
Constructing Self-Stabilizing Oscillators in Population

Protocols

Colin Coopera, Anissa Lamanib,∗, Giovanni Vigliettac, Masafumi
Yamashitab, Yukiko Yamauchib

aDepartment of Informatics, King’s College, United Kingdom
bDepartment of Informatics, Graduate School of ISEE, Kyushu University, Japan

cSchool of Electrical Engineering and Computer Science, University of Ottawa, Canada

Abstract

Population protocols (PPs) are used as a model for a collection of finite-
state mobile agents which interact with each other to accomplish a common
task. Unlike most of the previous works, which investigate their computa-
tional power, this paper throws light on an aspect of PPs as a model of
chemical reactions. Motivated by the well-known BZ reaction that provides
an autonomous chemical oscillator, we address the problem of autonomously
generating an oscillatory execution from any initial configuration (i.e., in a
self-stabilizing manner). For deterministic PPs under a deterministic sched-
uler, we show that the self-stabilizing leader election (SS-LE) problem and
the self-stabilizing oscillation (SS-OS) problem are equivalent, in the sense
that an SS-OS protocol is constructible from a given SS-LE protocol, and
vice versa, which unfortunately implies that (1) resorting to a leader is in-
evitable (although we seek a decentralized solution), and (2) n states are
necessary to create an oscillation of amplitude n, where n is the number of
agents (although we seek a memory-efficient solution). Aiming at reducing
the space complexity, we present and analyze some deterministic oscillatory
PPs under a uniform random scheduler.

Keywords: autonomous systems, leader election, population protocols,
self-organization, self-oscillation, self-stabilization

∗Corresponding author
Email address: anissa.lamani@gmail.com (Anissa Lamani)

Preprint submitted to Journal of Information and Computation September 20, 2016

1. Introduction

We focus in this paper on self-oscillations which play fundamental roles in
autonomous biological reactions, and investigate them as a phenomenon in
distributed computing. Self-oscillations are often understood as a chemical
oscillator provided by certain reactions, such as the Belousov–Zhabotinsky
reaction. We use in our investigation the population protocol model.

The population protocol (PP) model introduced by Angluin et al. [1] is a
model of passive agent systems. It is used as a theoretical model of a col-
lection of finite-state mobile agents that interact with each other in order to
solve a given problem in a cooperative fashion. In PPs, computations are
done through pairwise interactions: When two agents interact, they exchange
their information and update their respective states according to some com-
mon protocol. The interaction pattern is assumed to be unpredictable, that
is, each agent has no control over which agent it interacts with. We thus
assume the presence of an abstract mechanism called scheduler that chooses,
at any time instant, a pair of agents for an interaction. The PP model can
represent not only artificial distributed systems such as sensor networks and
mobile agent systems, but also natural distributed systems such as animal
populations and chemical reaction networks.

In the past decade, many problems have been investigated on PPs, in-
cluding the problems of computing a function [2, 1, 3, 4, 5], electing a
leader [6, 7, 8, 9], counting [10, 11, 12], coloring [4] and synchronizing [13].
Most of these problems consider the computational power of the population
and hence are static; the agents are requested to eventually reach a config-
uration that represents the answer to the considered computation problem.
The notion of termination is typically intended in the Noetherian sense (in
the context of abstract rewriting systems); agents are not requested to even-
tually terminate, however, the execution is requested to repeat the target
configuration that contains the answer of the problem that is considered,
forever.

Unlike most of the past works in PPs, we throw light on an aspect of PPs
as a model of chemical reactions. Specifically, we investigate a dynamic prob-
lem that consists of designing a PP that stabilizes to an oscillatory execution,
no matter from which initial configuration it starts; that is, we explore a self-
stabilizing PP that generates an oscillatory execution. The problem emerges
in the project of designing molecular robots [14], and is directly motivated
by the well-known Belousov–Zhabotinsky reaction, which is an example of

2

non-equilibrium thermodynamics providing a non-linear chemical oscillator.
In biological systems, the oscillatory behavior is used as a natural clock to
transmit signals and hence transfer information. In artificial distributed sys-
tems, aside from their theoretical interest, PPs that exhibit an oscillatory
behavior could be used to distributely and autonomously implement a clock.

This paper shows that under a deterministic scheduler governed by an
adversary, the self-stabilizing leader election (SS-LE) problem and the self-
stabilizing oscillation (SS-OS) problem are equivalent, in the sense that an
SS-OS protocol is constructible from a given SS-LE protocol, and vice versa,
and hence costly in terms of the space complexity. Specifically, we show the
followings: Let n be the size of the population. Cai et al. presented an
SS-LE protocol PLE whose space complexity (per agent) is exactly dlog ne
bits and showed that it is optimal; there is no SS-LE protocol whose space
complexity is less than dlog ne [6]. We first construct an SS-OS protocol POS
from PLE by using 2 more bits (per agent). Since any SS-LE protocol P ′LE
requires at least dlog ne bits and can be transformed into PLE, we can easily
construct POS from P ′LE via PLE. We next show that an SS-LE protocol is
constructible from any SS-OS protocol, again by using 2 more bits, which
implies that the space complexity of any SS-OS protocol is at least dlog ne−2
bits.

Although the space complexity of POS is dlog ne+2 bits, it requires 4n−2
states. Aiming at the reduction of the number of states, under a uniform
random scheduler, by modifying POS, we propose three SS-OS protocols POI
(I = 1, 2, 3) which respectively require 2(n+

√
n), 2(n+ log n) and 2(n+ 2)

states. For PO1 and PO3, the space complexity is reduced at the expense
of either a lower average amplitude or a longer average period.

Apart from the difference of motivation, few works on dynamic problems
are related to our work. Angluin et al. [4] provided a self-stabilizing token cir-
culation protocol in a ring with a pre-selected leader. Beauquier and Burman
investigated the self-stabilizing mutual exclusion problem, the self-stabilizing
group mutual exclusion problem [15] and the self-stabilizing synchronization
problem [13]. In the latter work [13], the authors have shown that the self-
stabilizing synchronization problem in the PP model under a deterministic
scheduler is impossible to solve without any additional assumptions and have
hence proposed a solution, assuming the presence of an unlimited-resource
agent called Base Station. Both the token circulation protocol proposed in [4]
and the phase clock protocol presented in [13] can be used to implement a
self-stabilizing oscillatory behavior. However, the first one works only for

3

ring shaped interacting graphs, while the second one uses the notion of cover
time (the minimum number of interactions for an agent to have met with
each other agent with certainty) and assumes an unlimited resource agent.

Roadmap. After introducing some concepts and notions in Section 2, we
consider PPs under a deterministic scheduler governed by an adversary in
Section 3. Under this scheduler, we show that the SS-LE problem and the
SS-OS problem are equivalent; that is, an SS-OS protocol is constructible
from a given SS-LE protocol, and vice versa. In Section 4, we consider PPs
under a uniform random scheduler, i.e., the interacting agents are chosen
uniformly at random. Under a uniform random scheduler, we present and
analyze some oscillatory PPs, mainly aiming to reduce the space complexity.
Section 5 is devoted to the conclusion and open problems.

2. Preliminaries

In this paper, we consider a population of n anonymous finite-state agents
that update their states by interacting with other agents. The set of n agents
in the population is denoted by A = {0, 1, . . . , n − 1}. We consider only
pairwise interactions; each interaction involves exactly two agents, and they
update their states according to a common protocol when they interact. Iden-
tities i ∈ A are used for notation purposes only. The agents have no identity
and cannot be distinguished from each other. In addition, all agents execute
the same protocol. Any pair of agents i and j (i 6= j) in the population are
susceptible to interact.

A protocol P = (Q, δ) is a pair of a finite set of states Q and a transition
function δ : Q × Q → Q × Q. When two agents interact with each other,
δ determines the next states of both agents. Let p and q be the states of
agents i and j, respectively. δ(p, q) = (p′, q′) indicates that the states of
agents i and j, after interacting with each other, are p′ and q′, respectively.
We distinguish the initiator and the responder in δ, so that δ(p, q) = (p′, q′)
may not imply δ(q, p) = (q′, p′).

A configuration C is a mapping from A to Q that specifies the states of
all the agents in the population. By C(i) and C, we refer to the state of a
given agent i in a configuration C and the set of all possible configurations of
the population, respectively. Given a configuration C ∈ C and an interaction
r = (i, j) between two agents i and j, we say that C ′ yields from C by

4

the interaction r, denoted by C
r→ C ′, if (C ′(i), C ′(j)) = δ(C(i), C(j)) and

C ′(`) = C(`) for all ` ∈ A \ {i, j}. An interaction r is said to be active
in a configuration C ∈ C, if it updates the state of at least one of the two
interacting agents of r. Otherwise, r is called inactive and does not contribute
to the computation.

