may not be aware of the interaction. These

notions can be combined, obtaining one-way protocols

with (possibly detectable) omission failures.

We start our investigation by providing a complete

classification of all the possible models arising from the

aforementioned weaknesses, and establishing the com-

putational hierarchy of these models. We then address

for each model the fundamental question of what ad-

ditional power is necessary and sufficient to completely

overcome the model’s weakness and make it able to

simulate faultless two-way protocols; by “simulator” we

mean a wrapper protocol that, implementing an atomic

communication of states between two agents, converts

any standard two-way protocol into one that works in

a weaker model. We answer this question by presenting

simulators that work under certain assumptions (e.g.,

additional memory, unique IDs, etc.) and by proving

that simulation is impossible without such assumptions.

1 Introduction

1.1 Framework

Population protocols [4] are a mathematical model that

describes systems of simple mobile computational en-

tities, called agents. Two agents can interact (i.e., ex-

change information) only when their movement brings

them into communication range of each other. However,

the movements of the agents, and thus the occurrences

of their interactions, are completely unpredictable, a

condition called “passive mobility”. Such would be, for

example, the case of a flock of birds, each provided with

2 Giuseppe A. Di Luna et al.

a sensor; the resulting passively mobile sensor network

can then be used for monitoring the activities of the

flock and for individual intervention, such as a sensor

inoculating the bird with a drug, should a certain con-

dition be detected.

In population protocols, when an interaction occurs,

the states of the two agents involved change according

to a set of deterministic rules, or “protocol”. Interac-

tions are asymmetric: one agent is the “starter”, and

the other is the “reactor”. The execution of the proto-

col, through the interactions originating from the move-

ments of the entities, generates a non-deterministic se-

quence of changes in the states of the entities them-

selves, and thus in the global state of the system. The

requirements and goals of a protocol depend on the par-

ticular application. In some applications, the goal of the

protocol might be to ensure that, in every execution, the

system converges to a predefined final global state; for

example, converging to an “epidemic-alert” state if the

number of sensors detecting avian influenza is above a

threshold. In other applications, the sequence of state

changes of each agent must obey precise constraints;

for example, if entering some state causes a bird to be

inoculated, that state should be entered at most once.

In an interaction, communication is generally as-

sumed to be bidirectional or two-way: each agent of a

pair receives the state of the other agent and applies the

protocol’s transition function to update its own state,

based on the received information and its current state.

From an engineering standpoint, this round-trip com-

munication between two interacting agents may be dif-

ficult to implement. Moreover, the standard population

protocol model does not include faults [4,23].

In this paper we investigate the computational power

of population protocols under some unreliable and/or

weaker interaction models. More precisely, we focus on

two features related to the power of interactions: omis-

sion failures and one-way communications. An omis-

sion failure, a notion that this paper introduces for the

first time in the context of population protocols, is the

loss by one or both parties of the information transmit-

ted in an interaction. The failure may or may not be

detected by either party. On the other hand, in one-way

models (originally introduced in [5,9]), communication

occurs only in one direction: only one of the two agents

can change its state depending on both states, and the

other agent may or may not be aware of the interac-

tion. In our paper we assume that the “receiver” is the

agent that receives both states. These notions can be

combined, obtaining one-way protocols with (possibly

detectable) omission failures.

A general question is what additional power is neces-

sary and sufficient to fill the gap between the standard

two-way model and the weaker models stated above.

In this paper, we start addressing this question using

as a main investigation tool the concept of a simula-

tor: a wrapper protocol converting any protocol for the

standard two-way model into one running under some

weaker model. A simulator provides an interface be-

tween the simulated protocol and the physical commu-

nication layer, giving the system the illusion of being

in a two-way environment. As a basic feature, a sim-

ulator has to implement an atomic communication of

states between two agents, always guaranteeing both

safety and liveness of any problem specification. Indeed,

the simulator should not allow agents to change states

in illegal ways (safety), and it should also guarantee

that eventually a communication between two agents is

carried out successfully (liveness). This task is further

complicated by the anonymity of the agents, their lack

of knowledge of the system, and the limited amount of

memory that they may have.

In a companion paper [26], we have investigated the

scenario where the system contains a unique “leader”

agent. In this context, we fully characterized the mod-

els where a two-way simulator exists, with or without

additional assumptions, such as an unbounded amount

of memory on all agents or the knowledge of an upper

bound on the number of omissive interactions involving

the leader.

We stress that the importance of focusing on the

existence of simulators (as opposed to, say, studying the

set of predicates that are computable in a given model)

arises from the fact that the decisions taken by some

of the agents may be irrevocable by their very nature

(e.g., set the value of a write-once register, inoculate a

bird, fire distress flares as an SOS signal, etc.).

1.2 Main Contributions

As a first step, we define several omissive models consid-

ering both the capability to detect the proximity of an-

other agent (i.e., interacting with another agent without

viewing its state) and to detect an omission (i.e., being

aware that an interaction failed). Note that these two

features are independent. Proximity detection is com-

mon in many Medium Access Control protocols, such

as CSMA-MPS and STEM. The models are shown in

Figure 1.

In the two-way models with omissions, indicated

with Ti, detecting the proximity of an agent and not re-

ceiving its state is an implicit detection of an omission.

For this reason, in these models, we only look at omis-

sion detection when: no detection is possible (model

T1), only one side detects it (model T2), or both sides

can detect the omission (model T3).

Fault-Tolerant Simulation of Population Protocols 3

}))ra(, h)sa(o(,))ra(, h)r, asa(sf(,))r, asa(r, f)sa(o(

,))r, asa(r, f)r, asa(sf({) =r, asa(δ

3T

))r, asa(r, f)r, asa(sf) = (r, asa(δ

TW

})r, a)sa(o(,)r, a)r, asa(sf(,))r, asa(r, f)sa(o(

,))r, asa(r, f)r, asa(sf({) =r, asa(δ

2T

})r, a)r, asa(sf(,))r, asa(r, fsa(

,))r, asa(r, f)r, asa(sf({) =r, asa(δ

1T

}))ra(, h)sa(g(,))r, asa(, f)sa(g({) =r, asa(δ

3I

}))ra(, g)sa(o(,))r, asa(, f)sa(g({) =r, asa(δ

4I

}))ra(, g)sa(g(,))r, asa(, f)sa(g({) =r, asa(δ

2I

})r, a)sa(g(,))r, asa(, f)sa(g({) =r, asa(δ

1I

))r, asa(, f)sa(g) = (r, asa(δ

IT

))r, asa(, fsa) = (r, asa(δ

IO

Fig. 1: Computational relationships between models. An arrow between two blobs indicates that the class of problems solvable
in the source blob is included in that of the destination blob. The models on the left, T1, T2, T3, are the two-way models with
omissions. The models on the right, I1, I2, I3, I4, are the one-way models with omissions.

In the one-way models, indicated with Ii, detecting

the proximity of another agent but not receiving its

state could imply either the presence of an omission or

that the first agent is the starter of the interaction. We

consider and analyze all possible combinations of these

two capabilities. As a result, we obtain four distinct

models: where no detection of omissions is present but

the proximity can be detected by the starter (model

I1) or by both parties (model I2), and where there is

detection of proximity by both parties but omissions

are detected only by the starter (model I3) or by the

reactor (model I4). For completeness we also consider

the known models without omissions, the original two-

way model (TW) and the one-way models introduced

in [5]: the Immediate Transmission model (IT), where

the starter detects the proximity of the reactor, and the

Immediate Observation model (IO), where there is no

detection of proximity.

The hierarchy of these models is shown in Figure 1;

more details can be found in Section 2.

We consider two main types of omission adversaries:

a “malignant” one, called Unfair Omissive (UO), which

can insert omissions at any point in the execution, and a

“benign” one, called Eventually Non-Omissive (�NO),

which must eventually stop inserting omissions. Inter-

actions are otherwise “globally fair”. Interestingly, all

our main simulators work even under the malignant

UO adversary, while all our main impossibility results

hold even under the benign �NO adversary.

We start by analyzing the negative impact that omis-

sions have on computability. We show that, in the ab-

sence of additional assumptions, the simulation of TW
protocols in the presence of omissions is impossible even

if the agents have infinite memory (Theorem 2). Among

other results, we also show that, in the two weak omis-

sion models I1 and I2, simulation is impossible even

under an extremely limited omission adversary, called

�NO1, which can only insert at most one omission in

the entire execution.

On the other hand we prove that, in the weakest

one-way model, IO, simulation is possible if the agents

have unique IDs or the total number of agents, n, is

known (Theorems 6 and 7).

In the two strong omission models I3 and I4, simula-

tion is possible when an upper bound on the number of

omissions is known (Theorem 5). This result in turn im-

plies that, in the non-omissive IT model, TW simulation

is possible with a memory overhead of Θ(log n) bits for

each state of the simulated protocol (Corollary 1). In

light of the fact that with constant memory, in absence

of additional capabilities, IT protocols are strictly less

powerful than two-way protocols [5], our results show

that this computational gap can be overcome by using

additional memory.

Our main results are summarized in Figure 4 on

page 13, where white blobs represent possibilities and

gray blobs impossibilities. As a consequence of these

results, we have a complete characterization of the fea-

sibility of simulation when agents have infinite memory,

4 Giuseppe A. Di Luna et al.

unique IDs, or knowledge of the size of the system. If an

upper bound on the number of omissions is known, we

also have a complete characterization, except in model

T2, where the problem is open.

1.3 Related Work

Since their introduction, there have been extensive in-

vestigations on Population Protocols (e.g., see [6,10,

13,15,16,32,20,21,28,30]), and the basic assumptions

of the original model have been expanded in several di-

rections, typically to overcome inherent computability

restrictions. For example, allowing each agent to have

non-constant memory [1–3,17]; assuming the presence

of a leader [8]; allowing a certain amount of information

to be stored on the edges [18,19,22,31] of the interac-

tion graph.

The issue of dependable computations in popula-

tion protocols, first raised in [23], has been considered

and studied only with respect to processors’ faults, and

the basic model has necessarily been expanded. In [24]

it has been shown how to compute functions tolerat-

ing O(1) crash-stops and transient failures, assuming

that the number of failures is bounded and known. In

[7] the specific majority problem under O(
√
n) Byzan-

tine failures, assuming a fair probabilistic scheduler, has

been studied. In [29] unique IDs are assumed, and it is

shown how to compute functions tolerating a bounded

number of Byzantine faults, under the assumption that

Byzantine agents cannot forge IDs. Self-stabilizing so-

lutions have been devised for specific problems such as

leader election (assuming knowledge of the system’s size

and a non-constant number of states [14], or assuming

a leader detection oracle [27]) and counting (assuming

the presence of a leader [11]). Moreover, in [12] a self-

stabilizing transformer for general protocols has been

studied in a slightly different model and under the as-

sumption of unbounded memory and a leader.

