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Abstract

The problem of searching a polygonal region for an
unpredictably moving intruder by a set of stationary
guards, each carrying an orientable laser, is known
as the Searchlight Scheduling Problem. Determin-
ing the complexity of deciding if the entire area can
be searched is a long-standing open problem. Re-
cently, the author introduced the Partial Searchlight
Scheduling Problem, in which only a given subregion
of the environment has to be searched, and proved
that its 3-dimensional decision version is PSPACE-
hard, even when restricted to orthogonal polyhedra.

Here we extend and refine this result, by proving
that 2-dimensional Partial Searchlight Scheduling is
strongly PSPACE-complete, both in general and re-
stricted to orthogonal polygons in which the region to
be searched is a rectangle.

1 Introduction

The Searchlight Scheduling Problem (SSP), first stud-
ied in [3], is a pursuit-evasion problem in which a
polygon has to be searched for a moving intruder by
a set of stationary guards. The intruder moves un-
predictably and continuously with unbounded speed,
and each guard carries an orientable searchlight, em-
anating a 1-dimensional ray that can be continuously
rotated about the guard itself. The polygon’s exterior
cannot be traversed by the intruder, nor penetrated
by searchlights. The intruder is caught whenever it
is hit by a searchlight. Because the intruder’s loca-
tion is unknown until it is actually caught, each guard
has to sway its searchlight according to a predefined
schedule. If the guards always catch the intruder, re-
gardless of its path, by following their schedules in
concert, they are said to have a search schedule.

SSP is the problem of deciding if a given set of
guards has a search schedule for a given polygon (with
holes). The computational complexity of this decision
problem has been only marginally addressed in [3],
but has later gained more attention, until in [2] the
space of all possible schedules has been shown to be
discretizable and reducible to a finite graph, which
can be explored exhaustively in order to find a search
schedule, if one exists. Since the graph may have dou-
ble exponential size, this technique easily places SSP
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in 2-EXP. Whether SSP is NP-hard or even in NP
is left in [2] as an open problem.

More recently, in [4], the author introduced the
Partial Searchlight Scheduling Problem (PSSP), in
which the guards content themselves with searching
a smaller subregion given as input. That is, a search
schedule should only guarantee that the given target
region is eventually cleared, either by catching the in-
truder or by confining it outside. A 3-dimensional
variation of PSSP is studied in [4], in which the
input polygonal environment is replaced by an or-
thogonal polyhedron, and the 1-dimensional rays be-
come 2-dimensional half-planes, which rotate about
their boundary lines. Such a problem is shown to be
strongly PSPACE-hard.

In the present paper we take a further step along
this line of research, by proving that 2-dimensional
PSSP is strongly PSPACE-complete, both in general
and restricted to orthogonal polygons in which the
region to be searched is a rectangle.

2 Asynchronous NCL machines

Our reduction is based on a model of computation
described in [1] and [4], called Nondeterministic Con-
straint Logic (NCL).

An asynchronous NCL machine is a 3-regular
graph, each of whose vertices is either an AND ver-
tex or an OR vertex. Of the three edges incident to
an AND vertex, one is called its output edge, and the
other two are its input edges. Each edge of an asyn-
chronous NCL machine can be oriented toward either
one of its incident vertices (or none), and a configu-
ration of edge orientations is legal if

• for each AND vertex, either its output edge is
directed inward, or both its input edges are di-
rected inward;

• for each OR vertex, at least one of its three inci-
dent edges is directed inward.

Accordingly, a legal move consists in the reversal of an
edge’s orientation that preserves legality of the config-
uration. Moves can occur at any time independently
(i.e., asynchronously), and each reversal of an edge
can take an arbitrarily long but finite time, during
which that edge is not oriented toward any vertex.

Given an asynchronous NCL machine with two dis-
tinguished edges ea and eb, and a target orientation
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for each, we call EE-ANCL the problem of deciding if
there exist legal configurations A and B such that ea
has its target orientation in A, eb has its target ori-
entation in B, and there is an asynchronous sequence
of legal moves from A to B. EE-ANCL is shown to
be PSPACE-complete in [4], by a reduction from its
synchronous version, thoroughly studied in [1].

3 PSPACE-completeness of PSSP

To prove that PSSP belongs to PSPACE we use
the discretization technique of [2], and to prove that
PSSP is PSPACE-hard we give a reduction from EE-
ANCL.

Lemma 1 PSSP ∈ PSPACE.

Proof. As explained in [2], a technique known as ex-
act cell decomposition allows to reduce the space of all
possible schedules to a finite graph G. Each search-
light has a linear number of critical angles, which yield
an overall partition of the polygon into a polynomial
number of cells. Searchlights take turns moving, and
can stop or change direction only at critical angles.
Thus, a vertex of G encodes the status of each cell
(either contaminated or clear) and the critical angle
at which each searchlight is oriented.