An execution E of a protocol P is an infinite sequence of configurations
and interactions (C0, r0, C1, r1, . . .) such that rt is an interaction (i.e., an
ordered pair of agents) and Ct

rt→ Ct+1 for all time instants t = 0, 1, . . ., as-
suming that each transition takes a unit of time. We say that Ct is reachable
from Cs, denoted by Cs

∗→ Ct, when s ≤ t.
A scheduler chooses an ordered pair of agents to interact at each time

t ≥ 0. We consider two types of schedulers in this paper:

1. A deterministic globally fair scheduler which ensures that if there is a
configuration that is reachable infinitely often, then the configuration
is eventually reached.

2. A uniform random scheduler which chooses an interaction uniformly at
random from the set of all the ordered pairs of distinct agents.

Whenever we investigate a PP under a scheduler, an execution means a one
generated by the scheduler.

An execution E (under a scheduler) in general contains inactive interac-
tions. Since these inactive interactions do not contribute to the computation,
we assume without loss of generality that every transition in E is caused by
an active interaction, or more clearly, given an execution E generated by
the scheduler, we always investigate the execution constructed from E by
ignoring (removing) all transitions caused by inactive interactions.

We define some notions that will be used throughout the paper. Let N be
the set of natural numbers including 0. By [a, b] we denote the set of natural
numbers between a and b (including a and b), i.e., {a, a + 1, . . . , b} ⊂ N,
where we assume a ≤ b. Given an execution E = (C0, r0, C1, r1, . . .) of a
population protocol P = (Q, δ) on n agents and a subset S of states (⊂ Q),
by fES , we denote the function from N to [0, n] that maps a time instant t
into the number of agents whose state is in S in Ct. We frequently omit E
of fES to write fS when it is obvious from the context.

Definition 1. (Oscillation)
Let f be a function from [a, b] to N for some natural numbers a and b. We say
that f is an oscillation if there exists a number c ∈ N such that the following
four conditions hold:

5

1. a < c < b,

2. f(a) < f(c) > f(b),

3. f(a) = f(b), and

4. f is weakly increasing in [a, c] and weakly decreasing in [c, b].

The value f(c)−f(a) is called the amplitude of the oscillation and is denoted
by ιa, whereas b − a is called the period of the oscillation and is denoted
by ιp. The increasing phase (resp., decreasing phase) of the oscillation is the
interval in which f is weakly increasing (resp., weakly decreasing).

Definition 2. (Oscillatory Behavior – Triangle Wave)
Let E and S be an execution of a population protocol P = (Q, δ) and a subset
of Q, respectively. We say that E exhibits an oscillatory behavior for the
set of states S with amplitude ιa, if there is a strictly increasing sequence
τ0, τ1, . . . of time instants such that, for every i ≥ 0, the restriction of fES to
[τi, τi+1] is an oscillation of amplitude ιa. That is, E exhibits an oscillatory
behavior if fS of E represents a triangle wave.

Note that in the above definition, as assumed, E does not contain tran-
sitions caused by inactive interactions. Note also that oscillations in an os-
cillatory behavior may have different periods by the definition of oscillatory
behavior.

3. Oscillations under Deterministic Globally Fair Scheduler

Provided that the initial configuration is arbitrary, we investigate the
problem of generating oscillatory executions under a deterministic globally
fair scheduler. We first define the self-stabilizing oscillator (SS-oscillator)
under a deterministic globally fair scheduler.

Definition 3. (Oscillator)
A population of agents executing a deterministic protocol P, under a de-
terministic globally fair scheduler, is a (Ct, S, ιa)-oscillator if any execution
E = (Ct, rt, Ct+1, rt+1, . . .) of P, exhibits an oscillatory behavior for the set of
states S, with amplitude ιa.

Definition 4. (SS-Oscillator)
A population of agents executing a deterministic protocol P, under a deter-
ministic globally fair scheduler, is a self-stabilizing oscillator for the set of
states S and amplitude ιa if, starting from an arbitrary configuration C0 ∈ C,

6

every execution E = (C0, r0, C1, r1, . . .) of P, eventually reaches a configura-
tion Ct ∈ C such that P is a (Ct, S, ιa)-oscillator.

In this section, we show that a self-stabilizing oscillator (SS-OS) protocol
of amplitude n is constructible from a given self-stabilizing leader election
(SS-LE) protocol, and vice versa. We define the SS-LE in the following:

Definition 5. (SS-Leader Election)
A PP P = (Q, δ) solves the self-stabilizing leader election problem, under a
deterministic globally fair scheduler, if there is a state pL ∈ Q, and every
execution E = (C0, r0, C1, r1, . . .) of P contains an agent i ∈ A and a time
instant t0 ∈ N such that, for any time t ≥ t0 and for any agent j ∈ A,
Ct(j) = pL if and only if j = i.

In [6], Cai et al. showed that the SS-LE problem is impossible to solve
if the number of states per agent is less than n, where n is the size of the
population. They also proposed a simple PP PLE that solves the SS-LE
problem, whose state set QLE is {0, 1, . . . , n−1}, where 0 is the leader state.
Protocol PLE = (QLE, δLE) ensures that eventually each agent has a unique
state and hence one leader is eventually elected. The transition function δLE
of PLE is presented in Protocol 1. In Protocol 1, (p, q) → (p′, q′) means
(p′, q′) = δLE(p, q), and for each unspecified pair of parameter values, e.g.,
for δLE(0, 1), δLE does not change the states of any of the two interacting
agents, which causes an inactive interaction. We adopt these conventions to
describe protocols in the rest of this paper.

Protocol 1 δLE
(i, i)→ (i, (i+ 1) mod n) i ∈ [0, n− 1]

The next proposition holds:

Proposition 1. [6] Protocol PLE solves the SS-LE problem.

3.1. Constructing SS-OS Protocol from PLE
In this subsection, we show that an SS-oscillator POS = (QOS, δOS) for

ιa = n is constructible from PLE. Here, QOS = QL ∪ QF is the union of
the state set for the leader and the one for followers, and they are defined
as QL = {(i, p, c) : i = 0, p ∈ [0, 1], c ∈ [1, n]} and QF = {(i, p) : i ∈
[1, n − 1], p ∈ [0, 1]}. The size of QOS is thus 2n + 2(n − 1) = 4n − 2.

7

Roughly, POS is regarded as a fair composition of PLE and a protocol to
govern the oscillations. However, its space complexity is reduced to 4n − 2
states instead of Ω(n2) states using the fair composition described in [16].

Let us explain the idea behind POS. It runs PLE, which regards the first
component i of a state (i, p, c) or (i, p) as its state in QLE and solves the SS-
LE problem. Then eventually a configuration Ct is reached such that every
agent j ∈ A has a different state in QLE; formally, for any i ∈ [0, n − 1],
there is an agent j ∈ A such that the first component of Ct(j) is i. Since no
rules in δLE are applicable to Ct, the first component i of any agent does not
change after t. Observe that this is true only if the rules in δLE are the only
ones that can update i, as it will be intended in designing δOS.

Once Ct is reached, all what POS needs to do to solve the SS-OS problem
is to control the alternation of increasing and decreasing phases, which is
realized by a transition function δCNT , using the second component p and
the third component c of QL. Intuitively, p = 1 (resp., p = 0) indicates
that the agent is involved in the increasing (resp., decreasing) phase of an
oscillation, and c indicates the number of agents whose phase p is the same
as that of the leader’s. Transition function δCNT is applicable only to a
pair of a leader state in QL and a follower state in QF , and is presented in
Protocol 2. In Protocol 2, although we only describe the cases in which the
initiator is the leader and the responder is a follower, i.e., the first parameter
of δCNT is from QL and the second parameter is from QF , we assume that if
δCNT (p, q) = (p′, q′) then δCNT (q, p) = (q′, p′). Observe that δCNT does not
update the first component i of the agents’ state.

Protocol 2 δCNT
1. ((0, p, i), (i, q))→ ((0, p, i+ 1), (i, p)) i ∈ [1, n− 1], p, q ∈ [0, 1]

2. ((0, p, n), (i, q))→ ((0, 1− p, 1), (i, q)) i ∈ [1, n− 1], p, q ∈ [0, 1]

Rule set δCNT works as follows: When the leader with a state (0, p, c)
interacts with another agent j whose state is (c, q), the leader increments
its counter value c and j updates its phase q to the same phase p of the
leader. When the leader reaches the maximum value of its counter (i.e.,
when c = n), it toggles its phase and re-initializes its counter to 1 at the next
interaction. Then after the first re-initialization of the leader’s counter value,
when the leader reaches again the maximum value of its counter, the leader
has interacted with every other agent in the population, and every agent has

8

updated its phase to the leader’s phase. When the leader toggles its phase,
the next phase of the oscillator is initiated. We prove the correctness of POS
in the following.