Finally, to the best of our knowledge, the one-way

model without omissions has been studied only in [5],

where it was shown that IT and IO, when equipped

with constant memory, can compute a set of functions

that is strictly included in that of TW. Combined with

our results in Figure 4, this implies that, without using

extra resources (e.g., infinite memory, leader, etc.), sim-

ulations are impossible in all the one-way and omissive

models.

2 Models and Terminology

2.1 Population Protocols

We consider a system consisting of a setA = {a1, . . . , an}
of mobile agents. The mobility is passive, in the sense

that it is decided by an external entity. When two agents

meet, they interact with each other and perform some

local computation. We always assume that interactions

are instantaneous. Each interaction is asymmetric, that

is, an interaction between as and ar is indicated by the

ordered pair i = (as, ar), where as and ar are called

starter and reactor, respectively. A protocol P is de-

fined by the following three elements: a set of local

states QP , a set of initial states Q′P ⊆ QP , and a transi-

tion function δP : QP ×QP → QP ×QP . The function

δP defines the states of the two interacting agents at

the end of their local computation. With a small abuse

of notation, and when no ambiguity arises, we will use

the same literal (e.g., ai) to indicate both an agent and

its internal state. Since the structure of the system is

uniquely determined by P and n, we refer to it as the

system (P, n). A configuration C of a system (P, n) is

the n-tuple of local states from QP (i.e., C ∈ Qn
P).

Given an k-tuple t = (x0, x1, . . . , xk−1) we denote

the element xj by t[j].

Initial Knowledge. To empower the agents, we some-

times assume that each agent has some additional knowl-

edge, such as an ID and/or the value of n. We model

this information by encoding it as a set of initial states

of the agents (i.e., in Q′P).

Executions and Fairness. Whenever an interaction

i = (aj , ak) turns a configuration of the form

C = (a1, . . . , aj , . . . , ak, . . . , an)

into one of the form

C ′ = (a1, . . . , δ(aj , ak)[0], . . . , δ(aj , ak)[1], . . . , an),

we use the notation C
i−→ C ′. A run of P is an infinite

sequence of interactions I = (i0, i1, . . .). Given an initial

configuration C0 ∈ Q′nP , each run I induces an infinite

sequence of configurations, ΓI(C0) = (C0, C1, . . .) such

that Cj
ij−→ Cj+1 for every j ≥ 0, which is called an

execution of P.

We say that a set of configurations C ⊆ Qn
P is closed

under permutations if, for every C ∈ C, and for every

configuration Ĉ obtained by permuting the states of the

agents of C, also Ĉ ∈ C.
An execution Γ is globally fair if it satisfies the fol-

lowing condition: for every two (possibly infinite) sets of

configurations C, C′ ⊆ Qn
P , closed under permutations,

Fault-Tolerant Simulation of Population Protocols 5

such that for every C ∈ C there exists an interaction

i and some C ′ ∈ C′ such that C
i−→ C ′, if infinitely

many configurations of Γ belong to C, then infinitely

many configurations of Γ belong to C′ (although not

necessarily appearing in Γ as immediate successors of

configurations of C).
Note that our definition of global fairness extends

the standard one, which only deals with single config-

urations, as opposed to sets (see [10]). The two defini-

tions are equivalent when applied to protocols that use

only finitely many states, but our extension also works

with infinitely many states, where the standard one is

ineffective.

2.2 Non-Omissive Interaction Models

In this paper we consider three main models of inter-

actions: the standard Two-Way one, and two one-way

models presented in [5], i.e., the Immediate-Transmission

model and the Immediate-Observation model.

Two-Way Model (TW). In this model, any proto-

col P has a state transition function consisting of two

functions fs : QP ×QP → QP and fr : QP ×QP → QP
satisfying δP(as, ar) = (fs(as, ar), fr(as, ar)) for any

as, ar ∈ QP .

Immediate-Transmission Model (IT). Any proto-

col P has a state transition function consisting of two

functions g : QP → QP and f : QP ×QP → QP satisfy-

ing δP(as, ar) = (g(as), f(as, ar)) for any as, ar ∈ QP .

Immediate-Observation Model (IO). Any protocol

P has a state transition function of the form δP(as, ar) =

(as, f(as, ar)) for any as, ar ∈ QP .

Note that, in the IT model, the starter explicitly de-

tects the interaction, as it applies function g to its own

state. In other terms, even if the starter cannot read

the state of the reactor, it can still detect its “proxim-

ity”. In the IO model, on the other hand, there is no

such detection of an interaction (or proximity) by the

starter.

Proximity Detection (PD). When we consider one-

way models we may assume that agents have the capa-

bility to detect the proximity of their interaction part-

ners. This means that an agent knows that it is involved

in an interaction even if it does not receive the state of

the other agent. When an agent is equipped with prox-

imity detection and it interacts with some other agent,

it applies the function g to its own state. This is the

case of the IT model, that is a one-way model without

omission where the starter is equipped with proximity

detection. Later we will also introduce omission detec-

tion, and we will show that the detection of an omission

is a property that is not always equivalent to the detec-

tion of proximity.

2.3 Omissions and Model Hierarchy

An omission is a fault affecting a single interaction. In

an omissive interaction an agent does not receive any in-

formation about the state of its counterpart. Omissions

are introduced by an adversarial entity. We consider:

Definition 1 (Unfair Omissive (UO) Adversary)

The UO adversary takes a run I and outputs a new

sequence I ′, which is obtained by inserting a (possibly

empty) finite sequence of omissive interactions between

each pair of consecutive interactions of I. (Note that,

since I is infinite, the total number of omissive interac-

tions in I ′ may be infinite.)

Definition 2 (Eventually Non-Omissive

(�NO/�NO1) Adversary) The �NO adversary takes

a run I and outputs a new sequence I ′, which is ob-

tained by inserting any finite sequence of omissive in-

teractions between finitely many pairs of consecutive

interactions of I. (Note that the total number of omis-

sive interactions in I ′ is finite.) The �NO1 adversary is

even weaker, and can only output interaction sequences

with at most one omission.

If we incorporate omissions in our runs, then transition

functions become more general relations.

2.3.1 TW Omissive Models

In the two-way omissive model, we have the transition

relation

δ(as, ar) = {(fs(as, ar), fr(as, ar)), (o(as), fr(as, ar)),

(fs(as, ar), h(ar)), (o(as), h(ar))}

(model T3). The first pair is the outcome of an interac-

tion when no omission is present; the other three pairs

represent all possible outcomes when there is an omis-

sion: respectively, an omission on the starter’s side, on

the reactor’s side, and on both sides. The functions o

and h represent the detection capabilities of each agent:

in TW, if one of these is the identity, then omissions are

undetectable on the respective side. If omissions are un-

detectable on both sides, we have the model T1:

δ(as, ar) = {(fs(as, ar), fr(as, ar)), (as, fr(as, ar)),

(fs(as, ar), ar))}.

Omission Detection (OD). In some models we as-

sume that agents have the capability to detect an omis-

sion. This means that an agent knows that it is involved

6 Giuseppe A. Di Luna et al.

in an interaction that contains an omission. We assume

that the agent detecting the omission is the one that

does not receive the state of the other agent. This has a

practical reason: in case of an omission, an agent could

receive corrupted information, allowing it to detect the

fault but not the state of the other agent.

Moreover, if the agent that receives the state of

the other also detects the omission, then omission can

be easily removed by ignoring the omissive interaction.

Therefore, this would lead to models that are equivalent

to one-way interaction models without omissions.

If an agent is equipped with omission detection and

it initiates an interaction that happens to be omissive,

then the agent does not receive the state of the other

agent, and it applies the function o to its own state

only.

If omissions are detected only on the starter’s side,

we have the model T2:

δ(as, ar) = {(fs(as, ar), fr(as, ar)), (o(as), fr(as, ar)),

(fs(as, ar), ar), (o(as), ar)}.

If omissions are detected only on the reactor’s side, we

have a symmetric model, equivalent to T2.

2.3.2 One-Way Omissive Models

In the case of one-way interactions, we have the transi-

tion relation

δ(as, ar) = {(g(as), f(as, ar)), (o(as), h(ar))}.

The first pair is the outcome of an interaction when

no omission is present, and the second pair when there

is an omission. (Note that the IO model corresponds

to the case in which g is the identity function.) Once

again, omissions are undetectable starter-side (respec-

tively, reactor-side) if o (respectively, h) is the identity

function.

Model Investigation for One-Way Interactions All pos-

sible one-way interaction models are detailed in Fig-

ure 2. The figure contains all possible combinations

of detection of proximity and omission, starter-side or

reactor-side.

We identify four models in Figure 2 for which there

is no immediate equivalence with any other model in

the table. For convenience these models will be named

I1, I2, I3, I4:

– Model I1 is the one where only the starter detects

the proximity, Str(PD). The transition relation is

δ(as, ar) = {(g(as), f(as, ar)), (g(as), ar)}.

– In model I2, the transition relation is

δ(as, ar) = {(g(as), f(as, ar)), (g(as), g(ar))}.

Proximity is detected by both starter and reactor:

Str(PD) & Rct(PD). That is, in case of a correct

transition, the starter detects the presence of an-

other agent, and its transition is g(as). The other

agent detects the presence of an interacting agent

and it also receives its state: therefore its transi-

tion function is f(as, ar). If there is a faulty inter-

action, then both agents will detect the presence of

each other, but no one will receive the other’s state.

Therefore, they will both apply the same function

g to their internal state, in this case the transition

function is (g(as), g(ar)). In this model, in case of

omission, we have a symmetric interaction, because

both agents apply g to their states. Notice that,

if the starter and the receiver applied two differ-

ent functions, say g, t, in case of omission, then this

would have been equivalent to having receiver-side

omission detection. Indeed, in this case the receiver

would know that its role is the receiver, and if it did

not receive the state of the starter, then it would

infer that an omission has occurred.

