
Constructing Self-Stabilizing Oscillators in
Population Protocols

Colin Cooper1, Anissa Lamani2, Giovanni Viglietta3, Masafumi
Yamashita2, and Yukiko Yamauchi2

1 Department of Informatics, Kings College, United Kingdom
2 Department of Informatics, Graduate School of ISEE, Kyushu University, Japan
3 School of Electrical Engineering and Computer Science, University of Ottawa,

Canada

Abstract. Population protocols (PPs) are a model of passive distributed
systems in which a collection of finite-state mobile agents interact with
each other to accomplish a common task. Unlike other works, which in-
vestigate their computation power, this paper throws light on an aspect
of PPs as a model of chemical reactions. Motivated by the well-known BZ
reaction that provides an autonomous chemical oscillator, we address the
problem of autonomously generating an oscillatory execution from any
initial configuration (i.e., in a self-stabilizing manner). For deterministic
PPs, we show that the self-stabilizing leader election (SS-LE) and the
self-stabilizing oscillator problem (SS-OSC) are equivalent, in the sense
that an SS-OSC protocol is constructible from a given SS-LE protocol
and vice versa, which unfortunately implies that (1) resorting to a leader
is inevitable (although we seek a decentralized solution) and (2) n states
are necessary to create an oscillation of amplitude n, where n is the num-
ber of agents (although we seek a memory-efficient solution). Aiming at
reducing the space complexity, we present and analyze some randomized
oscillatory PPs.

Keywords: Population protocol, Self-stabilization, Oscillatory
behavior, Leader election, Distributed algorithm

1 Introduction

The motivation of our study is to understand how autonomy emerges in
biological systems, and to apply such understanding in giving artificial
distributed systems autonomous properties. Specifically, we focus on self-
oscillations, which play fundamental roles in autonomous biological reac-
tions, and investigate them as a phenomenon in distributed computing.
Self-oscillations are often understood as a chemical oscillator provided by
certain reactions, such as the Belousov–Zhabotinsky reaction. We use the
population protocol model for our investigation, since it was introduced
in part to model chemical reactions.

The population protocol (PP) model introduced by Angluin et al. [2] is
a model of passive distributed systems. It is used as a theoretical model of

a collection of finite-state mobile agents that interact with each other in
order to solve a given problem in a cooperative fashion. Computations are
done through pairwise interactions, i.e., when two agents interact, they
exchange their information and update their states accordingly. The inter-
action pattern, however, is unpredictable, and the agents have no control
over which agent they interact with. We thus assume the presence of an
abstract mechanism called scheduler that chooses at any time instant the
pair of agents that interact with each other. PPs can represent not only
artificial distributed systems such as sensor networks and mobile agent
systems, but also natural distributed systems such as chemical reactions
and biological systems.

In the past few years, many problems have been investigated on PPs,
including the problems of computing a function, electing a leader, count-
ing, coloring, synchronizing and naming [1–4, 7, 8]. Most of the problems
consider the computational power of the population and hence are static;
the agents are requested to eventually reach a configuration that repre-
sents the answer to the given computation problem.

The notion of termination is typically intended in the Noetherian
sense (in the context of abstract rewriting systems); however the agents
are not requested to eventually terminate, but the execution is requested
to repeat the same configuration forever.

Unlike most of the past works in PPs, we throw light on an aspect
of PPs as a model of chemical reactions. Specifically, we investigate the
problem of designing a PP that stabilizes to an oscillatory execution, no
matter from which initial configuration it starts; that is, we explore a
self-stabilizing PP that generates an oscillatory execution. The problem
emerges in the project of designing molecular robots [9], and is directly
motivated by the Belousov–Zhabotinsky reaction, which is an example of
non-equilibrium thermodynamics providing a non-linear chemical oscilla-
tor. We show that under a deterministic scheduler governed by an adver-
sary, the self-stabilizing leader election problem and the self-stabilizing
oscillator problem are equivalent, and hence costly in term of space com-
plexity. Aiming at space reduction, we then propose and analyze some
approximate solutions assuming a randomized scheduler.

In biological systems, the oscillatory behavior is used as a natural
clock to transmit signals and hence transfer information. In artificial dis-
tributed systems, PPs that exhibit an oscillatory behavior could be used
to distributely and autonomously implement a clock.

Apart from the difference of motivation, a few works on dynamic prob-
lems are related to our work. Angluin et al. [4] provided a self-stabilizing
token circulation protocol in a ring with a pre-selected leader. Beauquier
and Burman investigated the self-stabilizing mutual exclusion, group mu-
tual exclusion problems [6] and also the self-stabilizing synchronization

problem [5]. In the latter work, they have shown that the synchronization
problem in the PP model under a deterministic scheduler is impossible
to solve, and hence they proposed a solution assuming the presence of an
unlimited-resource agent called Base Station. Our problem also belongs
to the class of dynamic problems.

After introducing some concepts and notions in Section 2, we consider
a deterministic scheduler governed by an adversary in Section 3. Under
this scheduler, we focus on the self-stabilizing oscillator (SS-OSC) prob-
lem. We show that the self-stabilizing leader election (SS-LE) problem
and the SS-OSC problem are equivalent; that is, an SS-OSC protocol is
constructible from a given SS-LE protocol, and vice versa. In Section 4,
we consider a probabilistic scheduler, i.e., the interacting agents are chosen
uniformly at random. Under the probabilistic scheduler, we present and
analyze some oscillatory PPs, mainly aiming to reduce space complexity.
Section 5 is devoted to the conclusions.

In this paper, we use results from [7] that concern the SS-LE problem.
In [7], it has been shown that the SS-LE is impossible to solve with less
than n states where n is the size of the population. Also, a PP that solves
the SS-LE was proposed. The protocol ensures that eventually each agent
has unique state.

2 Preliminaries

In this paper, we consider a population of n anonymous finite-state agents
that update their state by interacting with other agents. We consider only
pairwise interactions, i.e., each interaction involves exactly two agents.
When two agents interact, they update their state according to a common
protocol. We denote by A = {0, 1, . . . , n − 1}, the set of agents in the
population, that is, |A| = n. Indices are used for notation purposes only;
in fact, the agents are anonymous, i.e., they have no identity and cannot
be distinguished from each other. Any pair of agents a1 and a2 (a1 6=
a2) in the population are susceptible to interact and the interactions are
undirected.

A protocol P = (Q, δ) is a pair of a finite set of states Q and a
transition function δ : Q × Q → Q × Q. When two agents interact with
each other, δ determines the next state of both agents. Let p and q be the
states of agents a1 and a2, respectively. δ(p, q) = (p′, q′) indicates that the
states of agents a1 and a2, after interacting with each other, are p′ and
q′, respectively. We assume that if δ(p, q) = (p′, q′) then δ(q, p) = (q′, p′).

A configuration C is a mapping A → Q that specifies the state
of all the agents in the population. By C(i), we refer to the state of
agent i in configuration C. By C we refer to the set of all possible con-
figurations of the system. Given a configuration C ∈ C and an inter-
action between the two agents a1 and a2, r = (a1, a2), we say that

C ′ is obtained from C via the interaction r, denoted by C
r→ C ′, if

(C ′(a1), C
′(a2)) = δ(C(a1), C(a2)).

Let Ct be the configuration at time t and let rt be the interaction on Ct
at time t. An execution E of a protocol P is a sequence of configurations
and transitions (C0, r0, C1, r1, . . .) such that ∀ i ≥ 0, ri is a transition of

δ and Ci
ri→ Ci+1. When a configuration C ′ is reachable from C after a

finite number of transitions we note C
∗→ C ′.