Let CLE be the set of configurations C such that the first component i of
the state C(j) of each agent j ∈ A is distinct; that is, a leader is elected in C.
Without loss of generality, we assume that agent 0 is the leader. Let ||C|| be
the number of agents (including the leader) that have the same phase p as
the leader in a configuration C. By definition ||C|| ≥ 1.

Lemma 1. Any execution E = (C0, r0, C1, r1, . . .) of δCNT
1 starting from a

configuration C0 ∈ CLE eventually reaches a configuration Ct ∈ CLE such that
(1) Ct(0) = (0, p, n) for some p ∈ [0, 1] and (2) n− c0 + 1 ≤ ||Ct|| ≤ n, after
n − c0 active interactions, where c0 is the counter value of the leader in C0

i.e., C0(0) = (0, p, c0) for some p ∈ [0, 1].

Proof. If c0 = n then there is nothing to show. Otherwise, assume 1 ≤ c0 <
n. By definition, C0 contains an agent j ∈ A such that C0(j) = (c0, q) for
some q ∈ [0, 1]. Observe that the only rule applicable to C0 is Rule 1 in an
interaction between the leader and j. When the interaction occurs, the leader
increments its counter to c0 + 1 and j updates its state to (c0, p) if q = 1− p,
that is ||C1|| ≥ ||C0||. Again, by definition, C1 contains an agent j′ ∈ A such
that C1(j

′) = (c0 + 1, q) for some q ∈ [0, 1]. Like in the previous case, the
only active interaction in C1 is between the leader and j′. By interacting,
Rule 1 is executed and hence the leader increments its counter and j′ updates
its state to (c0 + 1, p) if q = 1 − p. By repeating this argument, when the
counter value becomes n, all agents in [c0, n − 1] have interacted with the
leader and as a result have phase p of the leader. Thus, the lemma holds.

Lemma 2. Let C0 ∈ CLE be any configuration such that C0(0) = (0, p, 1)
for some p ∈ [0, 1] and ||C0|| = 1. In any execution E = (C0, r0, C1, r1, . . .)
of δCNT starting from C0, the leader toggles its phase and re-initializes its
counter value every n active interactions.

Proof. In a configuration Ct ∈ CLE in which Ct(0) = (0, p, n) for some
p ∈ [0, 1] and ||C0|| = n. The only rule applicable to C0 is Rule 2, and
as the result of an interaction, a configuration C ∈ CLE yields such that
C(0) = (0, 1− p, 1) and ||C0|| = 1. By Lemma 1, the claim holds.

1More clearly, E is an execution of PCNT = (QOS , δCNT).

9

We now define a set of states SOS by SOS = {(0, 1, c) : c ∈ [1, n]} ∪
{(i, 1) : i ∈ [1, n − 1]}, i.e., the set of all states with p = 1. the next lemma
immediately holds.

Lemma 3. Let C0 ∈ CLE be any configuration. Then any execution E =
(C0, r0, C1, r1, . . .) of δCNT eventually reaches a configuration Ct such that
δCNT is a (Ct, SOS, n)-oscillator.

Proof. By Lemma 1, starting from an arbitrary initial configuration C0, any
execution E = (C0, r0, C1, r1, . . .) of δCNT eventually reaches a configuration
Ct satisfying Ct(0) = (0, p, n). Since Rule 2 is the only rule applicable in Ct, a
configuration Ct+1 satisfying Ct+1(0) = (0, 1−p, 1) is reached after one active
interaction. By Lemma 1, a configuration Ct′ satisfying Ct′(0) = (0, p, n) and
||Ct′ || = n is reached at some time instant t′ ≥ t+1. The only rule applicable
is Rule 2, and hence the leader toggles its phase again and re-initializes its
counter to 1. Thus, the claim holds by Lemma 2.

We now define δOS of POS as the union of δCNT and γLE described in
Protocol 3, which is an implementation of δLE for QOS. That is, δOS =
γLE ∪ δCNT .

Protocol 3 γLE
0a. ((0, p, c), (0, p′, c′)) → ((0, p, c), (1, p′)) p, p′ ∈ [0, 1], c, c′ ∈ [1, n]

0b. ((n− 1, p), (n− 1, p′)) → ((n− 1, p), (0, p′, 1)) p, p′ ∈ [0, 1]

0c. ((i, p), (i, p′)) → ((i, p), (i+ 1, p′)) i ∈ [1, n− 2], p, p′ ∈ [0, 1]

Theorem 1. Given a population of n agents, POS is a self-stabilizing oscil-
lator for the set of states SOS, with amplitude ιa = n and period ιp = Θ(n)
active interactions.

Proof. Let E = (C0, r0, C1, r1, . . .) be any execution of POS from any con-
figuration C0 of POS, under a deterministic globally fair scheduler. Then a
configuration Ct ∈ CLE eventually yields by Proposition 1, and the theorem
holds by Lemma 3.

Since the size of QOS is 4n − 2, the SS-OS problem is solvable by a PP
with 4n− 2 states per agent. In order to generalize the result to any SS-LE
protocol, recall that in [6], it has been shown that the exact information of the
network size n is necessary and sufficient to solve the SS-LE problem. Since n

10

is known, any SS-LE protocol can be transformed into PLE by using the same
set of states and introducing new transition rules. Thus, our transformation
can be applied.

As a note, POS can be generalized to solve the SS-OS problem of ampli-
tude ιa < n. We modify δCNT in the following manner (we do not modify
γLE): Recall that δCNT handles configurations in CLE. Without loss of gen-
erality, we assume that agent i ∈ A \ {0} has a state (i, p) for some p ∈ [0, 1]
in C0. The maximum value of the leader’s counter c is set to ιa.

Suppose that the leader interacts with an agent i < ιa. If i = c, which
is the counter value of the leader, as in δCNT , the leader increments c, while
agent i(= c) updates its phase p to the leader’s phase, as long as c < ιa holds.
When c = ιa, at the next interaction between the leader and any other agent,
the leader re-initializes c to 1 and changes the phase.

Otherwise, when the leader interacts with an agent i ≥ ιa, i updates its
phase p to a default value, say 0. In addition, any interaction of i with the
leader such that i > ιa and p = 0 does not update the state of i. Since the
scheduler is globally fair, every i with i ≥ ιa eventually interacts with the
leader to fix its phase p to 0 forever.

Thus, exactly ιa − 1 agents toggle their phase with the leader. By defin-
ing S to be the set of states such that the phase of the agent is equal to 1,
we obtain a self-stabilizing oscillator for the set of states S of amplitude ιa
and period ιp = Θ(ιa) active interactions.

3.2. Constructing SS-LE Protocol from any SS-OS Protocol

Let P = (Q, δ) be any SS-oscillator on n agents for a set S ⊂ Q and
amplitude ιa = n. We assume n ≥ 3. The case n ≤ 2 is discussed separately.
To construct an SS-LE protocol P∗ = (Q∗, δ∗) from P , we first derive some
properties of P . Let C be the set of all configurations of P . For any config-
uration C ∈ C, by |C|S, we denote the number of agents with a state in S
in C. Since P is an SS-oscillator, every execution E eventually stabilizes and
exhibits an oscillatory behavior of amplitude n.

We consider a sub-execution of E after it stabilizes, consisting of infinitely
many increasing and decreasing phases. The set of configurations that con-
stitutes an increasing phase may vary depending on the increasing phase
under consideration, and the set of configurations that appear in some in-
creasing phase may vary depending on the initial configuration of E . For any
c ∈ [0, n], let C(c) be the set of configurations C ∈ C that appears in some
execution after stabilization and satisfies |C|S = c. Note that C(c) may not

11

contain all configurations such that |C|S = c. Let C+ (resp., C−) be the set of
all configurations that appear in an increasing (resp., decreasing) phase af-
ter stabilization, in an execution from some initial configuration. The above
definitions introduce an ambiguity when C ∈ C(0) ∪ C(n), since C can be-
long both to C+ and to C−. To remove this ambiguity, we assume that C in
C(0) ∪ C(n) is not a member of an increasing or a decreasing phase. That is,
1 ≤ |C|S ≤ n− 1 for any C ∈ C+ ∪ C−.