– In model I3, the starter detects proximity and the

reactor detects omissions:

δ(as, ar) = {(g(as), f(as, ar)), (g(as), h(ar))}.

This is model Str(PD) & Rct(OD) of Figure 2. In

this case, the starter detects the proximity of an

agent with which it is interacting both in the case

of a correct transition and in the case of an omis-

sion. Thus, the starter always transitions to g(as).

On the contrary, the reactor detects the presence of

an omission in case of a faulty interaction, outcome

h(ar), or it receives the state of the starter in case

of a correct interaction, outcome f(as, ar).

– Finally, I4 is the model in which the starter detects

both proximity and omission and the reactor can

only detect proximity: Str(PD+OD) & Rct(PD) in

Figure 2. The transition relation is

δ(as, ar) = {(g(as), f(as, ar)), (o(as), g(ar))}.

In case of a correct transition, the starter detects

the presence of another agent, transitioning to g(as),

and the other agent detects the presence of the starter

as well as its state: therefore its transition is f(as, ar).

In case of a faulty interaction, then both agents will

detect each other’s presence, none of them will re-

ceive the state of the other, and the starter will

detect an omission. Therefore the starters applies

Fault-Tolerant Simulation of Population Protocols 7

Detection Capabilities Transition Relation Relationship with Models of Figure 1
Str(PD) δ(as, ar) = {(g(as), f(as, ar)), (g(as), ar)} I1 by definition
Str(OD) δ(as, ar) = {(as, f(as, ar)), (o(as), ar)} equivalent to IO

Str(PD+OD) δ(as, ar) = {(g(as), f(as, ar)), (o(as), ar)} equivalent to IT
Rct(PD) δ(as, ar) = {(as, f(as, ar)), (as, g(ar))} equivalent to IO
Rct(OD) δ(as, ar) = {(as, f(as, ar)), (as, h(ar))} equivalent to IO

Rct(PD+OD) δ(as, ar) = {(as, f(as, ar)), (as, h(ar))} equivalent to IO
Str(PD) & Rct(PD) δ(as, ar) = {(g(as), f(as, ar)), (g(as), g(ar))} I2 by definition
Str(PD) & Rct(OD) δ(as, ar) = {(g(as), f(as, ar)), (g(as), h(ar))} I3 by definition

Str(PD) & Rct(PD+OD) δ(as, ar) = {(g(as), f(as, ar)), (g(as), h(ar))} equivalent to I3
Str(OD) & Rct(PD) δ(as, ar) = {(as, f(as, ar)), (o(as), g(ar))} equivalent to IO
Str(OD) & Rct(OD) δ(as, ar) = {(as, f(as, ar)), (o(as), h(ar))} equivalent to IO

Str(OD) & Rct(PD+OD) δ(as, ar) = {(as, f(as, ar)), (o(as), h(ar))} equivalent to IO
Str(PD+OD) & Rct(PD) δ(as, ar) = {(g(as), f(as, ar)), (o(as), g(ar))} I4 by definition
Str(PD+OD) & Rct(OD) δ(as, ar) = {(g(as), f(as, ar)), (o(as), h(ar))} equivalent to IT

Str(PD+OD) & Rct(PD+OD) δ(as, ar) = {(g(as), f(as, ar)), (o(as), h(ar))} equivalent to IT

Fig. 2: Various models of one-way interactions in the presence of proximity detection (PD) and omission detection

(OD) for starter (Str) and reactor (Rct), and their relationship with the models of Figure 1.

function o to its own state, and the receiver can-

not distinguish this faulty interaction from a cor-

rect interaction in which it had the role of starter:

therefore, it will apply function g to its own state.

There are some models that have the same transi-

tion relation, such as model Str(PD+OD) & Rct(OD)

and Str(PD+OD) & Rct(PD+OD). The difference be-

tween these two models is that in the second one the

reactor detects also the proximity of the starter and not

only the omission. It is trivial to see that the transition

relation is the same:

δ(as, ar) = {(g(as), f(as, ar)), (o(as), h(ar))}.

Indeed, if there is an omission in the second model,

the reactor detects the proximity of the starter, but

detecting the omission gives more information than just

detecting the interaction. Therefore, in both models,

when an omission occurs the reactor uses the function

h instead of g.

In the following theorem we will show the immediate

relationships between the models in the table, the four

models I1, I2, I3, I4 and the two one-way models without

omissions, IT and IO.

Theorem 1 Considering the models of Figure 2, the

following hold.

(1) Models Str(OD), Rct(PD), Rct(OD), Rct(PD+OD),

Str(OD) & Rct(PD), Str(OD) & Rct(OD), and

Str(OD) & Rct(PD+OD) are equivalent to IO.

(2) Models Str(PD+OD), Str(PD+OD) & Rct(OD), and

Str(PD+OD) & Rct(PD+OD) are equivalent to IT.

(3) Model Str(PD) & Rct(PD+OD) is equivalent to I3.

Proof We prove each statement of the theorem:

(1) All these models share a transition relation of the

form

δ(as, ar) = {(as, f(as, ar)),

(as/o(as), ar/g(ar)/h(ar))}.

When no omission occurs the transition relation is

the same as in IO: δ(as, ar) = (as, f(as, ar)). Omis-

sions are introduced by an adversary. This means

that if omissions improve the computational power

of the model with respect to IO, then the adversary

will just create executions without omissions. On

the other hand, if the presence of omissions leads

to a model that is weaker than IO, than the agents

can ignore each omission by setting the functions o,

g and h to the identity. Therefore, all these models
are equivalent to IO.

(2) All these models share a transition relation in the

form

δ(as, ar) = {(g(as), f(as, ar)), (o(as), ar/h(ar))}.

In this case, the agents can simulate a model with-

out omissions by using the identity function when

an omission is detected (i.e., setting o and h to

the identity). This leads to the transition function

δ(as, ar) = (g(as), f(as, ar)). Thus, all these models

are equivalent to IT.

(3) The equivalence is immediate by observing that model

Str(PD+OD) & Rct(PD+OD) has the same transi-

tion relation as model Str(PD+OD) & Rct(OD).

ut

Hierarchy of Models In the previous sections we iden-

tified the models obtained by all possible combinations

8 Giuseppe A. Di Luna et al.

of omission and detection, and we pruned out the triv-

ially equivalent ones. The significant models and their

relationships have been reported in Figure 1.

For TW omissive models, in T2 we have the models

where there is no detection of omission either on the

starter’s or the reactor’s side. Since these two models

are symmetric, only the one without reactor-side de-

tection is reported, i.e., function h is forced to be the

identity. In T1 we have the weaker model where no de-

tection is available, i.e., both o and h are the identity.

In one-way models, function g is applied when an agent

detects the proximity of another agent. However, de-

tecting the proximity does not imply the detection of

an omission: in I2, no agent detects an omission, but

both detect the proximity of the other agent. Finally,

models IT and IO are the non-omissive models intro-

duced in [5].

Each arrow in Figure 1 indicates either the obvious

inclusion, that is, the transition relation of the source

is a subset of the transition relation of the destination,

or the adversary can force the inclusion by avoiding

omissions: this is the case with T3 and TW, for instance.

Another case is give by model I4, which gets the

same transition relation as I2 upon setting o = g. This

means that any protocol for I2 can be used also for I4,

which implies that any problem solvable in I2 can also

be solved I4. Moreover, if a problem cannot be solved

in I4, that is, any protocol implementable in I4 cannot

solve the problem, then it cannot be solved in I2, since

the protocols implementable in I2 are a subset of the

protocols implementable in I4. The same can be said for

models T3 and I3: the transition relation of T3 becomes

that of I3 if we set fs = o = g and fr = f .

2.4 Simulation of Two-Way Protocols

In this section we define the two-way protocol simulator

(or “simulator” for short) and other related concepts.

Given a two-way protocol P, consider a protocol S(P),

whose set of local states is QP × QS , where QP is the

set of local states of P (the “simulated states”), and

QS is additional memory space used in the simulation.

Let πP : QP × QS → QP be the projection function

onto the set of local states of P. By extension, if C is a

configuration of S(P), we write πP(C) to indicate the

configuration of P consisting of the projections of the

states of the agents of C.

Next we define the concept of event : intuitively, an

event represents an update of the simulated state of

an agent. Given an execution ΓI(C0) of S(P), where

I = (i0, i1, . . .), we say that E(Γ) = (e0, e1, . . .) is a

sequence of events for Γ if it is a weakly increasing

sequence of indices of interactions of I, such that no

three indices are the same, and containing at least the

indices of the interactions that determine the update of

the simulated state of some agent in the execution Γ

(if an interaction updates the simulated states of two

agents, then its index must appear twice in E(Γ)). So,

with each event ej in E(Γ), we can associate a unique

agent involved in the interaction iej ; preferably, this

agent is one that effectively changes simulated state as

a result of iej . We also allow extra events in E(Γ), asso-

ciated with agents that do not change simulated state,

because we want to take into account simulations of

two-way protocols that occasionally leave the state of

an agent unchanged.

If ΓI(C0) = (C0, C1, . . .), we let C−j = Cej and

C+
j = Cej+1. In other words, C−j and C+

j are the con-

figurations before and after the j-th update of the sim-

ulated state, respectively.

Definition 3 (Perfect matching of events) Given

an execution ΓI(C0) of a run I and a sequence of events

E(Γ), a perfect matching M(E) is a partition of N into

ordered pairs (viewed as indices of events of E(Γ)) such

that, if (j, k) ∈M(E), where ej is associated with agent

ax and ek with agent ay, then x 6= y and

δP(πP(C−j [x]), πP(C−k [y])) = (πP(C+
j [x]), πP(C+

k [y])).

Intuitively, a pair (j, k) in a perfect matching corre-

sponds to the pair of events (ej , ek) representing the two

state changes given by a two-way interaction of agents

under the simulated protocol P. The events ej and ek
correspond to the updates of the simulated states of the

starter and the reactor, respectively. A matching M(E)

induces a derived run D of P as follows. Sort the pairs

(j, k) of M(E) by increasing min{ej , ek}, and let M ′ be

the sorted sequence. Now, if (j, k) is the m-th element

of M ′, agent ax is associated with event ej and agent

ay is associated with event ek, then the m-th element

of D is (x, y). Now, the derived execution induced by

M(E) is simply the execution of P induced by D, i.e.,

ΓD(πP(C0)).