A scheduler chooses a pair of agents to interact at each time t ≥ 0. In
this paper, we consider two types of schedulers: (i) A deterministic but
globally fair scheduler that guarantees that if there is a configuration that
is reachable infinitely often, then the configuration is eventually reached.
(ii) A uniform random scheduler, i.e., the pair of agents that are chosen
for the interaction are selected at random, independently and uniformly
from the set of all the agents in the system.

In the sequel, we define some important notions that will be used in
the paper.

Definition 1. (Oscillation) Let f : [a, b] ⊂ N → R be a function. We
say that f is an oscillation if there exists c ∈ N such that:

1. a < c < b,

2. f(a) < f(c) > f(b),

3. f is weakly increasing in [a, c] and weakly decreasing in [c, b].

The value f(c)− (f(a) +f(b))/2 is called the amplitude of the oscillation
and is denoted by ιa, whereas b − a is called the period of the oscilla-
tion and is denoted by ιp. The increasing phase (respectively, decreasing
phase) of the oscillation is the interval in which f is weakly increasing
(respectively, weakly decreasing).

Definition 2. (Oscillatory behavior) Given an execution E of a popu-
lation protocol P on n agents and a set of states S, let fS : N→ [0, n] ⊂ N
be the function mapping a time instant t into the number of agents whose
state is in S at time t. Let {t0, t1, . . . } be a strictly increasing sequence
of time instants. We say that E exhibits an oscillatory behavior for the
set of states S, if for every i ≥ 0, the restriction of fS to [ti, ti+1] is an
oscillation.

Note that, according to the previous definitions, any execution exhibits
oscillatory behavior, unless the number of agents whose state is in S
eventually stabilizes. However, we are also interested in evaluating the
“quality” of the oscillations, in terms of their amplitude and period.

3 Deterministic scheduler

We investigate in this section the problem of generating oscillatory exe-
cutions under a global fair deterministic scheduler and starting from an
arbitrary configuration. We show that the SS-LE problem and SS-OSC
problem are equivalent. By using the results in [7], we can deduce then,
that the SS-OSC problem is impossible to solve if |Q| < n or if n is
arbitrary.

Let us first define the deterministic self-stabilizing oscillator.

Definition 3. (Deterministic oscillator) A population of agents ex-
ecuting a deterministic protocol P, under a globally fair scheduler, is a
(C, S, ιa, ιp)-oscillator if any execution E = (C, r, C ′, r′, . . .) of P exhibits
an oscillatory behavior for the set of states S, with amplitude ιa and period
ιp.

Definition 4. (Deterministic self-stabilizing oscillator) A popu-
lation of agents executing a deterministic protocol P, under a globally
fair scheduler, is a self-stabilizing oscillator for the set of states S if,
starting from an arbitrary configuration C0 ∈ C, every execution E =
(C0, r0, C1, r1, . . .) of Protocol P, reaches a configuration C ∈ C such that
(C, S, ιa, ιp) is a deterministic oscillator.

Observe that since the deterministic globally fair scheduler can delay
any particular transition of the system for an arbitrary amount of time,
it is not possible to bound the period using the classical definition of
an interaction. Hence, we use the notion of active interactions that was
introduced in [7]. Basically, an interaction r is said to be active in a given
configuration C ∈ C, if it updates the state of at least one of the two agents
that have participated in r. More precisely, an interaction r = (a, b), is

said to be active in C ∈ C, if C
r→ C ′ and either C(a) 6= C ′(a) or

C(b) 6= C(′b).
When ιp is omitted, it means that the period of the oscillator is not

specified, or that the oscillator is not periodic (i.e., not all oscillations have
the same period). We consider in the following (C, S, n, ιp)-oscillators.

Starting from an arbitrary initial configuration C0 ∈ C, we show the
following two results:

1. If the SS-LE problem is solvable using MLE states, then it is possible
to solve the SS-OCS problem using MLE +O(n) states.

2. If the SS-OSC problem is solvable using MOSC states, then it is pos-
sible to solve the SS-LE problem using MOSC +O(1) states.

(1) SS-LE ⇒ SS-OSC. We show that a deterministic population
protocol POSC exists using MLE + 2n states per agent (MLE being the

number of states necessary to solve the self-stabilizing leader election
problem). A solution with MLE + O(n) states is also presented later in
Discussion (1). The idea of the solution is as follows: we combine our
SS-OSC protocol POSC with the SS-LE protocol PLE proposed in [7]
and that uses n distinct states per agent. When an interaction occurs
between two agents, the two agents execute the enabled actions of both
POSC and PLE . Protocol PLE ensures that eventually one leader is elected
and all the agents have a unique state [7]. Our solution takes advantage
of this “identification” to create an oscillatory behavior. Indeed, using the
identification created by Protocol PLE , the leader can somehow remember
the agents it has already interacted with.

The state of each agent ai consists of a triplet of variables (idai , pai , Tai).
Variable idai is used by Protocol PLE (idai ∈ {0, 1, 2, . . . , n−1}), where 0
is the leader’s state. According to [7], eventually each agent has a unique
value for idai . Variable pai ∈ {0, 1}, indicates the phase of the oscillation
Agent ai is part of (increasing or decreasing phase). Variable Tai is an
array of n entries such that ∀ j ∈ {1, . . . , n − 1}, Tai [j] ∈ {0, 1}. The
array is used only by the leader to keep track of the agents the leader has
already interacted with, hence, in the sequel, the state of a non-leader
agent aj is only represented by the pair (idaj , paj). Let ai and aj be the
two interacting agents at time t. Without loss of generality, assume that
idai < idaj . Protocol 1 describes how agents ai and aj update their state.

Protocol 1 Self-stabilizing deterministic oscillator with central control
(POSC)

1: if (idai = 0) then
2: if (∀ k ∈ [1, n− 1], Tai [k] = 1) then
3: ∀ k ∈ [1, n− 1], Tai [k] := 0
4: if (pai = 0) then pai := 1
5: else pai := 0
6: end if
7: else
8: if (pai = paj) then
9: if (Tai [idaj] = 0) then Tai [idaj] := 1

10: end if
11: else
12: paj := pai

13: if (Tai [idaj] = 0) then Tai [idaj] := 1
14: end if
15: end if
16: end if

17: end if

By executing Protocol PLE , eventually a unique leader is elected and
each agent ai ∈ A has a unique value for its variable idai (refer to [7]).
Hence, idai can be used to identify Agent ai. Let us consider the popu-
lation after the stabilization of Protocol PLE , i.e., ∃! ai ∈ A such that

idai = 0 and ∀ aj , aj′ ∈ A, aj 6= aj′ ⇒ idaj 6= idaj′ . Let us refer to the

elected leader by ai. Recall that the array T is only used by ai. Each
entry k ∈ {1, . . . , n − 1} of Array Tai corresponds to the entry of Agent
aj such that idaj = k. Every time ai interacts with another agent, say aj ,
Agent aj updates its variable paj to be in the same phase as the leader
(refer to Line 12 in Protocol 1) and the leader updates the entry of aj
to 1 to indicate that it has already interacted with aj (Lines 9 and 13).
When all the entries of Tai are set to 1, the leader toggles its phase and
re-initializes its array (Lines 3-5). Since the initial configuration is arbi-
trary, some of the entries in the leader’s array might be equal to 1 even
if the leader did not interact with the corresponding agents. However,
since the leader’s array is eventually re-initialized, we are sure that after
the first re-initialization of T , if an entry of T is equal to 1, then the
leader has indeed interacted with the corresponding agent and thus, all
agents update their phase to be in the same phase as the leader. Let S
be the set of state such that p = 1 (Phase 1). Hence, starting from any
arbitrary configuration C0 ∈ C, every execution E = (C0, r0, C1, r1, . . .)
of PLE ◦ POSC reaches a configuration C ∈ C such that (C, S, n, ιp) is a
deterministic oscillator with ιp = O(n) active interactions.