For any C ∈ C, let R−C be the set of pairs (p, q) of states such that there
is a pair of agents r = (i, j) ∈ A2 satisfying that

1. C(i) = p and C(j) = q, and

2. |C ′|S < |C|S, where C ′ yields from C by the interaction r.

That is, R−C is the set of rules 2 applicable to C that decrease the number
of agents in A with states in S. In the same manner, we define R+

C for any
C ∈ C, which is the set of rules applicable to C that increase the number of
agents in A with states in S.

Lemma 4. 1. For any C ∈ C+, R−C is empty.

2. For any C ∈ C−, R+
C is empty.

Proof. We only show (1), since a proof of (2) is symmetrical. Assume
that r ∈ R−C for some C ∈ C+, to derive a contradiction. Then when the
interaction r occurs, the increasing phase including C ends and the following
decreasing phase starts before reaching a configuration in C(n), which is a
contradiction.

Let R− = ∪C∈C−R−C and R+ = ∪C∈C+R+
C . Consider any configuration

C−1 ∈ (C(n−2)∪C(n−1)) such that there is an interaction r−1 = (i−1, j−1) ∈ A2

and a rule (p−1, q−1) ∈ R+ satisfying that

1. (p−1, q−1) = (C−1(i−1), C−1(j−1)),

2. δ(p−1, q−1) ∈ S2, and

3. C0 ∈ C(n), where C0 is the configuration generated from C−1 by inter-
action r−1.

That is, C−1 ∈ C+ is a configuration immediately before achieving the am-
plitude n. Since C−1 is a configuration after stabilization, any execution

2Formally, a rule has a form “(p′, q′) = δ(p, q)”. We however abuse to call a pair (p, q)
a rule when δ is obvious, since δ is a function and the rule can be identified by (p, q).

12

E = (C0, r0, C1, r1, . . .) with initial configuration C0 eventually starts the de-
creasing phase. Let Cf+1 be the first configuration in C−. That is, Ct ∈ C(n)
for t ∈ [0, f] (f ≥ 0). Let rt = (it, jt). Then obviously

1. (pt, qt) ∈ S2 for any t ∈ [0, f], where (pt, qt) = (C(it), C(jt))

2. δ(pt, qt) ∈ S2 for any t ∈ [0, f − 1] if f ≥ 1, and

3. (pf , qf) ∈ R−, i.e., δ(pf , qf) 6∈ S2.

Given δ, since |C| < ∞, we can construct a finite directed graph DGδ =
(C, Eδ) with edge labels. Here ((C,C ′), r) ∈ Eδ if and only if C ′ yields from
C by the interaction r. Let Γf = {(Cf , rf)} be the set of the candidates
(Cf , rf).

3.2.1. Basic Idea

Let GSC = (V SC , ESC) be the component graph of DGδ. That is, V SC

is the set of strongly connected components of DGδ, and (Ci, Cj) ∈ ESC

if and only if there are configurations Ci ∈ Ci and Cj ∈ Cj such that
((Ci, Cj), r) ∈ DGδ for some r. Obviously GSC is a DAG, and every exe-
cution of P eventually reaches a leaf C` of GSC and stays there forever, since
the scheduler is globally fair. That is, every leaf of GSC must represent oscil-
latory behavior. In P∗, we use a set of markers to suppress some transitions,
i.e., to remove some edges, to achieve our goal. Let us explain an outline of
our idea.

When a configuration Cf where (Cf , rf) ∈ Γf is reached, we attach a
marker L(eader) to agent if , if the corresponding transition from C−1 to
C0 has occurred. The effect of marker L is to suppress its participation to
the execution. Hence transition ((Cf , Cf+1), rf) cannot be executed and the
state Cf (if) of if , which is in S, is freezed as a result, i.e., it is not updated.
If there are no other agents marked in Cf , the decreasing phase does not end
because Cf (if) ∈ S is freezed. Then the execution of P eventually elects a
leader, in the sense that there is a time instant t0 such that a unique agent
i has a marker L in all configurations after t0.

Formally, we memorize a marker L as a part of its state; if its current
state is p ∈ Q, then the corresponding state is (p, L) ∈ Q∗. Generally, in P∗,
a state is a pair (p,m) of a state p ∈ Q and a marker m ∈ Σ, where Σ is the
set of markers we use in P∗ and a marker F (ollower) ∈ Σ denotes that no
marker is attached.

Observe that the pair of interacting agents cannot recognize the current
global configuration C from their current states. Hence, if we have the agents

13

attach a marker L to one of them whenever their state pair is (Cf (if), Cf (jf))
in the execution, the execution would be led to a deadlock configuration
containing more than one marked agents (since they freeze their states).
One way to deal with this issue is to introduce a rule to discard L: When
two marked agents interact, they discard both of their markers L. Then
the execution can avoid deadlocks and may elect a leader by reaching a
configuration with exactly one marker L. However, using this approach alone
does not guarantee the convergence to a configuration with exactly one L, as
markers L can be created and discarded infinitely often.

To solve this problem, we use the concept of non-deterministic choice, in
which, whenever we need to make a decision, we guess a correct action and
then verify its correctness. In P∗, whenever interacting agents need to decide
whether or not they should mark one of them, they non-deterministically
decide. When they choose not to attach L, then the execution of P continues.
When they decide to attach L, two cases should be considered: If C = Cf ,
then the execution eventually elects a leader. If C 6= Cf , then several agents
might be marked. However, by using the previously introduced rule to delete
the marks L, the execution can avoid deadlocks by removing all markers, if
the number of marked agents is even. Otherwise, in the case where the
number of marked agents is odd, the execution reaches a configuration C ′

with exactly one marked agent left. If the execution that starts from C ′ does
not create a marker L, then the execution elects a leader. Otherwise, if it
creates another marker L, then the execution of P continues.

This explanation of the basic idea shows that there is a chance for the
execution to elect a leader, but does not explain the reason why the execution
always elects a leader. We address this next. As mentioned previously, the
execution E of P reaches a leaf C` of GSC , and stays in C` forever, which
implies that E passes every edge in the sub-graph of DGδ induced by C`
infinitely many times, since the scheduler is globally fair. In particular, there
is a pair (Cf , rf) ∈ Γf such that Cf ∈ C`, and E passes edge ((Cf , Cf+1), rf)
infinitely many times. When the agents if and jf interact, they can choose
either to mark or not to mark. Since E reaches Cf and select rf as the
interacting pair infinitely many times, the scheduler eventually chooses the
branch leading to the leader election.

Let us explain in more details how we implement this non-deterministic
execution.

14

(A) Implementing Non-deterministic Execution:
Consider if and jf in Cf , whose states are p = Cf (if) and q = Cf (jf),

respectively. The rule (p′, q′) = δ(p, q) in R− is applied, and their states
are updated to p′ and q′ in Cf+1 in P . We design P∗ so that if can
non-deterministically choose one of two actions: to mark or not to mark.
However, a direct implementation of δ∗((p, F), (q, F)) must have two val-
ues, ((p, L), (q, F)) to mark if and ((p′, F), (q′, F)) not to mark, which is
impossible as δ∗ is a function. To overcome this issue, we introduce a new
marker T (ransition) which declares that we do not choose to mark any of the
two interacting agents. Now, for instance, we can define δ∗((p, F), (q, F)) =
((p, L), (q, F)) and δ∗((p, T), (q, T)) = ((p′, F), (q′, F)). We will explain later
how to attach marker T to each of if and jf , without changing the rest of
Cf by the help of a third agent; thus, we assume that the number of agents
n in the population is at least 3.

As a note, Angluin et al. [4] proposed a general method for eliminating
non-deterministic transitions for a large family of problems called elastic
problems. Their transformation uses a non-determinizer marker of two values
(◦ or −) and a choice counter c ∈ [0, x− 1], where x = 2 in our case. That
is, in order to implement P∗ by using the transformation in [4], we need six
markers (including L and F), instead of three (L, T and F) in our case .

(B) Discarding Redundant Markers: We have explained a rough idea
on how to create markers and how to use them to control the execution of
P . However, we need to discuss harmful effects caused by abuses of marker
creations. As we have already explained, we can discard redundant Ls; two
marked agents discard both of their markers L, when they interact.

A marker T is used to declare not to create a marker L and hence not to
suppress a transition. Unlike L, T is not discarded until it participates in a
transition to update its state; no T marker is redundant in this sense.