Definition 4 (Simulation) A protocol S(P) simu-

lates the two-way protocol P if, for any initial config-

uration C0 of n agents of S(P), and any run I whose

execution ΓI(C0) satisfies the global fairness condition,

there exists a sequence of events E(Γ) with a perfect

matching M(E) whose derived execution is an execu-

tion of n agents of P starting from the initial configura-

tion πP(C0) and satisfying the global fairness condition.

We further require that, for each initial configuration

C0, every finite initial sequence of interactions of S(P)

(possibly with omissions) can be extended to an infinite

Fault-Tolerant Simulation of Population Protocols 9

one I, having no additional omissions, whose execution

ΓI(C0) satisfies the global fairness condition.

The last clause of the definition is a bland consistency

condition that has been added because, with infinite-

memory protocols, the existence of globally fair execu-

tions cannot be taken for granted. It essentially states

that a protocol should not be considered a simulator

simply because it is so “pathological” that it does not

admit globally fair executions. This clause is redundant

in practice, as all the protocols presented in this paper

obviously have globally fair executions in abundance.

However, we will need to assume this consistency con-

dition in order to prove that simulators for certain pro-

tocols do not exist (cf. Lemma 1).

3 Impossibilities for Simulation in Presence of

Omissions

In this section, we derive several impossibility results

in the presence of omissions.

3.1 Additional Definitions

All our impossibility proofs rely on the existence of a

two-way protocol that cannot be simulated.

Definition 5 (Pairing Problem) A set of agents A

is given, partitioned into consumer agents Ac, starting

in state c, and producer agents Ap, starting in state p.

We say that a protocol P solves the Pairing Problem

(Pair) if it enforces the following properties:

– Irrevocability. P has a state s that only agents in

state c can get; once an agent has state s, its state

cannot change any more.

– Safety. At any time, the number of agents in state

s is at most |Ap|.
– Liveness. In all globally fair executions of P, even-

tually the number of agents in state s is stably equal

to min{|Ac|, |Ap|}.

It is easy to see that Pair can be solved by the simple

protocol below in the standard two-way model.

Pairing Protocol PIP . QPIP
= {s, c, p,⊥}. The only

non-trivial transition rules are (c, p) 7→ (s,⊥) and

(p, c) 7→ (⊥, s).

Let us now define a property on the behavior of a

generic simulator S(P) over a sequence of interactions

I. We will later show how this property is related to

the omission resilience of S(P).

Definition 6 (Transition Time (TT)) Given a TW
protocol P, a simulator S(P), and an execution Γ =

(C0, C1, . . .) of S(P) on a system of two agents, the

Transition Time (TT) of the triplet (S,P, Γ) is the

smallest t such that

πP(Ct[0]) = δP(πP(C0[0]), πP(C0[1]))[0]

and

πP(Ct[1]) = δP(πP(C0[0]), πP(C0[1]))[1]

(or ∞, if no such t exists).

Let O(I) be the number of omissions in a sequence of

interactions I.

Definition 7 (Fastest Transition Time (FTT)) Given

a TW protocol P, a simulator S(P), and a configuration

C0 for a system of two agents of S(P), the Fastest Tran-

sition Time (FTT) of the triplet (S,P, C0) is the small-

est TT of all the triplets of the form (S,P, ΓI), where

I ranges over all runs with O(I) = 0 and ΓI [0] = C0.

Intuitively, FTT is the minimum number of (non-

omissive) interactions needed by a specific simulator S
to simulate one step of protocol P in a system of two

agents. Thus it can be seen as the “maximum speed”

of a simulator. We will show in the following that such

a metric is intrinsically related with the omission re-

silience of S.

3.2 Impossibilities in Spite of Infinite Memory

In this section we show that simulations of TW mod-

els are impossible when omissions are present, even if
the system is endowed with infinite memory. We start

presenting a key indistinguishability argument.

Lemma 1 Let S(P) be a simulator working in the omis-

sion model T3. Let t > 0 be the FTT of the triplet

(S,P, C0), where one agent in C0 has simulated state

q0, the other agent has q1 with q0 6= q1, and δP(q0, q1) =

(q′0, q
′
1) and δP(q1, q0) = (q′1, q

′
0). Let A be a system of

2t + 2 agents of S(P), and let B0 be an initial config-

uration of A in which t agents have simulated state q0
and t+ 2 agents have q1. Then, there exists a sequence

of interactions I∗ of A such that ΓI∗(B0) is globally fair

and O(I∗) = t, with a sequence of events E(ΓI∗(B0))

in which at least t + 1 events represent a transition of

some agent from simulated state q1 to q′1.

Proof Intuitively, we construct a system with t pairs of

agents which, thanks to omissive interactions, we “fool”

into believing that they are operating in a system of

only two agents, until one agent per pair transitions

10 Giuseppe A. Di Luna et al.

from simulated state q1 to q′1. Then we have an extra

agent that interacts once with one member of each of

the t pairs, also “believing” that the system consists

of only two agents, which finally transitions from sim-

ulated state q1 to q′1. One last auxiliary agent serves as

a “generator” of omissive interactions.

Let I be any run of a system of two agents achiev-

ing FTT for (S,P, C0); let d0 be the agent whose ini-

tial state is q0 and let d1 be the other one. For every

0 ≤ k < t, we construct a sequence of interactions Ik
for two agents as follows: copy the first k interactions

from I; append an omissive interaction with the same

starter as I[k], and with omission (and detection) on

d1’s side; extend the resulting sequence to an infinite

one whose execution from C0 satisfies the global fair-

ness condition, without adding extra omissions (such an

extension exists by Definition 4, since S is a simulator).

Note that Ik has exactly one omissive interaction.

Because the execution of Ik is globally fair, the de-

rived execution must also be globally fair by definition

of simulator, and in particular it makes the simulated

states of the two agents transition according to δP in-

finitely many times. Hence, the agent whose initial sim-

ulated state is q1 will eventually transition to q′1, say

after the execution of the first tk interactions of Ik.

Note that this happens regardless of which agent is the

starter of the two-way simulated interaction, because

by assumption δP is symmetric on (q0, q1).

Now let a0, a1, . . . , a2t+1 be the agents of A, with

indices chosen in such a way that, for all 0 ≤ k < t, the

agents of the form a2k have simulated state q0 in B0,

while all other agents of A have q1. For every 0 ≤ k < t,

we construct a sequence Jk, consisting of tk +1 interac-
tions, involving only agents a2k, a2k+1, a2t, and a2t+1.

We make a2k and a2k+1 interact with each other as in

Ik, but we “redirect” the omissive interaction Ik[k] to

a2t and a2t+1. Specifically, we replicate the first k in-

teractions of Ik (where d0 becomes a2k and d1 becomes

a2k+1); then we add an interaction between a2k and a2t,

where the role of a2k (i.e., starter or reactor) is the same

as that of d0 in Ik[k]; then we insert an omissive inter-

action between a2k+1 and a2t+1, where the role of a2k+1

is the same as that of b1 in Ik[k], and the omission (and

detection) is on a2k+1’s side; finally, we replicate the

tk − k− 1 interactions of Ik from Ik[k+ 1] to Ik[tk − 1].

Observe that Jk contains exactly one omissive interac-

tion, Jk[k + 1].

The final sequence I∗ is now simply the concatena-

tion of all the sequences Jk (where k goes from 0 to t−1,

in increasing order), extended to an infinite sequence of

interactions whose execution is globally fair, and hav-

ing exactly t omissions in total (again, this extension

exists by Definition 4).

Let us examine the execution of I∗ from the ini-

tial configuration B0. Each of the t pairs of the form

(a2k, a2k+1), with 0 ≤ k < t, has an initial execution

that is the same as that of (d0, d1) interacting for k

turns as in Ik. Hence, the execution of a2t is that of d1
interacting as in I for the first t turns. It follows that

a2t transitions from simulated state q1 to q′1 by the end

of the sub-run Jt−1. Also, for each pair (a2k, a2k+1), the

execution is as in Ik for the first tk turns; hence, a2k+1

transitions from simulated state q1 to q′1 at the end of

the sub-run Jk. Thus, in total, we have at least t + 1

agents that transition from q1 to q′1. ut

Theorem 2 Given an infinite amount of memory on

each agent, it is impossible to simulate every TW pro-

tocol in the T3 model (hence in all the omissive models

of Figure 1), even under the �NO adversary.

Proof We show that the protocol PIP for Pair cannot be

simulated if any type of omissive interaction is allowed.

Assume by contradiction that there is a simulator S
for PIP , i.e., S solves Pair under some omissive model.

Let us now apply Lemma 1 to S and PIP , where q0
is the initial state of the providers (hence there are t

providers), q1 is the initial state of the consumers (hence

there are t + 2 consumers), and q′1 is the irrevocable

state.

Because PIP is symmetric with respect to starter

and reactor, the hypotheses of Lemma 1 are satisfied,

and hence there is a sequence of interactions I∗ whose

execution is globally fair, which causes t+ 1 transitions

into state s. Since the execution is globally fair, the de-

rived execution of I∗ must be an execution of PIP , due

to Definition 4. In particular, it satisfies the irrevocabil-
ity property of Pair. Therefore, no agent entering state

s can ever change it. It follows that, eventually, there

are at least t + 1 agents in state s, which contradicts

the safety property of Pair.

Since I∗ contains just finitely many omissive inter-

actions, it can be generated by the �NO adversary. ut

Theorem 2 uses as counterexample the construction

of Lemma 1, implying that a simulator S fails to simu-

late protocol PIP in a run where the number of failures

is exactly the FTT of (S,PIP , (c, p)). This is even more

interesting if we consider simulators that are unaware of

the protocol they are simulating, where by “unaware”

we mean that the sequence of simulated two-way inter-

actions is not influenced by the protocol that is being

simulated or by the initial configuration (i.e., general-

purpose and not ad-hoc simulators). We have shown

that each of these simulators fails as soon as the number

of omissions is above some constant threshold, which is

independent of the simulated protocol and the initial

Fault-Tolerant Simulation of Population Protocols 11

I = {i0, . . . , ik, . . . , it�1, . . .}I = {i0, . . . , ik, . . . , it�1, . . .}

d0d0 d1d1

(a) Run I achieving FTT.

i0ki
0
k

Ik = {i0, . . . , ik�1, i
0
k, . . . , i0tk�1, . . .}Ik = {i0, . . . , ik�1, i
0
k, . . . , i0tk�1, . . .}

d0d0 d1d1

(b) Partial run Ik.