Discussion (1). The number of states per agent can be reduced to
MLE + O(n) by using the same idea as in Protocol 1, but instead of
using an array, the leader uses a counter that we denote by Next (Next ∈
{1, . . . , n− 1}). The counter is used to indicate the next agent the leader
needs to interact with in order to update its state, i.e., the agents update
their state in a given order so that the leader is sure to have interacted
with everyone. While interacting with the leader, the agents update their
phase to be in the same phase as the leader.

Protocol 2 Self-stabilizing deterministic oscillator with central control
(second approach)
(C(Leader), C(¬ Leader)) → δ(C(Leader), C(¬ Leader))

1. (0, 0, i),(i, 0) → (0, 0, i+ 1),(i, 1) if i < n− 1

2. (0, 0, i),(i, 1) → (0, 0, i+ 1),(i, 1) if i < n− 1

3. (0, 0, n− 1),? → (0, 1, 1), ?

4. (0, 1, i),(i, 0) → (0, 1, i+ 1), (i, 0) if i < n− 1

5. (0, 1, i),(i, 1) → (0, 1, i+ 1),(i, 0) if i < n− 1

6. (0, 1, n− 1),? → (0, 0, 1),?

The formal description of the solution is given in Protocol 2. Char-
acter ’?’ indicates any state of a non leader agent. If ’?’ is used then,
the corresponding non-leader agent does not update its state in the in-
teraction. The state of a leader agent ai consists of a triplet of variables
(idai , pai , Next) where idai and pai have the same role as in Protocol 1. The

state of a non leader agent aj is only represented by the couple (idaj , paj).
Protocol 1 was introduced to get rid of the state update order induced
while using the counter in Protocol 2. We state the following result:

Theorem 1. Under the global fair scheduler, if there exists a population
protocol that solves the SS-LE problem using MLE states then, there exists
a population protocol that solves the SS-OSC problem using MLE +O(n)
states.

Discussion (2). From Discussion (1) we know that the number of states
per agent can be reduced to MLE +O(n) to create oscillations with am-
plitude ιa = n. In fact, the result can be generalized to MLE + O(ιa)
states where ιa is the desired amplitude of the oscillator. By using the
same strategy as in Discussion (1), it is sufficient to set the maximum
value of Next to ιa − 1. In addition, when the leader interacts with a non
leader agent aj such that idaj > Next, Agent aj updates its phase paj to
0. Since the scheduler is globally fair, ∀ aj ∈ A such that idaj > Next, aj
eventually interacts with the leader and hence paj = 0. Thus, only (ιa−1)
agents toggle their phase with the leader.

(2) SS-OSC ⇒ SS-LE. We show that if the deterministic SS-OSC
problem is solvable using MOSC states, then it is also possible to solve
the deterministic SS-LE problem using MOSC + O(1) states. To show
this result, we build our self-stabilizing SS-LE protocol P ′LE on the top
of the SS-OSC protocol P ′OSC . By executing Protocol P ′OSC , the system
eventually exhibits an oscillatory behavior with respect to a given set of
state S. Let us consider the population after the stabilization of P ′OSC .
We first show some important properties of a population that exhibits
an oscillatory behavior. We assume that ιa = n. Given a configuration
C ∈ C, let NC(S) be the set of agents such that ∀ ai ∈ A, ai ∈ NC(S) if
C(ai) ∈ S. The number of agents part of NC(S) is denoted by |NC(S)|.
By C+, we denote the set of configurations that can appear during the
increasing phase of any oscillation before reaching the amplitude, that is,
∀ C ∈ C+, |NC(S)| < n. By C∗, we refer to the set of configurations such
that ∀ C ∈ C∗, |NC(S)| = n (configurations in which all the agents have
their states part of S, i.e., the amplitude is reached). The first step is
to show that there is a non-empty subset of states that can only appear
when the amplitude of the oscillation is reached. More precisely, in any
configuration C ∈ C+, the transition δ(C(ai), C(aj)) = (C ′(ai), C

′(aj))
such that |NC(S)| > |NC′(S)| is never enabled when the system is sta-
bilized. Let Q′ be the set of states that enable such a transition then,
∀ C ∈ C+, ∀ ai ∈ A, C ′(ai) 6∈ Q′ and ∀ C ′ ∈ C∗, ∃ ai ∈ A, C ′(ai) ∈ Q′
(States in Q′ indicates that the next phase of the oscillation can be initi-
ated). Next, we define a subset of special configurations that we denote by
Csp ⊂ C+. A configuration C ∈ Csp satisfies the two following conditions:

(1) ∃! aj ∈ A such that C(aj) 6∈ S and (2) ∀ ai ∈ A, C(ai) 6∈ Q′. Observe
that Condition (1) implies that ∀ ai ∈ A \ {aj}, C(ai) ∈ S. We show that
a configuration C ∈ Csp is eventually reached and ∃ ai, aj ∈ A such that
δ(Csp(ai), Csp(aj)) = (C ′(ai), C

′(aj)) with C(aj) 6∈ S and C ′(aj) ∈ S and
either (C ′(ai) ∈ Q′) or (C ′(aj) ∈ Q′). That is, the amplitude is reached
and at least one of the two interacting agents has a state part of Q′. We
refer to such an interaction by rsp. Finally, we prove that from a config-
uration C ∈ C∗, if ∃ ai ∈ A such that C(ai) 6∈ Q′ and ∃aj ∈ A such that
δ(C(ai), C(aj)) = (C ′(ai), C

′(aj)) with C ′(ai) ∈ Q′ then C(aj) ∈ Q′, that
is, when the amplitude is reached, a given agent can change its state to a
state in Q′ only if it interacts with an agent already in a state part of Q′.

Protocol. In order to elect a leader starting from an arbitrary con-
figuration C0 ∈ C using the SS-OSC population protocol P ′OSC , we add
to the state of each agent one bit of memory to indicate whether the
agent is a leader or not (l ∈ {0, 1}). When rsp is executed, if C ′ is the
resulting configuration, then ∃ ai ∈ A such that C ′(ai) ∈ Q′ (recall that
rsp:δ(Csp(ai), Csp(aj)) = (C ′(ai), C

′(aj)) such that (i) C(aj) 6∈ S. (ii)
C ′(aj) ∈ S. (iii) ((C ′(ai) ∈ Q′) ∨ (C ′(aj)) ∈ Q′)). Assume that after
the execution of rsp, ∃! ai ∈ A such that C ′(ai) ∈ Q′ (let us refer to this
agent by asp). The idea of the protocol is as follows: when rsp is executed,
Agent asp becomes a leader. In addition, when a given agent ai interacts
with a leader then, ai does not update its state (keep the same state).
Observe that since we assume an arbitrary initial configuration, such a
transition can be executed even if the population is not yet stabilized
with respect to P ′OSC . To be sure to create only one leader, if in a given
configuration C ∈ C, ai is a leader then ai becomes a non-leader in the
next interaction if C(ai) 6∈ Q′ or C(ai) 6∈ S. In the same manner, ai be-
comes a non leader if it interacts either with another leader or with an
agent aj such that C(aj) 6∈ S. Observe that if ∃ ai ∈ A such that ai is
a leader, then ai can only be enabled to become a non-leader, We show
that:

Theorem 2. Under the global fair scheduler, if there exists a popula-
tion protocol P ′OSC that solves the SS-OSC problem with amplitude n
using MOSC states, then the SS-LE problem is also possible to solve using
MOSC +O(1) states.