3.2.2. Protocol P∗
In this subsection, we construct P∗ = (Q∗, δ∗) from an SS-OS protocol

P = (Q, δ), where Q∗ = Q×Σ and Σ = {L, T, F}. In the rest of this subsec-
tion, we always assume that (p′, q′) = δ(p, q), where (q′, p′) = δ(q, p) may not
hold. When we use “⇒” (instead of “→”), ((p, σ), (q, ρ))⇒ ((p′, σ′), (q′, ρ′))
means not only ((p′, σ′), (q′, ρ′)) = δ∗((p, σ), (q, ρ)) but also ((p′, ρ′), (q′, σ′)) =
δ∗((p, ρ), (q, σ)). We say that (p, σ) ∈ Q∗ is bad if p 6∈ S and σ ∈ {L, T}.
Otherwise, we say that (p, σ) is good. Let GOOD and BAD be the sets of

15

good and bad states, respectively. The next rule discards all bad states from
a given configuration C.

Protocol 4 Discard bad states.
0. ((p, σ), (q, ρ))→ ((p, σ′), (q, ρ′)) σ′ = F if (p, σ) ∈ BAD

ρ′ = F if (q, ρ) ∈ BAD

Without loss of generality, we can assume that every execution does not
contain a configuration with a bad state, since δ∗ does not introduce a new
bad state as one can easily observe from the following definition of δ∗. We
only describe δ∗ when both of the arguments are good.

The most important rules in δ∗ are indeed inactive, and we do not need
to describe them by convention. However, we explicitly state them because
of their importance.

Protocol 5 Freeze interaction.
1a. ((p, L), (q, T))⇒ ((p, L), (q, T)) p, q ∈ S

1b. ((p, L), (q, F))→ ((p, L), (q, F)) p ∈ S, q 6∈ S

1c. ((p, F), (q, L))→ ((p, F), (q, L)) p 6∈ S, q ∈ S

The leader can create a marker T .

Protocol 6 Assign T using L.

1d. ((p, L), (q, F))⇒ ((p, L), (q, T)) p, q ∈ S

As mentioned previously, when two agents with a marker L interact, they
both discard their markers.

Protocol 7 Discard L.
1e. ((p, L), (q, L))→ ((p, F), (q, F)) p, q ∈ S

Rule 1 enumerates all transitions in which L is involved. It is easy to
observe the next property.

Property 1. Once an agent is in state (p, L), its state does not change unless
L is discarded by Rule 1e.

16

Let SL be the set of pairs (p, q) ∈ S2 such that (Cf (if), Cf (jf)) is (p, q)
for some (Cf , rf) ∈ Γf . Marker L is created by the following rule.

Protocol 8 Create L.
2. ((p, T), (q, F))⇒ ((p, L), (q, F)) (p, q) ∈ SL

To create L, we need a marker T . We explain in the following how to
create a marker T without using L, i.e., without applying Rule 1d.

Protocol 9 Create and transfer T .
3a. ((p, F), (q, F))→ ((p, T), (q, F)) p ∈ S

3b. ((p, F), (q, F))→ ((p, F), (q, T)) p 6∈ S, q ∈ S

3c. ((p, T), (q, F))⇒ ((p, T), (q, T)) p, q ∈ S, (p, q) 6∈ SL

Property 2. If p ∈ S, any agent with a state (p, F) can change its state to
(p, T), possibly by changing only markers of the agents.

Proof. Rule 3 guarantees that the lemma holds, if there is another agent
with a state (q, F) or (q, T) with (p, q) 6∈ SL for some state q ∈ S. Similarly,
Rule 1d ensures that the lemma holds if there is another agent with a state
(q, L) for some q ∈ S.

Recall that we have assumed n ≥ 3. Let i, j and k be three agents, and
assume that the state of i is (p, F). Let (q, σ) and (r, ρ) be the states of j
and k, respectively. The remaining case worth considering is when σ = T
with (p, q) ∈ SL and ρ = T with (p, r) ∈ SL. Interacting with i, by Rule 2,
k can change its marker to L and then j can also change its marker to L
by the same rule through an interaction with i. Next, both j and k discard
their markers by Rule 1e, which makes it possible for i to update its state
(p, T) by Rule 3a.

We next define how to simulate a transition (p′, q′) = δ(p, q). Observe
that if an agent has a marker T , the marker is discarded.

Protocol 10 Simulate δ.
4. ((p, σ), (q, ρ))→ ((p′, F), (q′, F)) σ = T (ρ = T) if p ∈ S (q ∈ S)

17

Lemma 5. Let (p, σ) and (q, ρ) be the states of agents i and j, respectively.
Suppose that σ = L if and only if ρ = L. Then they can change their states
respectively to (p′, F) and (q′, F), possibly by changing only markers of the
agents, when (p′, q′) = δ(p, q).

Proof. Since agents i and j can change their markers to F by Rule 1e if
σ = ρ = L, we assume σ, ρ ∈ {T, F} without loss of generality. It is sufficient
to show that i (resp. j) can obtain a marker T if p (resp. q) is in S, to apply
Rule 4. If {p, q} 6⊆ S or (p, q) 6∈ SL, by Rule 3, each of the agents can obtain
a marker T when its (first element of) state is in S.

Let us thus concentrate on the case (p, q) ∈ SL, provided (σ, ρ) 6= (T, T)
(since otherwise Rule 4 is applicable). As assumed, there is a third agent k
whose state is (r, %). If % ∈ {L, F}, then i and j can obtain a marker T by
Rule 1d or 3a if necessary. If % = T and (p, r) 6∈ SL (resp. (q, r) 6∈ SL), then
i (resp. j) can obtain a marker by Rule 3c.

Now the case in which {(p, q), (p, r), (q, r)} ⊆ SL holds remains. First,
interacting with i, j changes its marker to L by Rule 2 (after changing ρ to T
by Rule 3a when ρ = F). Next, interacting with i, k then updates its marker
to L by Rule 2. Finally, j and k change their markers L to F by Rule 1e.
Now we retrieve the case % = F we investigated above.

Property 3. δ∗ is a function.

3.2.3. Correctness of P∗
We show the correctness of Protocol P∗. Let C∗ be the set of all configura-

tions of P∗. That is, for any C∗ ∈ C∗ and i ∈ A, C∗(i) = (p, σ), where p ∈ Q
and σ ∈ Σ = {L, T, F}. For C∗, there is the corresponding configuration
C ∈ C of P , where for any i ∈ A, C(i) = p if C∗(i) = (p, σ) for some σ ∈ Σ.
That is, C is constructed from C∗ by removing markers. By C∗ ' C we
denote that C∗ is constructed from C by assigning for each agent a marker
in Σ.

Lemma 6. Let C∗ and D∗ be two configurations of P∗ and assume that
C∗ → D∗. Then either C = D or C → D, where C ' C∗ and D ' D∗.

Proof. Observe that only Rule 4 can change the (first component of) state
of an agent by the definition of δ∗. If C 6= D, then Rule 4 applies to C∗,
which implies C → D.

Any execution E∗ = (C∗0 , r0, C
∗
1 , r1, . . .) of P∗ thus “simulates” an execu-

tion E = (C0, r0, C1, r1, . . .) of P , if we regard the rule rt as an inactive one,

18

whenenver it is not in Rule 4 in δ∗. We investigate how a given execution E
can be simulated by an execution E∗ in the following.

Let C and D be two configurations of P such that C → D, and assume
that C∗ ' C and D∗ ' D, where no agent has a marker L in C∗ and D∗.
Then there exists an execution C∗0(= C∗) → C∗1 → · · · → C∗k(= D∗) such
that C∗i ' C for all i ∈ [0, k − 1] by Lemma 5. (Note that C∗i may contain a
marker L for some i ∈ [1, k−1].) We have the following corollary of Lemma 5.

Corollary 1. Let E = (C0, r0, C1, r1, . . .) be any execution of P and let C∗0
be a configuration in C∗ such that C∗0 ' C0 and it does not contain an agent
having a marker L. Then there is an execution E∗ = (C∗0 , r

∗
0, C

∗
1 , r
∗
1, . . .) that

simulates E in the following sense: There is a strictly increasing sequence
t0(= 0), t1, . . . such that, for all k ∈ N,

1. C∗h ' Ck for all h ∈ [tk + 1, tk+1 − 1], in particular, C∗tk ' Ck,

2. C∗tk does not contain an agent having a marker L, and

3. all agents in Ak have a marker F in C∗tk , where Ak is the set of agents
that participate in an interaction rh for some h ∈ [0, k − 1].

Proof. The existence of an execution E∗ satisfying Items (1) and (2) is
obvious by Lemma 5. We concentrate on Item (3).

In order to apply Rule 4, an agent i whose state (p, σ) needs to change
its marker to T , when p ∈ S and σ = F . Recall the proofs of Property 2
and Lemma 7. To change the marker of i from F to T , another agent may
needs to change its marker, but, fortuntely, from T or L to F . We have each
agent change its marker to T , only immediately before Rule 4 applies. Then
E∗ satisfies Item (3).