.

a2t+1a2t+1

a2ta2t

a0a0 a1a1 a2a2 a3a3 a2t�2a2t�2 a2t�1a2t�1

J0[0]J0[0] J1[1]J1[1] Jt�1[t � 1]Jt�1[t � 1]

J0J0 J1J1 Jt�1Jt�1

J0[1]J0[1] J1[2]J1[2] Jt�1[t]Jt�1[t]

(c) Final run I∗.

Fig. 3: Construction of the run I∗

configuration. Such a threshold is precisely the min-

imum number of non-omissive interactions needed to

simulate a single two-way transition.

For models T1, I1, and I2, we can strengthen Theo-

rem 2.

Theorem 3 Given an infinite amount of memory on

each agent, it is impossible to simulate every TW proto-

col in the interaction models T1, I1, and I2, even under

the �NO1 adversary.

Proof The proof uses a construction analogous to the

one used in Lemma 1. We consider a system A of 2t+

2 agents a0, a1, . . . , a2t+1, and we build t sequences of

interactions Ik between two agents d0 and d1, exactly

as in Lemma 1. Recall that the run Ik contains only

one omission. Hence, if a simulator is resilient to the

�NO1 adversary, it eventually succeeds in making d0
and d1 simulate a full two-way interaction, say after tk
one-way interactions. Since tk is well defined, we can

go on and construct the sequence Jk. However, the Jk
that we will use in this proof differs from its counterpart

used in Lemma 1 by two elements: Jk[k] and Jk[k+ 1].

In particular, our new Jk’s will contain no omissions.

If the model is T1, we replace the old interactions

Jk[k] and Jk[k+ 1] by a single non-omissive interaction

between ak and a2t (in which ak is the starter if and

only if d0 is the starter in I[k]).

Let the model be I1. If the interaction I[k] is (d0, d1),

then we replace the old interactions Jk[k] and Jk[k+ 1]

by the single interaction (ak, a2t). Otherwise, if I[k] =

(d1, d0), we set Jk[k] = (a2t, a2t+1) and Jk[k + 1] =

(ak+1, a2t+1).

Consider now model I2. If the interaction I[k] is

(d0, d1), then we set Jk[k] = (ak, a2t) and Jk[k + 1] =

(ak+1, a2t+1). Otherwise, if I[k] = (d1, d0), we replace

the old interactions Jk[k] and Jk[k + 1] by the three

interactions (a2t, a2t+1), (ak, a2t+1), and (ak+1, a2t+1).

Finally, we concatenate the t finite sequences Jk to

obtain the new run I∗, which contains no omissions.

Let us now examine the execution of I∗ from the ini-

tial configuration B0 defined in Lemma 1. Once again,

each of the t pairs (a2k, a2k+1), with 0 ≤ k < t, has

an initial execution that is the same as that of (d0, d1)

interacting for k turns as in Ik. Then, the new interac-

tions that we added in lieu of Jk[k] and Jk[k+ 1] make

a2k and a2k+1 change state in the same way as in the

omissive interaction Ik[k]. But as a side effect, also a2t
changes state as it would in a non-omissive interaction

with a2k. As a consequence, by the end of I∗, all the

agents of the form a2k+1 with 0 ≤ k < t, as well as a2t,

have transitioned from simulated state q1 to q′1. Thus,

in total, at least t+ 1 agents transition from q1 to q′1.

Now the proof can be completed exactly as in The-

orem 2, by showing that the protocol PIP cannot be

simulated. ut

One may wonder what would happen if we wanted to

construct simulators that “gracefully degrade” when

omissions reach a certain threshold tO. More precisely,

for a sequence of interactions I with O(I) < tO, the sim-

ulator has to perform a full simulation of P; if O(I) ≥
tO, the simulator has to start a simulation, but then it

is allowed to stop forever in a “consistent” simulated

state. Essentially, in the second case, we allow the se-

quence of events E(Γ) defined in Section 2.4 to be finite

(in other terms, we drop the simulator’s “liveness” re-

quirement).

Theorem 4 Given an infinite amount of memory on

each agent, in the T3 model (and hence in all the omis-

sive models of Figure 1), any gracefully degrading simu-

lator that simulates all TW protocols must have a thresh-

old tO ≤ 1.

Proof Recall that in Lemma 1 we constructed a se-

quence of interactions I∗ for a set of agents A, which

was then applied to the protocol PIP in order to prove

Theorem 2. Suppose now that a simulator has thresh-

old tO > 1. If such a simulator executes a run with at

most one omission, it must effectively simulate infinitely

many two-way interactions. In particular, it is able to

simulate the first two-way interaction in a system of

two agents, and therefore the sequence I mentioned in

12 Giuseppe A. Di Luna et al.

Lemma 1 is well defined for this simulator, as well as

the sequences Ik and the numbers tk. But then, as the

agents of A execute the same simulator according to the

sequence I∗, they violate the safety property of Pair, be-

cause t+ 1 of them change their simulated state from c

to s. Since they reach a non-consistent simulated state,

this means that a gracefully degrading simulator with

threshold tO > 1 cannot simulate PIP . ut

4 Simulation in Omissive Models

In this section we focus on designing simulators of two-

way protocols. In light of the impossibilities presented

in the previous section, additional assumptions are nec-

essary. Section 4.1 assumes some knowledge on the max-

imum number of omissions, Section 4.2 assumes the

presence of unique IDs, and finally in Section 4.3 we

assume to know the number of agents.

4.1 Knowledge on Omissions

Here we assume to know an upper bound o on the num-

ber of omissions, i.e., for any sequence of interactions I

on which the simulator runs we have O(I) ≤ o. We will

show that under this assumption there exists a simula-

tor for models I3 and I4. These contrast with models I1
and I2, in which it is impossible to simulate even when

O(I) ≤ 1 (see Theorem 3).

We explain the simulator SKO under model I3; the

version for model I4 is only slightly different, and its

correctness follows from symmetry considerations. The

simulator is reminiscent of the card game Rummy, and

is based on the exchange of “tokens”. Each simulated

state q ∈ QP is represented as a sequence of numbered

tokens: 〈q, 1〉, . . . , 〈q, o + 1〉. Intuitively, an agent tries

to transmit its state to others by sending one token

at a time, for o+ 1 consecutive interactions, each time

incrementing the counter. When a reactor detects an

omission, it generates a joker token 〈J〉, which will also

start circulating. Note that there are never more than

o jokers in the system. Every time an agent gets a new

token, it checks if it owns the complete set of o + 1

tokens representing some state q and, if so, it simulates

(part of) an interaction with a hypothetical partner in

state q. If the complete set of tokens is not available,

the agent is allowed to replace the missing tokens with

the jokers that it currently owns. After the o+1 tokens

have been used, they are discarded and withdrawn from

circulation. However, if an agent uses some joker tokens,

it “takes note” of what tokens these jokers are replacing.

If later on the same agent obtains one of the tokens in

this list, say 〈q, i〉, it turns 〈q, i〉 into a joker and removes

〈q, i〉 from the list.

Simulator Variables. Each agent has a multiset of

tokens to be sent, called sending, initially empty. It

also has a variable statesim (initially set to available) for

the state of the simulator protocol, a variable stateP for

the state of the simulated protocol (initialized according

to its initial simulated state), and a multiset of tokens

called graveyard, initially empty.

Simulator Protocol. Suppose that an agent inter-

acts as a starter. If statesim = available and sending

is empty, the agent performs a production operation: it

switches to statesim = pending and inserts the complete

string of tokens

〈stateP , 1〉, 〈stateP , 2〉, . . . , 〈stateP , o+ 1〉
into sending. Subsequently, regardless of statesim, the

starter removes a token from the sending multiset, cho-

sen deterministically (unless of course the multiset is

empty), and the reactor reads it, as detailed below. (It

is important that the token is chosen deterministically

from the multiset, so the starter and the reactor will

implicitly choose the same.)

Suppose now that an agent interacts as a reactor.

To begin with, it reads a token from the sending mul-

tiset of the starter (unless of course it is empty), and

inserts it into its own sending multiset. If it detects an

omission, it inserts a joker token 〈J〉 instead. Then it

runs a preliminary check: if statesim = pending and the

agent can find a complete string of tokens for its own

state (i.e., stateP) in its own sending multiset (possibly

using some joker tokens as wild cards), then it performs

a deletion operation: it switches to statesim = available
and removes the set of o+ 1 used tokens from the mul-

tiset, one copy of each. After this preliminary check,

the core protocol starts: if statesim = available and the

agent has a complete string of tokens for some state q

in its own sending multiset (possibly using some joker

tokens), it performs a right-side transition operation: it

removes the set of o+ 1 used tokens from the multiset,

it simulates its part of the two-way transition with an

agent in state q (i.e., it sets stateP = δ(q, stateP)[1]),

and it inserts a complete string of “state-change” tokens

into sending:

〈(q, stateP), 1〉, 〈(q, stateP), 2〉, . . . , 〈(q, stateP), o+ 1〉.
On the other hand, if statesim = pending and the agent

has a complete string of state-change tokens of the form

〈(stateP , q′), i〉 in its own sending multiset (possibly

using some joker tokens), it performs a left-side transi-

tion operation: it removes the set of o + 1 used tokens

from the multiset, it sets stateP = δ(stateP , q′)[0], and

switches to statesim = available.

Fault-Tolerant Simulation of Population Protocols 13

Thm. 6

TW

Thm. 6 Thm. 6

Thm. 6Thm. 6Thm. 6

Thm. 6
Thm. 6

Thm. 6

Thm. 2

TW

Thm. 2 Cor. 1

Thm. 2Thm. 2Thm. 2

Thm. 2
Thm. 2

Thm. 2

Thm. 3

TW

Thm. 5 Thm. 5

Thm. 5Thm. 5?

Thm. 3
Thm. 3

Thm. 3

Unique IDs

Thm. 7

TW

Thm. 7 Thm. 7

Thm. 7Thm. 7Thm. 7

Thm. 7
Thm. 7

Thm. 7

Knowledge of n

Fig. 4: Map of results (cf. Figure 1). The models where it is possible to simulate two-way protocols are represented

with a white blob; the models where simulation is impossible are represented with a gray blob.