As a consequence, G can be navigated nondeter-
ministically by just storing one vertex at a time, which
requires polynomial space. Notice that deciding if two
vertices of G are adjacent can be done in polynomial
time: An edge in G represents a move of a single
searchlight between two consecutive critical angles,
and the updated status of each cell can be easily eval-
uated. Indeed, cells’ vertices are intersections of lines
through input points, hence their coordinates can also
be efficiently stored and handled as rational expres-
sions involving the input coordinates.

Now, in order to verify that a path in G is a wit-
ness for SSP, one checks if the last vertex encodes a
status in which every cell is clear. But the very same
cell decomposition works also for PSSP: The analysis
in [2] applies even if just a subregion of the polygon
has to be searched, and a path in G is a witness for
PSSP if and only if its last vertex encodes a status
in which every cell that has a non-empty intersection
with the target subregion is clear.

Since PSPACE = NPSPACE, due to Savitch’s
theorem, our claim follows. �

For the PSPACE-hardness part, we first give a
reduction in which the target region to be cleared is an
orthogonal hexagon. Then, Section 4 will explain how
we would have to modify our construction, should we
insist on having a rectangular (hence convex) target
region.

Lemma 2 EE-ANCL �P PSSP restricted to orthog-
onal polygons.

Proof. We show how to transform a given asyn-
chronous NCL machine G with two distinguished
edges ea and eb into an instance of PSSP.

A rough sketch of our construction is presented in
Figure 1. All the vertices of G are placed in a row (a),
and are connected together by a network of thin cor-
ridors (b), turning at right angles, representing edges
of G. Each subsegment of a corridor is a thin rectan-
gle, containing a subsegment guard in the middle (not
shown in Figure 1). Two subsegments from different
corridors may indeed cross each other like in (c), but
in such a way that the crossing point is far enough
from the ends of the two subsegments and from the
two subsegment guards (so that no subsegment guard
can see all the way through another subsegment). All
the vertices of G and all the joints between consecu-
tive subsegments (i.e., the turning points of each cor-
ridor) are connected via extremely thin pipes (d) to
the upper area (e), which contains the target region
(shaded in Figure 1).

ANDANDAND OROR

(a)

(b)
(c)

(d)

(e)

(g)(f)

(d)

Figure 1: Construction overview.

Two corridors (f) and (g) also reach the upper area,
and they correspond to the distinguished edges of G,
ea and eb, respectively. That is, if ea = {u, v}, and the
target orientation of ea is toward v, then the corridor
corresponding to ea connects vertex u in our construc-
tion to the upper area (e), rather than to v. The same
holds for eb. Indeed, observe that we may assume that
ea and eb are reversed only once (respectively, on the
first and last move) in a sequence of moves that solves
EE-ANCL on G. As a consequence, contributions to
vertex constraints given by distinguished edges ori-
ented in their target direction may be ignored.

Each pipe turns at most once, and contains one pipe
guard in the middle, lying on the boundary. Notice
that straight pipes never intersect corridors, but some
turning pipes do. Figure 2 shows a turning pipe, with
its pipe guard (a) and an intersection with a corri-
dor (b) (proportions are inaccurate). The intersec-
tion guards (c) separate the pipe from the corridor
with their lasers (dotted lines in Figure 2), without
“disconnecting” the pipe itself. Although a pipe nar-
rows every time it crosses a corridor, its pipe guard
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can always see all the way through it, because it is
located in the middle. The small nook (d) is unclear-
able because no guard can see its bottom, hence it
is a constant source of recontamination for the target
region (e), unless the pipe guard is covering it with
its laser. (Each straight pipe also has a similar nook.)

In our construction, corridor guards implement
edge orientations in G: Whenever all the subsegment
guards in a corridor connecting vertices u and v have
their lasers oriented in the same “direction” from ver-
tex u to vertex v, it means that the corresponding
edge {u, v} in G is oriented toward v.

(a)

(b)

(c)

(d)

(e)

(c)

(c)

(c)

Figure 2: Intersection between a pipe and a corridor.

Figure 3 shows an OR vertex. The three subseg-
ment guards from incoming corridors (a) can all “cap”
pipe (b) with their lasers, and nook (c) guarantees
that the pipe is recontaminated whenever all three
guards turn their lasers away.

AND vertices are implemented as in Figure 4.
The two subsegment guards (a) correspond to input
edges, and are able to cap one pipe (e) each, whereas
guard (c) can cover them both simultaneously. But
that leaves pipe (d) uncovered, unless it is capped by
guard (b), which belongs to the corridor correspond-
ing to the output edge. Again, uncovered pipes are
recontaminated by unclearable nooks (f).

(a)

(b)
(c)

(a)

(a)

Figure 3: OR vertex.

Joints between consecutive subsegments of a corri-
dor may be viewed as OR vertices with two inputs,
shaped like in Figure 3, but without the corridor com-
ing from the left.

(e)

(a)(a)

(e) (d)

(b)

(c)

(f)

(f)

Figure 4: AND vertex.