Let GSC = (V SC , ESC) be the component graph of DGδ∗ (not of DGδ).
Let E∗ = (C∗0 , r0, C

∗
1 , r1, . . .) be any execution of P∗. Then E∗ reaches a leaf

C∗` of GSC and stays there forever. We say that a leaf C∗ is LE if the following
two conditions hold:

1. Every configuration of C∗ contains exactly one agent with a marker L.

2. The same agent has a marker L in every configuration of C∗.

If C∗` is LE then the leader election has been solved. We show this fact in the
sequel. We start with the following lemma.

Lemma 7. There is a time instant t0 such that sub-execution E∗t = (C∗t , rt,
C∗t+1, rt+1, . . .) does not contain a bad state.

19

Proof. Let t be the time instant that E∗ reaches a leaf C∗` of GSC . Since (1) δ∗

does not create a new bad state by definition, (2) Rule 0 is always applicable
to reduce the number of bad states in a configuration when there is a bad
state, (3) the sub-graph of DGδ∗ induced by C∗` is strongly connected, and
(4) the scheduler is globally fair, every configuration in C∗` does not contain
a bad state. Hence E∗t = (C∗t , rt, C

∗
t+1, rt+1, . . .) does not contain a bad state.

We thus assume that C∗0 does not contain a bad state, and hence E∗
does not contain a configuration that contains a bad state, without loss of
generality.

Lemma 8. Leaf C∗` is LE.

Proof. To derive a contradiction, we assume that C∗` is not LE. If every
configuration of C∗` contains exactly one agent with a marker L, then the
same agent has a marker L in every configuration of C∗` , and C∗` is LE. The
number of agents with a marker L in a configuration of C∗` is therefore not
unique.

We first observe that there is a configuration D∗0 containing no agent with
a marker L in C∗` . Let k0 be the number of agents with a marker L in D∗0, and
assume that k0 > 0. Without loss of generality, we can assume that k0 is 1,
since otherwise Rule 1e is applicable to reduce k0. There is a configuration D∗1
with k1(6= k0) agents having a marker L. Obviously k1 > k0. Since a marker
L is created one by one by Rule 2, there is a configuration D∗3 containing
two agents with a marker L, which implies that there is a configuration D∗4
containing no agent with a marker L by Rule 1e.

In the following, we show that there is a configuration F ∗ reachable from
D∗0 such that every configuration reachable from F ∗ (including F ∗ itself) has
exaclty one agent with a marker L. Then a contradiction is derived, since D∗0
is not reachable from F ∗, and hence C∗` is not a leaf. Let D0 ' D∗0. Since P is
an SS-OS protocol, any execution E starting fromD0 eventually stabilizes and
repeats oscillations (i.e., increasing and decreasing phases) infinitely many
times. Suppose that E reaches a configuration Cf such that (Cf , rf) ∈ Γf for
some rf , when it is starting a decreasing phase (after at least one oscillation).
Let ED be a longest execution from Cf such that agent if is not a part of an
interaction in it, where rf = (if , jf). Since Cf (if) ∈ S, ED forms a part of
the decreasing phase and hence is finite. Let F be the last configuration in
ED. Then all interactions in F are inactive unless if is involved.

20

Consider the following execution E∗ from D∗0 corresponding to E with
ED as a subexecution. By Corollary 1, E∗ reaches a configuration C∗f such
that C∗f ' Cf and all agents have a marker F (since E includes at least
one oscillation before Cf). Since (Cf (if), Cf (jf)) ∈ SL is applicable to Cf ,
if can change its marker from F to T by Rule 3a and then to L by Rule 2.
Although Cf (if) is freezed, since if is not part of an interaction in ED, P∗ can
simulate ED by Corollary 1 and E∗ reaches a configuration F ∗ corresponding
to F . Observe that F ∗ ' F and if is the only agent with a marker L. By
the definition of ED, all interactions in F ∗ include if and hence inactive,
which implies that every configuration reachable from F ∗ contains exactly
one agent with a marker L.

By Lemma 8, for any initial configuration C∗0 ∈ C∗, every execution E∗
with initial configuration C∗0 eventually reaches a leaf C∗` of GSC , which is
LE, and hence elects a leader. We conclude the following theorem.

Theorem 2. Given a population protocol of n ≥ 3 agents, P∗ solves the
self-stabilizing leader election problem.

We next present an SS-LE protocol P∗ = (Q∗, δ∗), given an SS-OS proto-
col P = (Q, δ), when n = 2. We use two markers L and F . Then Q∗ = Q×Σ,
where Σ = {L, F}. Transition function δ∗ is described in the following.

Protocol 11 δ∗

a. ((p, F), (q, F)) → ((p, L), (q, F)) p, q ∈ Q
b. ((p, L), (q, L)) → ((p, L), (q, F)) p, q ∈ Q
c. ((p, L), (q, F)) ⇒ ((p, L), (q, F)) p, q ∈ Q

Since every agent is part of an interaction at each time, it is obvious to
observe the following property.

Property 4. Protocol P∗ solves the SS-LE problem, when n = 2.

4. Oscillations under Uniform Random Scheduler

In Subsection 3.1, we construct an SS-OS protocol POS from an SS-LE
protocol PLE, but it requires 4n − 2 states per agent, where n is the size of
the population. In this section, aiming at the reduction of the number of
states, we investigate the SS-OS problem under a uniform random scheduler,
which selects a pair of agents uniformly at random from the set of all the

21

pairs of distinct agents in the population. Let us first define a self-stabilizing
oscillator under such a random scheduler.

Definition 6. (SS-Oscillator under a uniform random scheduler)
A (sufficiently large) population of agents executing a deterministic protocol
P is a self-stabilizing oscillator under a uniform random scheduler, if starting
from any configuration C0 ∈ C, any execution E = (C0, r0, C1, r1, . . .) of P
eventually reaches a configuration Ct ∈ C, from which any execution Et =
(Ct, rt, Ct+1, rt+1, . . .) exhibits an oscillatory behavior for the set of states S
with an expected average amplitude ιa and an expected average period ιp.

We present three deterministic protocols POI = (Qk, δ
k
I) (I = 1, 2, 3)

with a parameter k ∈ N to realize an SS-oscillator under a uniform random
scheduler, each of which is a modification of POS. Note that under a uniform
random scheduler, POS itself correctly works to realize an SS-oscillator under
a uniform random scheduler.

The three protocols POI commonly use the set of states Qk defined as
Qk = Qk

L ∪ QF , where QF = {(i, p) : i ∈ [1, n − 1], p ∈ [0, 1]} is the set
of states for followers as is defined in QOS and Qk

L = {(i, p, c) : i = 0, p ∈
[0, 1], c ∈ [0, k − 1]} is the set of states of Qk for the leader. Recall that
the first component i of each state in Qk indicates its name, where 0 is the
leader, and the second component p indicates its phase. Since the number of
states |Qk| is now 2(n+ k− 1), a reduction of space complexity from 4n− 2
to 2(n + k − 1) is achieved when k < n. A small difference here is that
the counter value c starts from 0 (not 1), unlike POS, for the convenience of
protocol description.

The set of rules δkI of each protocol POI commonly contains γLE as a
subset (after changing the range of the counter from [1, k] to [0, k−1]). That
is, δkI = γLE ∪ γkI , where γkI defines the result of an interaction between the
leader and a follower, and like δCNT , (approximately) counts, in a random
way, the number of followers with the same phase as the leader. We describe
γkI in the following to present POI and analyze its performance. As a result,
we show that, for PO1,PO2 and PO3, k =

√
n, log n and 2 are respectively

enough to realize an SS-oscillator under a uniform random scheduler, but
for PO1 and PO3, at the expense of a lower average amplitude or a longer
average period.

Finally, let S = {(0, 1, c) : c ∈ [0, k − 1]} ∪ {(i, 1) : i ∈ [1, n− 1]}, be the
set of all states with p = 1.

22

In the rest of this section, we analyze executions E generated by POI
under a uniform random scheduler. We would like to make three remarks:
First, since the analyses are based on probabilistic arguments, we always
assume that the number n of agents in the population is sufficiently large.
Second, since every E eventually reaches a configuration C in which the
first component i of the state C(j) of each agent j ∈ A is distinct (and
this correspondence between j ∈ A and i ∈ [0, n − 1] is fixed forever) by
Proposition 1, we always assume that all configurations in E satisfy this
property. Finally, in the following analysis of performance, as assumed, an
execution E consists only of active interactions.