Remark. Theorem 2 can be generalized to any amplitude ιa ≤ n. Indeed,
the main idea of the solution is to make any leader becomes a non leader
infinitely often during the stabilization time to ensure the convergence of
Protocol P ′OSC . Once the population converges to an oscillatory behavior,
the properties of the oscillatory behavior ensure that only one leader is
created. The leader then prevents the second phase of the oscillation to
be initiated thus, no more leaders are created.

Recall that it has been proved in [7] that the SS-LE problem is not
solvable when the number of states is less than the size of the population
n and hence impossible to solve in the case where n is arbitrary. Using
Theorems 1 and 2, we can deduce the following corollary:

Corollary 1. There exists no deterministic self-stabilizing oscillator if
the number of states by agent is less than n, or if the size of the population
is arbitrary.

4 Stochastic scheduler

Aiming at the reduction of the space complexity, we investigate in this
section the SS-OSC problem under a uniform random scheduler, i.e., the
pair of agents that are selected for the interaction are chosen at ran-
dom, independently and uniformly from the set of all the agents of the
population. Let us first define the notion of the self-stabilizing stochastic
oscillator.

Definition 5. (Self-stabilizing stochastic oscillator)
A (sufficient large) population of agents executing a deterministic pro-
tocol P, under a uniform random scheduler, is a (C, S, ιa, ιp)-oscillator,
if starting from any arbitrary configuration C0 ∈ C, any execution E =
(C0, r0, C1, r1, . . .) of P, reaches a configuration C ∈ C such that (C, S, ιa, ιp)
exhibits an oscillatory behavior for the set of states S with an expected
average amplitude ιa and an expected average period ιp.

We present in this section, three deterministic protocols. Each of
them assumes an arbitrary initial configuration and also the presence of
a leader, that is, the agents need first to elect a leader in order to achieve
the oscillatory behavior. Recall that, without a leader detector oracle,
the SS-LE problem is impossible to solve with less than n states. That
is, Ω(n) states are necessary to achieve the election [7]. We aim in the
following at the reduction of the extra-cost used to create the oscillatory
behavior.

In the sequel, the state of the leader is represented by the couple (Lp, c)
where Lp indicates that the agent is a leader in Phase p (p ∈ {0, 1}) and
c ∈ {0, . . . k} represents the current value of the leader’s counter where
k ∈ N, is the maximum value that the counter can reach. The state of
a non-leader agent consists of only one variable p such that p ∈ {0, 1}.
Variable p indicates which phase of the oscillation the agent is part of.
An agent is said to be a follower (respectively a non-follower) if it is
not a leader and if the value of its variable p is the same as (respectively
different from) the leader’s.

First approach. The idea of the solution is as follows: at each time
the leader interacts with a follower agent, the leader increments its counter.

If it interacts with a non-follower agent, the leader re-initializes its counter
and the non-follower agent part of the interaction updates its phase to
become a follower. When the leader’s counter reaches its maximum value,
it toggles its phase and re-initializes its counter. The formal description
of the protocol is given in Protocol 3.

Protocol 3 Self-stabilizing stochastic oscillator with central control
(C(Leader), C(¬ Leader)) → δ(C(Leader), C(¬ Leader))

1. (L0,i), 0 → (L0,i+1), 0 i < k

2. (L0,i),1 → (L0,0), 0 i < k

3. (L0,k), 0 → (L1,0), 0

4. (L1,i), 0 → (L1,0), 1 i < k

5. (L1,i), 1 → (L1,i+1), 1 i < k

6. (L1,k), 1 → (L0,0), 1

We show in the following that for any counter size k � log n, the
remaining non-follower agents at the end of a phase is O((n/k) log n)
with high probability (provided that n is sufficiently large).

Suppose without loss of generality that the leader’s phase is 0 (L0),
and there are initially B0 ≤ n non-follower agents. Let X(k) = X(k,B0)
be the number of non-follower agents at the end of the phase (when the
leader toggles its phase from 0 to 1). Let P (J) be the probability the
switch of phase by the leader occurs when J non-follower agents remain.
Then:

P (J) =
∏J+1
j=B0

(1− (1− j/n)k)(1− J/n)k

Note that only interactions with the leader matter in this calculation. Let
E be the expected value of X(k) then: E =

∑B0
J=0 JP (J).

Let ω = ω(n) be some slowly growing function of n and assume B0 = n

(worst case), and J ≥ ωn/k. We have: P (J) ≤ (1−J/n)k ≤ e−kJ/n ≤ e−ω.
Let ω = 2 log n, the contribution to E from ωn/k ≤ J ≤ n is then:∑n

J=ωn/k JP (J) ≤ n2e−2 logn = 1

Similarly, if ω = 3 log n then, with high probability the number of non-
follower agents is never bigger than (3 log n) n/k when the leader toggles
its phase. Thus for ω = (2 log n) n/k, we have:

E ≤ 1 + [(2 log n) n/k]
∑

J≤(2 logn) n/k P (J) = O((log n) n/k)

As for the expected period, for any k a phase completes in O(kn) inter-
actions with the leader. So the length of the phase is O(n2k) with high
probability.

Second approach. To reduce even more the space complexity, we
propose in the sequel, two population protocols that solve the SS-OSC
problem and that use, in addition to the leader, another agent that we
call marked agent and that we denote by M . Recall that the SS-LE
protocol proposed in [7] not only elects a leader, but also provides a
kind of identification, i.e., each agent ai has unique state C(i) such that
C(i) ∈ {0, 1, . . . , n−1}. Hence, we can assume that the leader is the agent
ai ∈ A such that C(ai) = 0 and the marked agent is the agent aj ∈ A
such that C(aj) = 1. Thus, no other run of the leader election protocol is
performed.

First solution. The idea of the first solution is as follows: at each time
the leader interacts with the marked agent, the leader’s counter is incre-
mented. On another hand, when the leader interacts with a non-follower
agent, the non-follower agent updates its state to become a follower. When
the leader’s counter value reaches its maximum, i.e., after (k+ 1) interac-
tions with the marked agent, the leader toggles its phase and re-initializes
its counter value. The formal description of the first solution is given in
Protocol 4.