Also, whenever a reactor uses a joker token as a sub-

stitute for some token 〈q, i〉, it adds 〈q, i〉 to the multiset

graveyard. Symmetrically, when it receives a new token

〈q, i〉 from a starter and that token is in the graveyard,

it removes one copy of 〈q, i〉 from the graveyard and it

replaces the last copy of 〈q, i〉 in sending with a joker

token.

We say that a token is circulating if it is in the

sending multiset of some agent. A token is dead if it is

in a graveyard.

Lemma 2 In an execution of SKO with at most o omis-

sive interactions, the number of circulating joker to-

kens plus the number of dead tokens never decreases

and never exceeds o.

Proof Since we are assuming that the execution con-

tains no more than o omissive interactions, at most o

joker tokens are generated in total. These joker tokens

circulate among agents through their sending multi-

sets, and may be consumed when a deletion or a transi-

tion operation is performed. When a joker token is con-

sumed, a token is created in some agent’s graveyard;

when a copy of the same token reaches the sending

multiset of that agent, it becomes a joker token, elim-

inating the copy in the graveyard. This means that,

throughout the execution, the sum of the circulating

jokers and the sizes of all graveyard multisets never

decreases, and is incremented only when an omissive

interaction occurs: therefore, this sum never exceeds o.

Let us fix a q ∈ QP and an i ∈ {1, . . . , o + 1}:
we call (q, i)-tokens the tokens of the form 〈q, i〉 and

〈(q, q′), i〉, for some q′ ∈ QP . Observe that there are

exactly |QP |+ 1 possible (q, i)-tokens.

Lemma 3 Throughout an execution of SKO, for every

q and i, the number of circulating (q, i)-tokens never ex-

ceeds the number of pending agents with simulated state

q plus the number of dead (q, i)-tokens.

Proof We can prove our claim by induction: it is true

at the beginning of the execution, when there are no to-

kens and no agent is pending, and we can show that the

property is preserved after every interaction. A (q, i)-

token 〈q, i〉 is created if and only if an agent with simu-

lated state q becomes pending: this operation preserves

our property. Then, during a deletion operation or a

left-side transition operation by a pending agent with

simulated state q, the agent becomes available, and ei-

ther a (q, i)-token is consumed or a joker token is con-

sumed (as a wild card substituting a missing (q, i)-

14 Giuseppe A. Di Luna et al.

token), resulting in the creation of a dead (q, i)-token:

again, this preserves the property. Moreover, a right-

side deletion operation creates a state-change (q, i)-token

and either consumes a (q, i)-token 〈q, i〉 or it consumes

a joker token and creates a dead (q, i)-token 〈q, i〉: this

preserves the property. Finally, when an omissive inter-

action occurs, a circulating (q, i)-token may be lost and

replaced with a joker token, which of course preserves

our property.

Theorem 5 Given an upper bound o on the number of

omissions and Θ(|QP |2(o+1) log(n+o)) bits of memory

on each agent, every TW protocol can be simulated in

I3 and I4.

Proof We will first prove that the protocol SKO real-

izes the simulation in I3. Let us prove that Θ(|QP |2(o+

1) log(n + o)) bits of memory on each agent are suffi-

cient to execute the protocol. Recall that the possible

types of tokens are the ones of the form 〈q, i〉, the state-

change tokens of the form 〈(q, q′), i〉, and the joker to-

ken. This yields a total of |QP |(o+1)+|QP |2(o+1)+1 =

Θ(|QP |2(o + 1)) possible token types. By Lemma 3,

the number of circulating non-joker tokens of each type

never exceeds n + o: indeed, at most n agents can be

pending at the same time, and by Lemma 2 there are

at most o dead tokens. On the other hand, the num-

ber of circulating joker tokens never exceeds o, again

by Lemma 2. So, only Θ(log(n+o)) bits of memory are

needed by an agent to remember how many copies of

each token its sending multiset contains: this yields an

upper bound of Θ(|QP |2(o + 1) log(n + o)) bits on the

size of the sending multiset. The other variables are

all smaller: in particular, by Lemma 2, the graveyard

multiset can contain at most o tokens in total.

Let us show that, in a globally fair execution of

SKO, infinitely many production, right-side transition,

and left-side transition operations are performed by the

agents. When an agent with simulated state q turns

pending and performs a production operation, it cre-

ates a complete string of tokens bearing state q, which

then circulate (possibly turning into jokers) until they

are consumed, either in a deletion operation or in a

right-side transition operation. The latter occurrence is

bound to happen, since the execution is globally fair,

unless all agents remain pending forever. Indeed, if there

exist infinitely many configurations in the execution

where at least one agent is available, then eventually

enough tokens will reach an available agent, which will

then perform a right-side transition. For the same rea-

son, again because the execution is globally fair, unless

all agents remain pending forever, an available agent will

eventually have no tokens in its sending multiset, and

it will therefore perform a production operation. How-

ever, it is impossible for all agents to remain pending
forever: since the execution is globally fair, eventually

an agent would find itself with all the circulating tokens

in its sending multiset, which would make it consume

a string of tokens and become available. With a similar

argument, we can show that infinitely many left-side

transitions will occur, as well.

Note that in the previous paragraph we did not take

into account the presence of joker tokens, and the fact

that an agent may replace a missing token in a string

with a joker, even if that token is actually circulating.

That could prevent any other agent from ever getting a

complete string of tokens, because some tokens could be

missing, and there may not be enough circulating jokers

to replace them. However, this cannot actually happen:

recall that the tokens that have been replaced by jokers

become dead tokens in some graveyard. So, for every

joker token that has “wrongfully” been used to replace

a token t that is actually circulating, a dead copy of t

is created. The missing joker may be needed to replace

a token that was actually lost during an omissive in-

teraction, but in that case the joker will be generated

again: since the execution is globally fair, eventually

the circulating copy of t will reach the agent that has a

copy of t in its graveyard, and a new joker token will

be created. Then, because the execution is globally fair,

that joker will eventually be found in the same sending

multiset with enough tokens to form a complete string

and enable a deletion or a transition operation.

Let us assume that exactly k production operations

are performed by agents with simulated state q: as a

result, k complete strings of tokens bearing state q are

produced and become circulating tokens. We claim that

these k(o+ 1) tokens cannot contribute to more than k

deletion or right-side transition operations, no matter

how many joker tokens are used. In order to perform

k + 1 deletion or right-side transition operations using

these tokens, the system would need to collect k + 1

complete strings of tokens bearing state q, possibly us-

ing jokers. Let i ∈ {1, . . . , o+1}, and let us focus on the

j jokers that are used to replace missing copies of the

token 〈q, i〉 during these k+1 operations. These j jokers

are turned into j dead 〈q, i〉 tokens. Later, j′ of these

dead tokens are removed from their graveyard when

circulating copies of 〈q, i〉 appear, but these circulat-

ing copies are consumed during the process. It follows

that k + 1− j copies of 〈q, i〉 must be consumed in the

k + 1 operations, and j′ copies must be consumed by

dead tokens. In total, k + 1− j + j′ unique circulating

copies of 〈q, i〉 are needed, but k copies are only ever

generated. This yields the inequality k ≥ k+ 1− j+ j′,
which reduces to j ≥ j′ + 1: in other words, there is

at least one copy of 〈q, i〉 that is never removed from a

Fault-Tolerant Simulation of Population Protocols 15

graveyard. Since this is true of all i ∈ {1, . . . , o + 1},
there must be at least o + 1 tokens that remain dead

forever, which contradicts Lemma 2. We conclude that

any set of tokens generated by k production operations

can only be used in at most k deletion or right-side

transition operations. Moreover, since the execution is

globally fair, not only these operations will be at most

k, but they will be exactly k: indeed, the relevant cir-

culating tokens will eventually be found in the sending

multiset of the same agent, which will consume them

to perform a deletion or right-side transition operation,

and this will happen as many times as possible, i.e.,

k. By a similar argument, the same can be said about

left-side transition operations: if k right-side transition

operations bearing the same states are performed, the

resulting state-change tokens will be used in exactly k

left-side transition operations.

So far we have proved that infinitely many produc-

tion, right-side transition, and left-side transition oper-

ations must occur, and we can regard each right-side or

left-side transition operation as an event. We now have

to show that there exists a perfect matching between

these events that yields a consistent derived execution

of the simulated two-way protocol. The previous para-

graph suggests how to match them: given any execu-

tion with only a finite set of k production operations,

in the same execution there must be exactly k deletion

or right-side transition operations with corresponding

states. If the right-side transition operations are k′,
there will be exactly k′ left-side transition operations

with corresponding states: we can match each of these

left-side transition operations with any right-side tran-

sition operation with corresponding state that occurred

in a previous interaction, and this will yield an initial

segment of a consistent derived execution with k′ in-

teractions. Now a standard compactness argument can

be applied: since the above holds for any finite k′, then

in an execution with infinitely many left-side transition

operations there exists a perfect matching of events that

yields a consistent derived execution.

It remains to prove that such a derived execution

is globally fair. Suppose that C and C′ are sets of con-

figurations (closed under permutations) of P such that

every configuration of C can become a configuration

of C′ after a two-way interaction. Assume that C is

reached infinitely often in the derived execution, and

let us prove that C′ is reached infinitely often, as well.

Let C̃ be the set of configurations of the simulator pro-

tocol whose simulated states are in C, and let C̃′ be

constructed similarly from C′. (Note: if a configuration

of the simulator protocol contains a pending agent as
whose partner ar has already performed its side of the

simulated interaction, i.e., a right-side transition oper-

ation, then the simulated state of as is assumed to be

the state it would reach after the corresponding left-side

transition operation. This agrees with the definition of

derived run given in Section 2.4.) By assumption, the

simulation passes through C̃ infinitely often; we claim

that it must go through C̃′ infinitely many times, as

well. By definition of C, for every Cj ∈ C̃, there is an in-

teraction in P between two agents as and ar that maps

πP(Cj) into πP(C ′j), where C ′j ∈ C̃′. We will prove that

such a C ′j can be reached from Cj after a bounded num-

ber of interactions.

– If as and ar are both available in Cj , then a suit-

able C ′j can be obtained by first letting as interact

as the starter to deplete its own sending multiset:

as already noted, this takes at most Θ(|QP |2(o +

1)(n + o)) interactions, because such is the maxi-

mum size of the sending multiset. Then, we let as
interact with ar for o+ 1 times in order to transfer

a complete string of tokens to it (including perhaps

some jokers if some interactions are omissive) and

enable a right-side transition operation. So the sim-

ulated state of ar changes according to δP , and ar
generates a complete string of state-change tokens.