4.1. Protocol PO1

Protocol PO1 presented in Protocol 12 works as follows: Suppose that
the leader with state (0, p, c) interacts with a follower with state (i, p). If
c < k − 1, the leader simply increments its counter. Otherwise, if c = k − 1,
it toggles its phase and re-initializes its counter c to 0; the follower does not
update its state.

Suppose by contrast that the leader with state (0, p, c) interacts with a
follower with state (i, 1 − p). Then, regardless of c, the leader re-initializes
its counter c to 0, while the follower flips its phase to the leader’s phase p.

Protocol 12 γk1
1. ((0, p, c), (i, p))→ ((0, p, c+ 1), (i, p))

i ∈ [1, n− 1], p ∈ [0, 1], c ∈ [0, k − 2]

2. ((0, p, k − 1), (i, p))→ ((0, 1− p, 0), (i, p)) i ∈ [1, n− 1], p ∈ [0, 1]

3. ((0, p, c), (i, 1− p))→ ((0, p, 0), (i, p))
i ∈ [1, n− 1], p ∈ [0, 1], c ∈ [0, k − 1]

We start analyzing the performance of PO1.

Lemma 9. Suppose k � log n.

1. When Rule 2 is applied to toggle the phase from p to 1−p in a configura-
tion C, the number of followers with phase 1−p in C is O((n/k) log n)
with high probability.

2. The period is at most 2k(n− 1) active interactions.

23

Proof. To prove Claim (1), suppose without loss of generality that the
leader’s phase is 0, and there are initially n−1 followers with phase 1 (which
constitutes the worst case). Let X be a random variable to represent the
number of followers with phase 1 at the end of this phase, i.e., when Rule 2
is applied for the first time. Let P (x) be the probability that Rule 2 is applied
when there are x followers with phase 1. Then

P (x) =
n−1∏
j=x+1

(1− (1− j/(n− 1))k)(1− x/(n− 1))k ≤ (1− x/(n− 1))k,

since the probability that the counter re-initializes to 0 when there are j
agents with phase 1 is (1− j/(n− 1))k.

Let E = E(X) be the expected value of X, i.e.,

E =
n−1∑
x=0

xP (x).

Let ω = ω(n) be some slowly growing function of n, and take x ≥ ω(n−1)/k.
Then

P (x) ≤ (1− x/(n− 1))k ≤ e−kx/(n−1) ≤ e−ω.

Put ω = 2 log(n−1). Then the contribution to E from ω(n−1)/k ≤ x ≤ n−1
is

(n−1)∑
x=ω(n−1)/k

xP (x) ≤ (n− 1)2e−2 log(n−1) = 1,

which implies that

E ≤ 1 + [(2 log(n− 1))(n− 1)/k]
∑

x≤(2 log(n−1)) (n−1)/k

P (x)

= 1 + (2 log(n− 1))(n− 1)/k < (3 log(n− 1))(n− 1)/k.

For any small ε > 0, put a = ε−1(3 log(n − 1))((n − 1)/k). By the Markov
inequality,

P (X ≥ a) ≤ E/a ≤ ε.

As for the proof of Claim (2), observe that re-initializations occur at most
n− 1 times in a phase, and that between two re-initializations, there are at
most k active interactions with followers having the same phase. Thus, the
length of a phase is at most k(n− 1) active interactions, and then (2) holds.

24

Theorem 3. Protocol PO1 realizes an SS-oscillator under a uniform random
scheduler for the set of states S, when parameter k is set to a value sufficiently
larger than log n.

Proof. By Lemma 9, the theorem is now obvious.
We present in Figure 5 some simulation results of a population of 1000

agents executing PO1 for different values of k.

Amplitude

Time

Amplitude

5.104	 10.104	 15.104	 0	

Figure 1: The case where k=n.

Amplitude

Time
5.104	 10.104	 15.104	 0	

Figure 2: The case where k =
√
n.

Amplitude

Time

Amplitude

5.104	 10.104	 15.104	 0	

Figure 3: The case where k = log(n).

Amplitude

Time

Amplitude

5.104	 10.104	 15.104	 0	

Figure 4: The case where k = log(log n)

Figure 5: Oscillatory behaviors by a population of 1000 agents executing PO1 for different
values of k.

As we can observe from Figure 5, the population indeed exhibits an os-

25

cillatory behavior for the values of k � log(n), i.e., for k = n and
√
n, which

validates the theoretical results obtained.

4.2. Protocol PO2

Aiming at reducing even more the space complexity, we propose in the
sequel, two population protocols PO2 and PO3 that solve the SS-OS problem
under a uniform random scheduler and that use, in addition to the leader,
another agent that we call marked agent. This agent is the one with name 1.

Protocol PO2 presented in Protocol 13 works as follows: Suppose that the
leader with state (0, p, c) interacts with the marked agent with state (1, q). If
c < k−1 the leader increments its counter. Otherwise, if c = k−1, the leader
toggles its phase and re-initializes its counter c to 0. Upon interacting with
the leader, the marked agent also updates its phase to the one of the leader.
Suppose now that the leader with state (0, p, c) interacts with a follower with
state (i, 1− p). Then the follower updates its phase to the one of the leader.

In PO2, the leader simply counts the number of interactions with the
marked agent. It toggles its phase after k interactions with the marked
agent.

Protocol 13 γk2
1. ((0, p, c), (1, q))→ ((0, p, c+ 1), (1, p)) p, q ∈ [0, 1], c ∈ [0, k − 2]

2. ((0, p, k − 1), (1, q))→ ((0, 1− p, 0), (1, 1− p)) p, q ∈ [0, 1]

3. ((0, p, c), (i, 1− p))→ ((0, p, c), (i, p))
i ∈ [2, n− 1], p ∈ [0, 1], c ∈ [0, k − 1]

We analyze the performance of PO2.

Theorem 4. Protocol PO2 realizes an SS-oscillator under the uniform ran-
dom scheduler for the set of states S, when parameter k is set to log n. Its
average amplitude and period are respectively n and k(n− 1).

Proof. We first investigate the expected period. Let X(i, i+1) be a random
variable that represents the number of active interactions in order for c to
be incremented from i to i + 1. Recall that the leader’s counter is only
incremented by Rule 1, when the leader interacts with the marked agent,
that is, X(i, i+ 1) has a geometric distribution of parameter p:

P (X(i, i+ 1) = m) = (1− p)m−1p,

26

where p = 1/(n−1) is the probability that a given active interaction is a one
between the leader and the marked agent. Let

X =
k−1∑
i=0

X(i, i+ 1)

be a random variable that represents the number of active interactions for
the leader to toggle its phase to start the next phase of the oscillation. Then
by the linearity of the expectations, we obtain

E[X] = E[
k−1∑
i=0

X(i, i+ 1)] = k/p = k(n− 1),

since E[X(i, i+ 1)] = 1/p.
Assume without loss of generality that the leader’s phase is equal to 0.

We determine the expected amplitude ιa. Let B(t) denotes the number of
followers with phase 1 at time t. The expected number of followers with
phase 1 at time t+ 1, i.e., B(t+ 1), is given by

B(t+ 1) = B(t)− B(t)

n− 1
.

That is, at time t + 1, the number of followers with phase 1 either remains
the same or decreases when there is an active interaction between the leader
and such a follower. Approximately we have

B(t)

dt
= − 1

n− 1
B(t).

Hence
B(t) = B(0)e−(

t
n−1

).

Recall that we know the expected number of interactions before reaching
the amplitude. By replacing t by E[X], we obtain the expected number A
of followers with phase 0 when the amplitude is reached. That is,

A(E[X]) = n−B(0)e−k
n−1
n−1 ' n(1− e−k).

For k = log(n), A(E[X]) = n− 1, which implies that the average amplitude
is n, since the leader is with phase 0.

27

We present in Figure 6 simulation results of a population of 1000 agents
executing PO2 for k = log n.

Time

Amplitude

0	 5.104	 10.104	 15.104	

Figure 6: Oscillatory behavior by a population of 1000 agents executing PO2 for k = log n.

Protocol PO2 uses less number of states than PO1 and achieves the
average amplitude n with the same average period as PO1; PO2 is definitely
better than PO1.

4.3. Protocol PO3

As the third protocol, we present PO3 and analyze its performance. Our
aim is to solve the SS-OS problem under a uniform random scheduler with
a counter of a constant size, i.e., the counter size k does not depend on the
population size n. The idea of PO3 is similar to PO3 except that, whenever
the leader interacts with a follower, it re-initializes its counter, regardless
of the phase of the follower. Observe that the leader needs to interact k
consecutive times with the marked agent in order to toggle its phase. The
set of rules γk3 for PO3 is presented in Protocol 14.