Protocol 4 Self-stabilizing stochastic oscillator with central control using
the marked agent trick without re-initialization
(C(Leader), C(¬ Leader)) → δ(C(Leader), C(¬ Leader))

1. (L0,i), 0 → (L0,i), 0 if i < k

2. (L0,i),1 → (L0,i), 0 if i < k

3. (L0,i), M → (L0,i+1), M if i < k

4. (L0,k), M → (L1,0), M

5. (L1,i), 0 → (L1,i), 1 if i < k

6. (L1,i), 1 → (L1,i), 1 if i < k

7. (L1,i), M → (L1,i+1), M if i < k

8. (L1,k), M → (L0,0), M

Let X (respectively X (i, i+1)) be the number of interactions to reach
the maximum value of the leader’s counter (respectively to the number
of interactions in order for the leader’s counter to be incremented from i

to i + 1), we have: X=
k∑
i=0
X (i, i + 1). Recall that the leader’s counter is

only incremented when the leader interacts with the marked agent, that is,
X (i, i+1) has a geometric distribution of parameter p: P (X (i, i+1) = m)
= (1 − p)m−1p, where p is the probability to get an interaction between
the leader and the marked agent. Note that p = 2

n(n−1) . The expected

number of interactions to increment the leader’s counter from i to i+ 1 is

E[X (i, i+ 1)] = 1
p = n(n−1)

2 .

Using the linearity of the expectations, we obtain E[X] = (k+ 1) n(n−1)
2 .

So after E[X] average interactions, the leader updates its phase to initiate
the next phase of the oscillation.

Assume without loss of generality that the leader’s phase is equal
to 0. Let us now determine the expected amplitude ιa which represents
the expected number of non-follower agents that become followers before
the leader’s counter reaches its maximum value. Let Ab(t) refers to the
number of non-follower agents at time t. The expected number of non-
follower agents at time t+ 1 (Ab(t+ 1)) is given by: Ab(t+ 1) = Ab(t)−
2.Ab(t)
n(n−1) . That is, at time (t+ 1), the number of non-follower agents either

remains the same or decreases when there is an interaction between the
leader and a non-follower agent. Approximately we have:

dAb(t)
dt = − 2

n(n−1)Ab(t), hence, Ab(t) = Ab(0) e
−(2t

n(n−1)
)

Recall that we know the expected number of interactions before reach-
ing the amplitude. By replacing t by E[X], we obtain the expected number
of non-follower agents when the amplitude is reached. That is:

Aa(E[X]) = n−Ab(0) e−(k+1)

We observe that if k = log(n), Aa(E[X]) = n.

Second solution. We present in the sequel, a variation of Protocol 4
aiming at solving the SS-OSC problem with k ∈ O(1) (recall that k is the
maximum value of the leader’s counter). The idea of the solution is similar
to the one used in Protocol 4 except that, when the leader interacts with
either a follower or a non-follower agent, it re-initializes its counter, that
is, the leader, needs to interact (k+1) consecutive times with the marked
agent in order to toggle its phase. The system can be represented by a
Markov chain as shown in Figure 1, where p is the probability to get an
interaction between the leader and the marked agent, q is the probability
to get an interaction between the leader and either a follower or a non-
follower and M = 1−(p+q) (interactions that do not include the leader).

0 1 2 k-1 k

p p p p p

1-p

q
q

q

M M M

Fig. 1. Corresponding Markov Chain.

The average number of interactions Ik, for the leader to toggle its
phase, can be computed using the first step analysis. We obtain:

Ik = n(n−1)
2 ((n−1)

k−1
n−2) (k > 1).

Assume that (i − 1) non-follower agents have already updated their
phase to become followers. Let compute the probability, PNext−i, that
a new non-follower agent changes its phase to become a follower before
the switch of phase is performed by the leader i.e., before the (k + 1)
consecutive interactions between the leader and the marked agent. We
have:

PNext−i = Pbi · (
k−1∑
j=0

(P jM)) ·
∑
g≥0

(Pwi ·
k−1∑
j=0

(P jM))g

Probability Probability of an interaction Value

PM (Leader, Marked agent) 1
(n−1)

Pbi (Leader, non-follower agent) B−i+1
(n−1)

Pwi (Leader, follower agent) n−B+i−3
(n−1)

Let Z =
k−1∑
j=0

P jM and Z ′ =
∑
g≥0

(Z ·Pwi)
g. Both Z and Z ′ are geometric

series of common ration (PM) and (Z · Pwi) respectively. Hence:

Z = (1− P kM)/(1− PM) and Z ′ = (1− (Z · Pwi)
m)/(1− Z · Pwi)

For a large population of agents, P kM ' 0 even if k ∈ O(1). In the
same manner, since, (Z · Pwi) < 0 and m → ∞, (Z · Pwi)

m = 0. Thus,
PNext−i ' 1. That is, all the non-follower agents become followers before
reaching the maximum value of the leader’s counter. Hence, ιa ' n

5 Conclusion

In this paper, we have considered the PPs model and have addressed the
problem of autonomously generating oscillatory executions. We have con-
sidered the problem using deterministic protocols and have shown that,
under a deterministic scheduler, Ω(n) states are necessary to solve the
SS-OSC problem. This result emphasizes somehow the impact and the
importance of randomization in biological systems and chemical reactions
in creating self-oscillations. We have then proposed some protocols that
solve the problem assuming a probabilistic scheduler. This is a prelimi-
nary work as several open questions arise: (i) All the proposed solutions in
this paper, assume a central control, that is, the agents first need to elect
a leader in order to create the desired oscillatory behavior. This is really
costly especially for these kinds of systems, since the number of agents
is usually huge. Thus, the problem of designing protocols that solve the
SS-OSC problem in a decentralized way remains open. The main chal-
lenge is to achieve the self-stabilizing oscillatory behavior using a number
of states that is independent from any global parameter of the system.
Observe that when decentralized solutions are considered, it is impossible
to achieve the oscillatory behavior as defined in this paper as, during the
increasing phase (respectively, the decreasing phase) of an oscillation, the

number of agents whose state is in the set S can decrease (respectively,
increase) before (respectively, after) reaching the amplitude. However,
there is a scaling effect that ensures that if we consider the global behav-
ior of the population, by zooming out and ignoring the small fluctuations
due to the agents that may toggle their phase before (respectively, after)
reaching the amplitude of the oscillation, the population could display an
oscillatory behavior. (ii) We have recently addressed the SS-OSC prob-
lem in a slightly different setting in which we assume that the population
is synchronous i.e., each agent is part of an interaction at each instant t.
We were able to implement a self-synchronized clock and use it to design
primitive oscillators. The number of states used to solve the problem does
not depend on the size of the population however, it does depends on the
period of the oscillator. Hence, it would be also interesting to investigate
the impact of the degree of synchrony on the SS-OSC problem. Finally,
(iii) it would be challenging to simulate, as for the Fourier Transform,
in a self-stabilizing way, any periodic behavior of a given population us-
ing a finite number of deterministic oscillators. We were able to do so in
a recent investigation assuming synchronous populations. Extending the
investigation taking in account different level of synchrony seems to be
interesting direction to investigate.

References

1. Dana Angluin, James Aspnes, Melody Chan, Michael J. Fischer, Hong Jiang, and
René Peralta. Stably computable properties of network graphs. In DCOSS, volume
3560, pages 63–74, 2005.

2. Dana Angluin, James Aspnes, Zoë Diamadi, Michael J. Fischer, and René Peralta.
Computation in networks of passively mobile finite-state sensors. In PODC, pages
290–299, 2004.

3. Dana Angluin, James Aspnes, and David Eisenstat. Fast computation by population
protocols with a leader. Distributed Computing, 21(3):183–199, 2008.

4. Dana Angluin, James Aspnes, Michael J. Fischer, and Hong Jiang. Self-stabilizing
population protocols. TAAS, 3(4), 2008.

5. Joffroy Beauquier and Janna Burman. Self-stabilizing synchronization in mobile sen-
sor networks with covering. In Distributed Computing in Sensor Systems (DCOSS),
volume 6131, pages 362–378, 2010.