We let ar interact as a starter with as for o + 1

times, so that eventually as will get enough tokens

to perform a left-side transition operation, changing

its simulated state according to δP .

– Let as be pending and ar be available in Cj . Then as
must already have produced its string of tokens, and

these tokens must bear the correct simulated state

that is needed for the two-way transition with ar.

Note that these or equivalent tokens must be able to

eventually reach ar in order to enable a transition

to a suitable C ′j . In order for them to reach ar, at

most o + 1 interactions between ar and the agents

currently holding the relevant tokens are sufficient.

Then, the construction proceeds as in the previous

case.

– If ar is pending in Cj , we have to make it become

available and then apply one of the two previous

constructions. If the string of tokens that ar gener-

ated when it became pending (or a set of equivalent

tokens) is still circulating, then we can make these

tokens reach ar in at most o + 1 interactions, and

then force ar to perform a deletion operation, which

will make it become available. Otherwise, ar must

be able to perform a left-side transition operation

that does not change its simulated state, or else it

would not be possible to map πP(Cj) into πP(C ′j)
by a single interaction. Making ar perform such an

operation is again a matter of letting ar interact

with the proper agents a bounded amount of times,

16 Giuseppe A. Di Luna et al.

which will eventually make it become available with-

out changing its simulated state.

So, a suitable configuration C ′j can be reached from Cj

after a number of interaction bounded by c (which is

a function of o and n), and this holds for every j. By

applying the definition of global fairness to the simula-

tor’s execution c times, we have that a suitable C ′j is

indeed reached for infinitely many j’s. Therefore C̃′ is

reached infinitely many times, and thus so is C′ by the

derived execution. This proves that the derived execu-

tion is globally fair.

The simulator for I4 is obtained by slightly modify-

ing SKO: in an omissive interaction, the roles of the two

agents are reversed, and the starter generates a joker to-

ken, instead of the reactor. Referring to Figure 1, the

function o(as) of I4 is the same as the function h(ar) in

I3. The proof of correctness of this protocol is essentially

the same as the above.

By applying this theorem to a system without omis-

sions (i.e., plugging o = 0), we have:

Corollary 1 Given Θ(|QP |2 log n) bits of memory on

each agent, every TW protocol can be simulated in IT.

ut

4.2 Unique IDs

Now we assume that the agents have unique IDs as part

of their initial state, and we give a TW simulator for the

IO model, named SID, which is reported in Figure 5.

The idea is to use the uniqueness of the IDs to imple-

ment a locking mechanism that ensures the consistent

matching of simulated state changes. Essentially, at a

certain point an agent commits itself to executing a

transition only with another agent with a specific ID.

The locking scheme contains a rollback procedure to

avoid deadlocks.

Simulator Variables. Each agent has the following

variables: my id for its own ID, statesim = avaible for

the state of the simulator protocol, and stateP for the

state of the simulated protocol. Moreover, it keeps two

variables, idother and stateother, which are the ID and

the state of the other agent in the simulated two-way

interaction.

Simulator Protocol. When an available reactor ar,

with ID r and simulated state stateP = qr, observes a

starter as with ID s and statessim = available, it enters a

pairing state. Moreover, it saves the ID s in idother and

the simulated state statesP = qs of as in stateother (see

the details at Lines 3–5). The pairing state could be seen

as a soft commitment in which a reactor picks a specific

agent as a possible partner for a two-way interaction.

In some specific conditions, an agent in the pairing state

can roll back to the available state without completing

a simulated two-way interaction; this will be covered

later.

The simulation proceeds as soon as as, which is

available, receives the information that some other agent

ar is in the pairing state and wants to pair up with

an agent that has my id = s and simulated state qs.

In this case as sets its simulator state to locked, stores

ar’s simulated state and ID, and executes the transition

δP(stateP , stateother = qr)[0] = fs(stateP , stateother).

We remark that this happens only if the current simu-

lated state of as is equal to the variable stateother of ar
(see Line 6).

Suppose that as is locked; if ar observes as, it exe-

cutes the transition

δP(statesP , stateP)[1] = fr(statesP , stateP), becomes avail-
able, and resets the variable idother (see Lines 10–13).

Now, if as is locked and observes that ar’s variable

idother is not s, then it resets its own state to available
(see Lines 14–16).

It may happen, due to the IO model’s nature, that

as, with variable stateP = qs, induces an agent ar to

enter state pairing, but then as starts a two-way simula-

tion with a different agent. In order to prevent ar from

waiting forever, we make it reset the pending transition

if it encounters as again with idsother 6= my id (this is

incorporated in Lines 14–16).

Theorem 6 Assuming IO and unique IDs, SID is a

TW simulator.

Proof Let us consider the simulation of a generic two-

way protocol P. Assume that an agent a0 becomes pair-
ing upon observing an agent a1. Later, a1 can either be-

come locked with a0, or pairing as well, upon observing

some other agent a2. It is clear that, if such a “chain”

of pairing agents is formed, it must stop eventually. The

last agent in the chain, say ak, will then have to become

locked upon observing some pairing agent with idother
equal to ak’s ID (which will eventually happen due to

the global fairness condition).

Now, whenever an agent as enters state locked after

observing an agent ar in state pairing, it changes its

simulated state according to δP , say at time ts, and

sooner or later also ar will do the same, say at time

tr, with tr > ts. This is because ar cannot start a new

interaction with as between times ts and tr (since as
would have to be in state available), and hence it will

necessarily be seen by as with idother 6= s, due to the

global fairness condition. Moreover, as cannot change

its own simulated state after ts and before tr, because

it is locked.

Fault-Tolerant Simulation of Population Protocols 17

1: my id = unique ID; stateP = initial stateP ; idother = ⊥; stateother = ⊥; statesim = available .

(Agent’s variables)

2: Upon Event Reactor delivers (ids, statesP , id
s
other, state

s
other, state

s
sim)

3: if (statesim = available ∧ statessim = available) then
4: statesim = pairing

5: idother = ids; stateother = statesP
6: else if (statesim = available ∧ statessim = pairing ∧ idsother = my id ∧ statesother = stateP) then
7: statesim = locked

8: idother = ids; stateother = statesP
9: stateP = δP(stateP , stateother)[0]

10: else if (statesim = pairing ∧ idother = ids ∧ idsother = my id ∧ statessim = locked) then
11: statesim = available

12: idother = stateother = ⊥
13: stateP = δP(statesP , stateP)[1]

14: else if (idother = ids ∧ idsother 6= my id) then
15: statesim = available

16: idother = stateother = ⊥

Fig. 5: Simulation protocol SID

We have proved that infinitely many simulated state

transitions must occur; these events can easily be paired

up into a consistent perfect matching. We only have

to prove that the derived execution satisfies the global

fairness condition. We will do it in the case in which

the system consists of n ≥ 3 agents; the proof for the

case n = 2 is simpler, and we omit it. Let C and C′
be sets of configurations (closed under permutations)

of P, such that every configuration of C can become

one of C′ after a two-way interaction, and suppose that

the derived execution passes through C infinitely many

times. Let C̃ be the set of configurations of the simulator

protocol whose simulated states are in C and let C̃′ be

constructed similarly from C′. (Note: if a configuration

of the simulator protocol contains a locked agent as, the

simulated state of its partner ar is assumed to be the

state it would reach after the interaction with as. This

agrees with the definition of derived run given in Sec-

tion 2.4.) By assumption, the simulation passes through

C̃ infinitely often; we claim that it must go through C̃′
infinitely many times, as well. By definition of C, for

every Cj ∈ C̃, there is an interaction in P between two

agents as and ar that maps πP(Cj) into πP(C ′j), where

C ′j ∈ C̃′. We will prove that such a C ′j can be reached

from Cj after at most a constant number of interac-

tions.

– If as is available in Cj and ar is either available or

pairing with as, then C ′j can be obtained by simply

letting as and ar interact together multiple times

until they perform a full simulated interaction, and

their states transition according to δP .

– If as or ar (perhaps both) is locked in Cj , we let

it interact with its current partner until the simu-

lated interaction is completed and its internal state

is again available. Then we proceed as in the other

cases.

– If as is pairing in Cj or ar is pairing with an agent

that is not as, we have to make it become avail-
able without performing a full two-way interaction,

and then we can proceed as in the other cases. Sup-
pose that as is pairing (the case with ar is handled

similarly), and let aq be the agent with which as is

paired (perhaps aq = ar).

– If aq is pairing in Cj (of course not with as), then

we let as observe aq and roll back to the available
state.

– If aq is available in Cj , we let it pair up with

some other available agent (possibly ar), and the

we proceed as in the previous case. If an available
agent does not exist, we can create one by letting

some pairing agent roll back or some locked agent

complete its current interaction, as explained in

the first paragraph of the proof.

– If aq is locked in Cj , we let it finish the simu-

lated interaction and become available. If it was

locked with as, we are finished because now as
is available too. Otherwise, we proceed as in the

previous case.

18 Giuseppe A. Di Luna et al.

As already observed, C ′j can be reached from Cj after at

most a constant number c of interactions, and this holds

for every j. By applying the definition of global fairness

to the simulator’s execution c times, we have that C ′j is

indeed reached for infinitely many j’s. Therefore C̃′ is

reached infinitely many times, and thus so is C′ by the

derived execution. ut

4.3 Knowledge of n

We give another result on simulating when additional

knowledge is available to the agents. The proof uses a

naming algorithm Nn in conjunction with SID. This re-

sult complements the impossibility of Section 3.2, show-

ing that a minimal amount of global knowledge, the size

of the system, is enough to build a simulator. Moreover,

the simulation is possible also under the stronger UO
Adversary.

The following naming protocol, Nn, uses the knowl-

edge of n to give each agent a unique ID. This naming

protocol is similar to the threshold protocol for IO pre-

sented in [5].

Simulator Variables. Each agent has a variablesmy id,

initially set to 1, and a flag seen n, which is initially

false. Moreover, it has all the variables used by proto-

col SID of Section 4.2.

Simulator Protocol. When an agent ar is the reactor

of an interaction and the starter as has its same value

for my id, then ar increments its own variable my id.

Then, the flag seen n of ar becomes true if ar’s or as’s

current value of my id is n. If the flag seen n of ar is

true, then ar executes protocol SID with ID the value

of its own my id variable.