The dynamics of the leader’s counter value can be represented by a
Markov chain shown in Figure 7, where state j represents the state in which
the leader has the counter value c = j, p = 1/(n− 1) is the probability that
a given active interaction is between the leader and the marked agent (and
hence the counter is incremented by Rule 1), and q = 1−p is the probability

28

Protocol 14 γk3
1. ((0, p, c), (1, q))→ ((0, p, c+ 1), (1, p)) p, q ∈ [0, 1], c ∈ [0, k − 2]

2. ((0, p, c), (i, q))→ ((0, p, 0), (i, p))
i ∈ [2, n− 1], p, q ∈ [0, 1] c ∈ [0, k − 1]

3. ((0, p, k − 1), (1, q))→ ((0, 1− p, 0), (1, 1− p)) p, q ∈ [0, 1]

that a given active interaction is between the leader and a follower (and hence
the counter is re-initialized to 0 by Rule 2). Finally, state k 3 denotes the
state that is reached when the leader toggles its phase by Rule 3; it interacts
with the marked agent when c = k − 1.

0 1 2 k-1 k

p p p p p
q

q
q

q

Figure 7: The Markov chain corresponding to PO3.

Theorem 5. Protocol PO3 realizes an SS-oscillator under a uniform random
scheduler for the set of states S, when parameter k is set to 2. Its average
amplitude and period are respectively n and (n− 1)2.

Proof. The average number of active interactions to reach node j (for the
first time) in the Markov chain presented in Figure 7, starting from node 0,
is denoted by Hi; in other words, Hj is the average hitting time of state j
from state 0.

Obviously H0 = 0, and it is easy to observe that

Hj+1 = p−1(Hj + 1)

for all j ∈ [0, k−1]. By a simple calculation, Hk, which is the average number

3State k is only used to show that one more interaction is needed for the leader to
toggle its phase.

29

of active interactions necessary for the leader to toggle its phase, is

Hk = p−kH0 +
k∑
j=1

p−j =
p−k − 1

q
' (n− 1)k.

That is, the average period is 2Hk = 2(n− 1)k.
As for the average amplitude, let k ≥ 2 be a constant. Then (n−1) log n <

(n − 1)k for all large n. By the argument in the proof of Theorem 4, the
average amplitude is n.

We present in Figure 8 simulation results of a population of 1000 agents
executing PO3 for k = 2. From the simulation results, we can observe that
the periods of the oscillations are really variable, which probably reflects a
large standard deviation.

Time

Amplitude

0	 1.106	 2.106	 3.106	 4.106	 6.106	 7.106	 5.106	

Figure 8: Oscillatory behavior by a population of 1000 agents executing PO3 for k = 2.

Protocol PO3 uses less number of states than PO2 and achieve the aver-
age amplitude n, but its average period (n− 1)k is worse than PO2.

5. Conclusion

In this paper, we have addressed the problem of autonomously generat-
ing oscillatory executions in deterministic population protocols, and showed

30

that, under a deterministic globally fair scheduler, dlog ne − 2 bits per agent
are necessary to solve the self-stabilizing oscillation (SS-OS) problem. This
result emphasizes somehow the impact and the importance of randomization
in biological systems and chemical reactions in creating self-oscillations. Re-
call that in order to prove the result, we have shown a relationship between
the self-stabilizing leader election problem (SS-LE) and the SS-OS problem.
That is, it is possible to solve the SS-OS problem if the SS-LE problem is
solvable and vise versa. We have used in our solution a non-deterministic
approach implemented by using markers. Solving the problem without re-
sorting to non-determinism remains an open question.

Next, aiming at the reduction of the space complexity, we have proposed
some protocols that solve the problem assuming a random scheduler. This is
a preliminary work as several open questions arise about the SS-OS problem
under the random scheduler:

1. All the proposed solutions in this paper assume a central control, that
is, the agents first need to elect a leader in order to create the desired
oscillatory behavior. This is really costly especially for these kinds of
systems, since the number of agents is usually huge. Thus the problem
of designing protocols that solve the SS-OS problem under the random
scheduler in a decentralized way remains open. The main challenge is
to achieve the SS-oscillatory behavior using a number of states that is
independent from any global parameter of the system.

2. We have recently addressed the SS-OS problem under a uniform ran-
dom scheduler in a slightly different setting, in which we assume that
the population is synchronous i.e., each agent is part of an interaction
at each instant t. We were able to implement a self-synchronized clock
and use it to design primitive oscillators. The number of states used
to solve the problem does not depend on the size of the population.
However, it does depend on the defined period of the oscillator. Hence,
it would be also interesting to investigate the impact of the degree of
synchrony on the SS-OS problem.

3. It would be challenging to simulate, as for the Fourier Transform, in a
self-stabilizing way, any periodic behavior of a given population using
a finite number of deterministic oscillators. We were able to do so in a
recent investigation assuming synchronous populations. Extending the
investigation taking into account different levels of synchrony seems to
be an interesting direction to investigate.

31

Acknowledgment

The authors would like to thank the anonymous reviewers for their valuable
comments and suggestions to correct and improve the quality of the paper.

This work has been supported, in part, by a Grant-in-Aid for Scientific
Research on Innovative Areas ”Molecular Robotics” (No. 24104003) of the
MEXT, Japan.

References

[1] D. Angluin, J. Aspnes, Z. Diamadi, M. J. Fischer, R. Peralta, Compu-
tation in networks of passively mobile finite-state sensors, Distributed
Computing 18 (4) (2006) 235–253.

[2] D. Angluin, J. Aspnes, M. Chan, M. J. Fischer, H. Jiang, R. Peralta,
Stably computable properties of network graphs, in: International Con-
ference on Distributed Computing in Sensor Systems, Vol. 3560, 2005,
pp. 63–74.

[3] D. Angluin, J. Aspnes, D. Eisenstat, Fast computation by population
protocols with a leader, Distributed Computing 21 (3) (2008) 183–199.

[4] D. Angluin, J. Aspnes, M. J. Fischer, H. Jiang, Self-stabilizing popula-
tion protocols, TAAS 3 (4).

[5] D. Angluin, J. Aspnes, D. Eisenstat, E. Ruppert, The computational
power of population protocols, Distributed Computing 20 (4) (2007)
279–304.

[6] S. Cai, T. Izumi, K. Wada, How to prove impossibility under global
fairness: On space complexity of self-stabilizing leader election on a
population protocol model, Theory of Computing Systems 50 (3) (2012)
433–445.

[7] T. Izumi, On space and time complexity of loosely-stabilizing leader
election, in: International Colloquium on Structural Information and
Communication Complexity, Vol. 9439, 2015, pp. 299–312.

32

[8] J. Beauquier, P. Blanchard, J. Burman, Self-stabilizing leader election
in population protocols over arbitrary communication graphs, in: In-
ternational Conference on Principles of Distributed Systems, Vol. 8304,
2013, pp. 38–52.

[9] Y. Sudo, F. Ooshita, H. Kakugawa, T. Masuzawa, Loosely-stabilizing
leader election on arbitrary graphs in population protocols without iden-
tifiers nor random numbers, in: International Conference on Principles
of Distributed Systems, 2015.

[10] T. Izumi, K. Kinpara, T. Izumi, K. Wada, Space-efficient self-stabilizing
counting population protocols on mobile sensor networks, Theory of
Computing Systems 552 (2014) 99–108.

[11] Y. Mocquard, E. Anceaume, J. Aspnes, Y. Busnel, B. Sericola, Counting
with population protocols, in: International Symposium on Network
Computing and Applications, 2015, pp. 35–42.

[12] J. Beauquier, J. Burman, S. Clavière, D. Sohier, Space-optimal counting
in population protocols, in: International Symposium on Distributed
Computing, Vol. 9363, 2015, pp. 631–646.

[13] J. Beauquier, J. Burman, Self-stabilizing synchronization in mobile sen-
sor networks with covering, in: International Conference on Distributed
Computing in Sensor Systems, Vol. 6131, 2010, pp. 362–378.

[14] S. Murata, A. Konagaya, S. Kobayashi, H. Saito, M. Hagiya, Molecular
robotics: A new paradigm for artifacts, New Generation Computing
31 (1) (2013) 27–45.

[15] J. Beauquier, J. Burman, Self-stabilizing mutual exclusion and group
mutual exclusion for population protocols with covering, in: Interna-
tional Conference on Principles of Distributed Systems, Vol. 7109, 2011,
pp. 235–250.

[16] S. Dolev, Self-Stabilization, MIT Press, 2000.

33