6. Joffroy Beauquier and Janna Burman. Self-stabilizing mutual exclusion and group
mutual exclusion for population protocols with covering. In OPODIS, volume 7109,
pages 235–250, 2011.

7. Shukai Cai, Taisuke Izumi, and Koichi Wada. How to prove impossibility under
global fairness: On space complexity of self-stabilizing leader election on a popula-
tion protocol model. Theory Comput. Syst., 50(3):433–445, 2012.

8. Keigo Kinpara, Tomoko Izumi, Taisuke Izumi, and Koichi Wada. Improving space
complexity of self-stabilizing counting on mobile sensor networks. In OPODIS,
volume 6490, pages 504–515, 2010.

9. Satoshi Murata, Akihiko Konagaya, Satoshi Kobayashi, Hirohide Saito, and Masami
Hagiya. Molecular robotics: A new paradigm for artifacts. New Generation Com-
puting, 31(1):27–45, 2013.

A Proof of correctness of Theorem 1

Let us first show that by executing PLE ◦ POSC , one leader is eventually
elected and each agent ai ∈ A has a unique value of idai after Θ(n2) active
interactions (recall that for any agent ai ∈ A, idai ∈ {0, 1, . . . , n− 1}).

Theorem 3. Starting from an arbitrary initial configuration C0 ∈ C, for
any execution E = (C0, r0, C1, r1 . . .) of Protocol PLE ◦ POSC , a configu-
ration C ∈ C in which ∃! ai ∈ A, idai = 0 and ∀ aj , aj′ ∈ A, idaj 6= idaj′
is eventually reached.

Proof. First recall that during an interaction between two agents,
the two agents execute the actions of both Protocol PLE and POSC . Ob-
serve also that for any agents ai ∈ A, Protocol POSC can only read
Variable idai , that is, idai is never modified by POSC . On another hand,
Protocol PLE does not use any variable introduced by Protocol POSC ,
that is, Protocol POSC has not effect on the convergence and stabiliza-
tion of Protocol PLE . It has been shown in [7] that ∀ C0 ∈ C, for any
execution E = (C0, r0, C1, r1 . . .) of Protocol PLE , a configuration C ∈ C
in which ∃!ai ∈ A, idai = 0 and ∀ aj , aj′ ∈ A, idaj 6= idaj′ is eventually

reached. Thus, the lemma holds.
2

Let us now consider the population after the convergence of Proto-
col PLE i.e., ∀ ai, aj ∈ A, idai 6= idaj and ∃! ai ∈ A such that idai = 0
(the leader). From [7], we know that when PLE converges, the value of
idai of each agent ai never changes. We prove in the sequel that in O(n)
active interactions, the leader is sure to have interacted with all the other
agents in the population. A configuration in which all the agents have the
same phase is then reached.

Lemma 1. Starting from an arbitrary initial configuration C0 ∈ C, for
any execution E = (C0, r0, C1, r1, . . .) of Protocol PLE ◦ POSC , a config-
uration C ∈ C in which ∀ i ∈ {1, . . . , n− 1}, T [i] = 0 is reached in O(n)
active interactions.

Proof. According to Theorem 3, the system elects a leader, that
is, there exists a single agent ai such that idai = 0 and all the agents
that are not leaders have a unique value of variable id. We show that
in O(n) active interactions, ∀ j ∈ {1, . . . , n − 1}, T [j] = 0. Where T is
the leader’s array. Assume by contradiction that for any execution of our
solution, ∀ t > t0 (t0 refers to the system in the initial configuration),
∃ j ∈ {1, . . . , n−1} such that T [j] 6= 0. Let NE0 be the number of entries
j in the leader’s array such that T [j] = 0.

After the stabilization of Protocol 1 ([7]), all active interactions in-
clude the leader (refer to Protocol 1). Assume, without loss of generality,
that the phase of the leader is equal to 1. Let N (A0) be the number of
agents that are in phase 0. Note that if NE0 = n − 1 then the lemma
holds. Otherwise, the cases below are possible (let ai, aj ∈ A be the two
agents that are interacting such that ai is the leader):

1. pai 6= paj and T [idaj] = 0. In this case, the leader updates the entry
related to the agent with whom it has interacted to 1 (refer to Line 13
in Protocol 1). Thus, NE0 has decreased by 1. In addition, the phase
of the non-leader agent is updated to be equal to the leader’s phase
(refer to Line 12 in Protocol 1), that is NA0 has also decreased by 1.

2. pai 6= paj and T [idaj] = 1. In this case the corresponding entry in
the leader’s array is already equal to 1. Such an interaction does not
modify it. That is, NE0 does not change. However, the phase of the
non-leader agent is updated to be equal to the leader’s phase (refer to
Line 12 in Protocol 1). Thus, NA0 decreases by 1.

3. pai = paj and T [idaj] = 0. In this case, the leader only updates the
entry related to the agent with whom it has interacted to 1 (refer to
Line 9 in Protocol 1). Thus, NE0 has decreased by 1. Note that the
value of NA0 has not changed.

Case 2 cannot happen infinitely often since the number of agents is
finite and NA0 is never increased when the leader’s phase is equal to 1.
Thus, after O(n) active interactions, Case 2 never occurs. On the other
hand, in Case 1 and Case 3, NE0 decreases by 1 at each time. Since the
number of entries in T is equal n and since NE0 never increases (Recall
that the phase of the leader never change unless all the entries in T
are equal to 1), in O(n) active interactions, n − NE0 reaches 0. Action
on Line 3 in Protocol 1 becomes the only active action enabled on the
leader ai. When the action is executed, the array of the leader verifies: ∀
j ∈ {1, . . . , n− 1}, T [j] = 0. Contradiction.

We can conclude that starting from an arbitrary initial configuration
C0 ∈ C, a configuration in which ∀ j ∈ {1, . . . , n− 1}, T [j] = 0 is reached
in O(n) active interactions. Hence, the lemma holds.

2

Lemma 2. Starting from an arbitrary initial configuration C0 ∈ C, For
any execution E = (C0, r0, . . .) of Protocol PLE ◦ POSC , a configuration
in which all agents except the leader are in the same phase and ∀ i ∈
{1, . . . , n− 1}, T [i] = 0, is reached in O(n) active interactions.

Proof. According to Lemma 1, after the election of a leader by
Protocol PLE , a configuration in which ∀ i ∈ {1, . . . , n − 1}, T [i] = 0 is

reached in O(n) active interactions. Let us consider the system at that
time. Without loss of generality assume that the leader’s phase is equal
to 1. Observe that at each time Action on Line 12 of Protocol 1 is exe-
cuted, Action on Line 13 of Protocol 1 is also executed, the non leader
agent updates its phase to the leader’s phase (in the case where the agent
has a different phase from the leader). Let NE1 be the number of entries
i in the leader’s array such that T [i] = 1 and let N¬L be the number of
agents that are in a different phase from the leader. Note that NE1 = 0
and N¬L ≤ n− 1. Either Lines 12,13 or Line 9 in Protocol 1 are enabled.
Once one of these set of actions is executed, NE1 increases by 1 and, N¬L
decreases by 1 in the case where the agent part of the interaction has a
different phase from the leader. That is, after O(n) active interactions,
a configuration in which NE1 = n − 1 and N¬L = 0 is reached. Action
on Line 3 is the only one enabled on the leader. When the leader exe-
cutes the action, it updates its phase to 0 and re-initializes all the entries
of its array. That is, ∀ i ∈ {1, . . . , n − 1}, T [i] = 0. Observe that, now
N¬L = n− 1. Hence the lemma holds. 2

Theorem 4. Given a population of n agents, Protocol PLE◦PLE is a self-
stabilizing oscillator of amplitude n and period O(n) active interactions.