Lemma 4 In every globally fair execution of protocol

Nn by a system of n agents in IO, eventually one agent

will get my id = n. As soon as this happens, all agents

have unique IDs from 1 to n, and no agent’s ID will

ever change afterwards.

Proof We can prove by induction that, at any time in

the execution, there is a number M such that all agents

have IDs in {1, . . . ,M}, and for every m ∈ {1, . . . ,M}
there is at least one agent with my id = m. Indeed, this

is true in the initial configuration, with M = 1. For the

inductive step, assume that the proposition is true in

some configuration C, and let us prove that it remains

true after two agents as and ar interact, which results

in the next configuration C′. If the IDs of the two agents

in C are different, they do not change: in this case, the

proposition is still true in C′. Otherwise, if the IDs have

the same value, say m, then the ID of the reactor ar
is incremented. So, in C′, the agent as still has the ID

m, while ar has m + 1: hence, no “gap” is introduced

in the set of IDs. On the other hand, the value of M

either remains the same or increases by 1 (if m = M in

C). In both cases, the proposition is true in C′.
We can also prove that, as long as M < n, the sum

of the IDs of all the n agents keeps increasing. Indeed,

if M < n, by the pigeonhole principle there must be at

least two agents with the same ID. Since the execution

is globally fair, eventually two such agents will inter-

act, and one of them will increment its own ID, which

increases the sum of all IDs. Eventually the largest ID

will become M = n: when this happens, the n agents

will have all the IDs from 1 to n. Therefore, necessarily

all IDs will be distinct, and no ID will change again as

a result of an interaction. ut

The correctness of this protocol now immediately fol-

lows.

Theorem 7 With the knowledge of |A| = n and Θ(log n)

bits of memory on each agent, every TW protocol can

be simulated in IO.

Proof Let the agents execute protocolNn. By Lemma 4,

eventually some agent ar will get ID n, and at that

point all IDs will be distinct. In a globally fair execu-

tion, eventually all agents will interact with ar, set their

flags seen n, and start executing protocol SID, whose

correctness is given by Theorem 6. ut

5 Conclusion

In this paper we have given a formal definition of two-
way simulation in population protocols, and we identi-

fied several omission models. On top of this framework,

we have given several impossibility results, as well as

two-way simulators. Our results yield an almost com-

prehensive characterization, see Figure 4. The only gap

left concerns the possibility of simulation in model T2

when an upper bound on the number of omissions is

known. As future work we are going to investigate this

gap and study models where a unique leader agent is

present. Our preliminary results, [26], in the latter di-

rection show that the problem is far from trivial, and

two-way simulation is still impossible in a wide set of

models.

Acknowledgments. We would like to thank the anony-

mous reviewers for greatly improving the paper’s read-

ability. This research has been supported in part by

the Natural Sciences and Engineering Research Coun-

cil of Canada under the Discovery Grant program and

by Prof. Flocchini’s University Research Chair.

Fault-Tolerant Simulation of Population Protocols 19

References

1. D. Alistarh, J. Aspens and R. Gelashvili. “Space-optimal
majority in population protocols”, 29th Symposium on
Discrete Algorithms, SODA, 2018, pp. 2221–2239.

2. D. Alistarh and R. Gelashvili. “Polylogarithmic-time
leader election in population protocols”, 42th Interna-
tional Colloquium on Automata, Languages and Pro-
gramming, ICALP, 2015, pp. 479–491.

3. D. Alistarh, R. Gelashvili, and M. Vojnovic. “Fast and
exact majority in population protocols”, 34th Annual
ACM Symposium on Principles of Distributed Comput-
ing, PODC, 2015, pp. 47–56.

4. D. Angluin, J. Aspnes, Z. Diamadi, M. J. Fischer, and R.
Peralta. “Computation in networks of passively mobile
finite-state sensors”, Distributed Computing, Vol. 18(4),
2006, pp. 235–253.

5. D. Angluin, J. Aspnes, and D. Eisenstat. “On the power
of anonymous one-way communication”, 9th Interna-
tional Conference on Principles of Distributed Systems,
OPODIS, 2005, pp. 396–411.

6. D. Angluin, J. Aspnes, and D. Eisenstat. “Stably com-
putable predicates are semilinear”, 25th Annual ACM
Symposium on Principles of Distributed Computing,
PODC, 2006, pp. 292–299.

7. D. Angluin, J. Aspnes, and D. Eisenstat. “A simple pop-
ulation protocol for fast robust approximate majority”,
Distributed Computing, Vol. 21(2), 2008, pp. 87–102.

8. D. Angluin, J. Aspnes, and D. Eisenstat. “Fast computa-
tion by population protocols with a leader”, Distributed
Computing, Vol. 21(3), 2008, pp. 61–75.

9. D. Angluin, J. Aspnes, D. Eisenstat, and E. Ruppert.
“The computational power of population protocols”, Dis-
tributed Computing, Vol. 20(4), 2007, pp. 279–304.

10. J. Aspnes and E. Ruppert. “An introduction to popula-
tion protocols”, Bulletin of the European Association for
Theoretical Computer Science, Vol. 93, 2007, pp. 98–117.

11. J. Beauquier, J. Burman, S. Clavière, and D. Sohier.
“Space-optimal counting in population protocols”, 29th
International Symposium on Distributed Computing,
DISC, 2015, pp. 631–649.

12. J. Beauquier, J. Burman, and S. Kutten. “A self-
stabilizing transformer for population protocols with cov-
ering”, Theoretical Computer Science, Vol. 412(33),
2011, pp. 4247–4259.

13. O. Bournez, P. Chassaing, J. Cohen, L. Gerin, and X.
Koegler. “On the convergence of population protocols
when population goes to infinity”, Applied Mathematics
and Computation, Vol. 215(4), 2009, pp. 1340–1350.

14. S. Cai, T. Izumi, and K. Wada. “How to prove im-
possibility under global fairness: on space complexity of
self-stabilizing leader election on a population protocol
model”, Theory of Computing Systems, Vol. 50(3), 2012,
pp. 433–445.

15. D. Canepa, and M. Gradinariu Potop-Butucaru. “Self-
stabilizing tiny interaction protocols”, 3rd Interna-
tional Workshop on Reliability, Availability, and Secu-
rity, WRAS, pp. 1–6, 2010.

16. I. Chatzigiannakis, S. Dolev, S. P. Fekete, O. Michail, and
P. G. Spirakis. “Not all fair probabilistic schedulers are
equivalent”, 13th International Conference on Principles
of Distributed Systems, OPODIS, 2009, pp. 33–47.

17. I. Chatzigiannakis, O. Michail, S. Nikolaou, and A. Pavlo-
giannis. “Passively mobile communicating machines that
use restricted space”, Theoretical Computer Science,
Vol. 412(46), 2011, pp. 6469–6483.

18. I. Chatzigiannakis, O. Michail, S. Nikolaou, A. Pavlo-
giannis, and P. G. Spirakis. “All symmetric predicates
in NSPACE(n2) are stably computable by the mediated
population protocol model”, 35th International Sym-
posium on Mathematical Foundations of Computer Sci-
ence, MFCS, 2010, pp. 270–281.

19. I. Chatzigiannakis, O. Michail, and P. G. Spirakis. “Sta-
bly decidable graph languages by mediated population
protocols”, 12th International Symposium on Stabiliza-
tion, Safety, and Security of Distributed Systems, SSS,
2010, pp. 252–266.

20. I. Chatzigiannakis and P. G. Spirakis. “The dynam-
ics of probabilistic population protocols”, 22th Inter-
national symposium on Distributed Computing, DISC,
2008, pp. 498–499.

21. H.-L. Chen, R. Cummings, D. Doty, and D. Soloveichik.
“Speed faults in computation by chemical reaction net-
works”, 28th International Symposium on Distributed
Computing, DISC, 2014, pp. 16–30.

22. S. Das, G. A. Di Luna, P. Flocchini, N. Santoro, and G.
Viglietta. “Mediated population protocols: Leader elec-
tion and applications”, 14th Annual Conference on The-
ory and Applications of Models of Computation, TAMC,
2017, pp. 172–186.

23. C. Delporte-Gallet, H. Fauconnier, and R. Guerraoui.
“What dependability for networks of mobile sensors?”
1st Workshop on Hot Topics in System Dependability,
HotDep, 2005, p. 8.

24. C. Delporte-Gallet, H. Fauconnier, R. Guerraoui, and E.
Ruppert. “When birds die: making population proto-
cols fault-tolerant”, 2nd IEEE International Conference
on Distributed Computing in Sensor Systems, DCOSS,
2006, pp. 51–66.

25. G. A. Di Luna, P. Flocchini, T. Izumi, T. Izumi, N. San-
toro, and G. Viglietta. “On the power of weaker pairwise
interaction: fault-tolerant simulation of population pro-
tocols”, 37th IEEE International Conference on Dis-
tributed Computing Systems, ICDCS, 2017, pp. 2472–
2477.

26. G. A. Di Luna, P. Flocchini, T. Izumi, T. Izumi, N. San-
toro, and G. Viglietta. “Population protocols with faulty
interactions: the impact of a leader”, Theoretical Com-
puter Science, Vol. 754, 2019, pp. 35–49.

27. M. Fischer and H. Jiang. “Self-stabilizing leader election
in networks of finite-state anonymous agents”, 10th In-
ternational Conference on Principles of Distributed Sys-
tems, OPODIS, 2006, pp. 395–409.

28. R. Guerraoui and E. Ruppert. “Even small birds are
unique: population protocols with identifiers”, Technical
Report CSE-2007-04, York University, 2007.

29. R. Guerraoui and E. Ruppert. “Names trump malice:
tiny mobile agents can tolerate byzantine failures”, 36th
International Colloquium on Automata, Languages and
Programming, ICALP, Vol. 16(2), 2009, pp. 484–495.

30. A. Kosowski, P. Uznanski. “Population Pro-
tocols are fast”, ArXiv e-prints, 2018.
https://arxiv.org/abs/1802.06872

31. O. Michail, I. Chatzigiannakis, and P. G. Spirakis. “Me-
diated population protocols”, Theoretical Computer Sci-
ence, Vol. 412(22), 2011, pp. 2434–2450.

32. O. Michail, I. Chatzigiannakis, and P. G. Spirakis. “New
models for population protocols”, Synthesis Lectures
on Distributed Computing Theory, Morgan & Claypool,
2011.