Finally, Figure 5 shows the upper area of the con-
struction, reached by the distinguished edges ea and
eb (respectively, (a) and (b)), and by all the pipes (c).
The guard in (d) can cap all the pipes, one at a time,
and its purpose is to clear the left part of the target
region, while the small rectangle (e) on the right will
be cleared by the guard in (f). The two pipes (g) im-
plement additional OR vertices with two inputs, and
prevent (d) and (f) from acting, unless the respective
distinguished edges are in their target orientations.
Nook (h) will contaminate part of the target region,
unless (d) is aiming down. Nooks (i) prevent area (e)
from staying clear whenever guard (f) is not aiming
up. The guard in (j) separates the two parts of the
target region with its laser, so that they can be cleared
in two different moments.

(a) (b)

(c)(c)

(d) (e)

(f)

(h)

(g) (g)

(j)

(i)

Figure 5: Target region.

Suppose G is a solvable instance of EE-ANCL.
Then we can “mimic” the transition from configura-
tion A to configuration B (see Section 2) by turning
subsegment guards. Specifically, if edge e = {u, v}
in G changes its orientation from u to v, then all the
subsegment guards in the corridor corresponding to e
turn their lasers around, one at a time, starting from
the guard closest to u. Before this process starts, each
pipe has one end capped by some subsegment guard,
and in particular pipe (g) on the left of Figure 5 is
capped by the guard in (a). Hence, guard (d) is free
to turn and cap all the pipes one by one, stopping
for a moment to let each pipe’s internal guard clear
the pipe itself (which now has both ends capped) and
cover its nook (see Figure 2). As a result, the left part
of the target region can be cleared by rotating (d)
clockwise, from right to down. Then the subsegment
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guards start rotating as explained above, until config-
uration B is reached. If done properly, this keeps all
the pipes capped and clear, thus preventing the left
part of the target region from being recontaminated.
When B is reached, guard (f) can turn up to clear (e)
and finally solve our PSSP instance.

Conversely, suppose that G is not solvable. Ob-
serve that rectangle (e) in Figure 5 has to be cleared
by guard (f) as a last thing, because it will be recon-
taminated by nooks (i) as soon as (f) turns away. On
the other hand, as soon as a pipe has both ends un-
capped by external guards, some portion of the target
region necessarily gets recontaminated by some nook,
regardless of where the pipe guard is aiming its laser.
But guard (d) can cap just one pipe at a time and,
while it does so, nook (h) keeps some portion of the
target region contaminated. Thus, the entire process
must start from a configuration A in which all the
pipes are simultaneously capped and guard (d) is free
to turn right (i.e., ea is in its target orientation), then
proceed without ever uncapping any pipe (i.e., pre-
serving legality), and finally reach a configuration B
in which guard (f) is free to turn up (i.e., eb is in its
target orientation). By assumption this is impossible,
hence our PSSP instance is unsolvable. �

By putting together Lemma 1 and Lemma 2, we
immediately obtain the following:

Theorem 3 Both PSSP and its restriction to orthog-
onal polygons are strongly PSPACE-complete. �

The term “strongly” is implied by the fact that all
the vertex coordinates generated in the PSPACE-
hardness reduction of Lemma 2 are numbers with
polynomially many digits (or can be made so through
negligible adjustments).

4 Convexifying the target region

We can further improve our Theorem 3 by making the
target region in Lemma 2 rectangular.

Our new target region has the same width as the
previous one, and the height of rectangle (e) in Fig-
ure 5. In order for this to work, we have to make
sure that some portion of the target region is “af-
fected” by each contaminated pipe that is not capped
by guard (d), no matter where all the pipe guards are
oriented. To achieve this, we make pipes reach the
upper area of our construction at increasing heights,
from left to right, in a staircase-like fashion.

Assume we already placed pipe (a) in Figure 6, and
we need to find the correct height at which it is safe
to connect pipe (b). First we find the rightmost inter-
section (c) between a laser emanating from the pipe
guard of (a) and the lower border of the target region.
Then we set the height of pipe (b) so that it is capped
by guard (d) when it aims slightly to the right of (c).

(a)

(b)

(d)

(c)

Figure 6: Rectangular target region.

This is always feasible, provided that pipes are thin
enough, which is not an issue.

After we have set all pipes’ heights from left to
right, the construction is complete and the proof of
Lemma 2 can be repeated verbatim, yielding:

Theorem 4 Both PSSP and its restriction to or-
thogonal polygons with rectangular target regions are
strongly PSPACE-complete. �

5 Further research

Observe that the target region constructed in [4] for 3-
dimensional PSSP is an arbitrarily small ball centered
at a given point. We could even modify PSSP by ask-
ing if any neighborhood of a given point is clearable
at all (as opposed to a well-defined polygonal target
region), and this problem would stay PSPACE-hard
for polyhedral environments. Our question is whether
this holds true for 2-dimensional polygons, as well.

Similarly, we may investigate the complexity of
PSSP on other restricted inputs, such as simply con-
nected polygons, or target regions coinciding with the
whole environment. The latter is in fact SSP, which
has been mentioned in Section 1 as an interesting
long-standing open problem. In [4], the author proved
that the 3-dimensional version of SSP is NP-hard, but
determining the true complexity of either version still
seems a deep problem and a possibly laborious task.
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