Proof.
Clear from Theorem 3 and Lemmas 2.

2

B SS-OSC ⇒ SS-LE

We show in the following that when the SS-OSC protocol stabilizes, some
properties are verified. We first show that there is a non empty set of
states Q′ ⊂ Q that only appear when the amplitude of a given oscillation
is reached. Recall that since we assume that there exists a population
protocol P ′OSC that solves the SS-OSC problem, we know that ∀ C0 ∈ C,
a configuration C ∈ C such that (C, S, ιa) is an oscillator with ιa = n
is eventually reached. In the sequel, all the lemmas are stated after the
stabilization of P ′OSC i.e., the population exhibits an oscillatory behavior
with amplitude ιa = n.

Lemma 3. ∃ Q′ ⊂ Q such that: ∀ C ∈ C+, ∀ ai ∈ A, C(ai) 6∈ Q′ and
∀ C ′ ∈ C∗, ∃ aj ∈ A, C ′(aj) ∈ Q′.

Proof. Recall that we assume that the behavior of the popula-
tion is stabilized i.e., it exhibits an oscillatory behavior of amplitude n.
Hence, the system eventually reaches a configuration C such that C ∈ C∗

(∀ ai ∈ A, C(ai) ∈ S). From configuration C, since the system is an
oscillator, ∃ ai, aj ∈ A such that δ(C(ai), C(aj)) = (C ′(ai), C

′(aj)) and
(C ′(ai) 6∈ S or C ′(aj) 6∈ S) (the next phase of the oscillator has been ini-
tiated). Hence |NC(S)| > |NC′(S)|. Let us denote by Q′, the set of states

that enable such a rule. Now assume that given a configuration C ∈ C+,
∃ ai ∈ A such that C(ai) ∈ Q′. This means that there exists a transition
δ(C(ai), C(aj)) = (C ′(ai), C

′(aj)) such that |NC(S)| < |NC′(S)|. Assume
that the scheduler selects ai and aj for such an interaction. Hence, the
number of agents NC(S) decreases before reaching the amplitude ιa = n
i.e., the system is not yet stabilized. Contradiction.

We can deduce that ∀ C ∈ C+, the following transition δ(C(ai), C(aj)) =
(C ′(ai), C

′(aj)) such that |NC(S)| > |NC′(S)| is never enabled when the
system is stabilized. Let Q′ be the set of states that enable such a transi-
tion. We can deduce that ∀ C ∈ C+, ∀ ai ∈ A and ∀ C ′ ∈ C∗, ∃ aj ∈ A,
C ′(aj) ∈ Q′ and the lemma holds.

2

We show in the following that by executing Protocol POSC , Configu-
ration Csp is eventually reached.

Lemma 4. ∀ C0 ∈ C, for any execution E = (C0, r0, C1, r1, . . .) of Pro-
tocol POSC , a configuration C ∈ Csp is eventually reached.

Proof. Recall that the scheduler activates only one pair of agents
at each instant t ≥ 0. Since POSC is a self-stabilizing oscillator with
amplitude n, when the system stabilizes, during the increasing phase of
a given oscillation, a configuration C ∈ C in which |NC(S)| = n − 1 is

eventually reached. Hence, ∃! aj ∈ A such that C(aj) 6∈ S. Since C ∈ C+,
according to Lemma 3, ∀ C ∈ C+, ∀ ai ∈ A, C(ai) 6∈ Q′. Thus, the lemma
holds. 2

Let Q′′ ∈ Q be the subset of states that an agent can have in any
configuration C ∈ C+. Note that Q′′ ∩Q′ = ∅ (refer to Lemma 3).

In a given configuration C ∈ Csp, ∃! ai ∈ A such that, C(ai) 6∈ S.
We show that when rsp = δ(C(ai), C(aj)) = (C ′(ai), C

′(aj)) such that
C ′(aj) ∈ S (when the amplitude is reached), one of the two interacting
agents (ai or aj) has a state in Q′.

Lemma 5. Let ai ∈ A be the agent such that Csp(ai) 6∈ S. ∀ C ∈ Csp,
∃ aj ∈ A such that if δ(C(ai), C(aj)) = (C ′(ai), C

′(aj)) then C ′(ai) ∈ S
and either C ′(ai) ∈ Q′ or C ′(aj) ∈ Q′.

Proof. The proof is by contradiction. Assume first that ∀ aj ∈
A \ {ai}, if δ(C(ai), C(aj)) = (C ′(ai), C

′(aj)) then C ′(ai) 6∈ S or (C ′(ai)

6∈ Q′ and C ′(aj) 6∈ Q′). Let assume first that C ′(ai) 6∈ S. That is, the
system never reaches the amplitude n. Contradiction. Now suppose that
C ′(ai) 6∈ Q′ and C ′(aj) 6∈ Q′, we know that C ′(ai) ∈ S. Now, since C ′(ai)
6∈ Q′ and C ′(aj) 6∈ Q′ the transition r: δ(C(a), C(a)) = (C ′(a), C ′(b)) such
that |NC(S)| > |NC′(S)| is never enabled. Hence, the decreasing phase of
an oscillation is never initiated (the system is not an oscillator). Contra-
diction.

2

We show now that for a given configuration C ∈ C∗, ∀ ai ∈ A such
that C(ai) 6∈ Q′, ∃ aj ∈ A such that ifδ(C(ai), C(aj)) = (C ′(ai), C

′(aj))
and C ′(ai) ∈ Q′ then C(aj) ∈ Q′.

Given a configuration C ∈ C, let us refer by NCQ′ (respectively NCQ′′)

to the set of of agents such that ai ∈ NCQ′ (respectively ai ∈ NCQ′′) if

C(ai) ∈ Q′ (respectively C(ai) ∈ Q′). The number of agents in Set NCQ′

(respectively NCQ′′) is denoted by |NCQ′ | (respectively |NCQ′′ |).

Lemma 6. ∀ C ∈ C∗ such that 0 < |NCQ′ | ≤ 2, if for any ai, aj ∈ A,

δ(C(ai), C(aj)) = (C ′(ai), C
′(aj)) and |NC′

Q′
| > |NCQ′ | then either (C(ai) ∈

Q′ and C(aj) ∈ Q′′) or (C(ai) ∈ Q′′ and C(aj) ∈ Q′).

Proof. Assume by contradiction that starting from a configuration
C ∈ C∗ such that 0 < |NCQ′ | ≤ 2, if δ(C(ai), C(aj)) = (C ′(ai), C

′(aj))

and |NC′
Q′
| > |NCQ′ | then (C(ai) ∈ Q′ or C(aj) ∈ Q′′) and (C(ai) ∈ Q′′

or C(aj) ∈ Q′). (i) if C(ai) ∈ Q′ and C(aj) ∈ Q′ then |NC′
Q′
| ≤ |NCQ′ |.

Contradiction (recall that |NC′
Q′
| > |NCQ′ | by assumption). (ii) if C(ai)

∈ Q′′ and C(aj) ∈ Q′′ then according to lemma 3, δ(C(ai), C(aj)) =
(C ′(ai), C

′(aj)) never generates a Q′ state. Contradiction. From (i) and
(ii) we can deduce that C(aj) ∈ Q′′) or (C(ai) ∈ Q′′ and C(aj) ∈ Q′)
and the lemma holds. 2

C Proof of correctness of Theorem 2

We denote by Clegit ∈ C∗ the set of configurations that verify the following
condition: ∀ ai ∈ A, Clegit(ai) ∈ S and ∃! aj ∈ A such that Clegit(aj) ∈ Q′
and aj is a leader.

Observe that if in a given configuration C there is a non empty set
of agents A′ ⊆ A such that ∀ ai ∈ A′, ai is a leader and (C(ai) 6∈ Q′

or C(ai) 6∈ S), then since the scheduler is globally fair, ∀ ai ∈ A′, ai
is eventually activated by the scheduler. Hence, ai becomes a non-leader
agent. On another hand, in a given configuration C, an agent ai becomes

a leader only when the agent updates its state to be part Q′ i.e., if ai is a
leader in a given configuration C then C(ai) ∈ Q′. Hence, the number of
agents in A′ never increases. Therefore, eventually A′ = ∅ i.e., ∀ ai ∈ A, if
ai is a leader then C(ai) ∈ Q′ (recall that since Q′ ⊂ S then C(ai) ∈ S).
In the sequel, we consider any configuration C in which A′ = ∅. Let refer
to the set of agents that are leaders in a given configuration by LC . We
show that ∃ C ∈ C such that |LC | = 1 is eventually reached and that
∀ C ′ ∈ C such that C → C ′, |LC′ | = 1.

Observe that in any configuration C ∈ C as long as |LC | > 1, there ex-
ist two agents ai, aj ∈ A that are both leaders such that if δ(C(ai), C(aj)) =
(C ′(ai), C

′(aj)) then, both ai and a′j become non leaders in C ′ and C ′(ai),

C ′(a′j) ∈ Q′ (recall that A′ = ∅). In the same manner, if there ex-

ists an agent ai in a given configuration C such that C(ai) ∈ Q′ and
∃ aj ∈ C such that C(aj) ∈ S then if δ(C(ai), C(aj)) = (C ′(ai), C

′(aj))
then (C ′(ai) 6∈ S or C ′(aj) 6∈ S). Finally, if in a given configuration C,
∃ ai ∈ A such that ai is a leader and ∃ aj ∈ A such that C(aj) 6∈ S then
if δ(C(ai), C(aj)) = (C ′(ai), C

′(aj)), then ai becomes a non leader in C ′.

We can deduce that as long as the configuration is different from
Clegit, each agent ai ∈ A that is leader is persistently enabled to become a
non leader. Since the scheduler is globally fair, ai is eventually activated
for an interaction. Hence, as long as the configuration is different from
Clegit, each agent is persistently non leader. Thus, Protocol POSC ◦ PLE
behaves as POSC as long as the configuration is different from Clegit since
POSC ◦PLE just halts the execution of some agents for a finite time. How-
ever, since each agent is persistently non leader and since the scheduler is
globally fair, Protocol POSC ◦ PLE eventually stabilizes. Thus, according
to Lemmas 4, 5 and 6, there exists a configuration C in which there is
exactly one agent ai ∈ A such that C(ai) ∈ Q′ is reached. Thus, one
leader is elected and the theorem holds.

D Some simulation results of Protocol 3

We present in Figure 2 some simulation results of a population of 1000
agents executing Protocol 3 for different values of k.

Amplitude

Time

n

The case where k=n Time

Amplitude

The case where k=√n

Amplitude

Time

n

The case where k=ln(n)

n

Time

Amplitude

The case where k=ln(ln(n))

n

Fig. 2. Oscillatory behaviors by a population of 1000 agents executing
Protocol 3 for different values of k

As we can observe that the population indeed exhibits an oscillatory
behavior for the values of k � log(n), which validates the theoretical
results obtained.

E First step analysis to compute the average number
of interactions of the second solution of the second
approach (stochastic scheduler)

The average number of interactions to reach node i in the Markov chain
presented in Figure 1, starting from node 0, is denoted by Ai. To compute
the average number of interactions to reach node k, starting from node 0,
Ak can be given using a recursion equation as follows: we know that after
Ak−1 interactions, the leader’s counter is equal to k − 1. (i) If the next
interaction is an interaction between the leader and the market agent
then we are done. Hence, Ak=Ak−1+1. (ii) if the next interaction is an
interaction between the leader and either a white or a black agent, then
(1+Ak−1) interactions have been already performed and since the leader’s
counter is re-initialized (we go back to node 0), Ak interactions remain to

get to node k. Finally, (iii) if the interaction is an interaction that does
not include the leader then, we stay on the same node (k − 1) and Tk,1
interactions remain to get to node k where Tk,A is the average number of
interactions to get from node k − 1 to node k. Thus:

Ak= p(Ak−1 + 1) +M(Ak−1 + 1 + Tk,1) + q(Ak−1 + 1 +Ak)

We need now to determine the expression of Tk,1. As we did for Ak,
we obtain:

Tk,1 = p+M(1 + Tk,1) + q(1 +Ak)

Tk,1 = p+M+q(1+Ak)
1−M

hence:

Ak= p(Ak−1 + 1) +M(Ak−1 + 1 + p+M+q(1+Ak)
1−M) + q(Ak−1 + 1 +Ak)

By solving this equation we obtain (recall that p + M + q = 1 and
that 1−M − q = p):

Ak=
(1−M)Ak−1+1

p

Observe that:

A1=
1
p

We prove by induction that :

Ak = 1
pk
.(1−M)k−1(

1−[p
1−M

]k

1− p
1−M

) for k > 1 (i)

To do so let us verify that

A2 = 1
p2
.(1−M)(

1−[p
1−M

]2

1− p
1−M

)

A2 = 1
p2
.((1−M)2−p2

1−M . 1−M
1−M−P)

A2 = (1−M+p)
p2

A2 = 1
p .[

1−M+p
p]

A2=
(1−M)A1+1

p

Suppose now that (i) holds for Ak and let us prove that (i) holds
also for Ak+1. Observe that the expression of Ak is a geometric series of
parameter p

1−M . Thus, we can write Ak in the following way:

Ak=
1
pk

.
k−1∑
i=0

(1−M)k−1. [p
1−M]i

We have:

Ak+1=
(1−M)Ak+1

p

By replacing Ak by its value, we obtain:

Ak+1=
(1−M)
p . (1

pk
.
k−1∑
i=0

(1−M)k−1. [p
1−M]i) + 1

p

Ak+1= (1
pk+1 .

k−1∑
i=0

(1−M)k. [p
1−M]i) + 1

p

Ak+1=
1

pk+1 . (
k−1∑
i=0

(1−M)k. [p
1−M]i + pk)

Ak+1=
1

pk+1 . (
k∑
i=0

(1−M)k. [p
1−M]i)

Thus, Ak+1 is also a geometric series of parameter p
1−M . Hence:

Ak+1 = 1
pk+1 .(1−M)k(

1−[p
1−M

]k+1

1− p
1−M

)

Let compute p, M and q.

Probability Interaction Value
p (Leader, Marked agent) 2

n(n−1)

q (Leader, (Black or white) agent) 2(n−2)
n(n−1)

M (non-leader, non-leader) (n−2)
n

We can hence deduce that:

Ak = n(n−1)
2 .((n−1)

k−1
n−2) for k > 1

