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ABSTRACT
An anonymous dynamic network is a network of indistinguishable
processes whose communication links may appear or disappear
unpredictably over time. Previous research has shown that deter-
ministically computing an arbitrary function of a multiset of input
values given to these processes takes only a linear number of com-
munication rounds (Di Luna–Viglietta, FOCS 2022).

However, fast algorithms for anonymous dynamic networks rely
on the construction and transmission of large data structures called
history trees, whose size is polynomial in the number of processes.
This approach is unfeasible if the network is congested, and only
messages of logarithmic size can be sent through its links. In fact,
it is known that certain basic tasks such as all-to-all token dissemi-
nation (by means of single-token forwarding) require Ω(𝑛2/log𝑛)
rounds in congested networks (Dutta et al., SODA 2013).

In this work, we develop a series of practical and efficient tech-
niques that make it possible to use history trees in congested anony-
mous dynamic networks. Among other applications, we show how
to compute arbitrary functions in such networks in 𝑂 (𝑛3) commu-
nication rounds, greatly improving upon previous state-of-the-art
algorithms for congested networks.

CCS CONCEPTS
• Theory of computation→ Distributed algorithms; • Com-
puting methodologies→ Distributed algorithms.
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1 INTRODUCTION
In recent years, distributed computing has seen a remarkable in-
crease in research on the algorithmic aspects of networks that
constantly change their topology [7, 30, 32]. The study of these
dynamic networks is motivated by technologies such as wireless
sensors networks, software-defined networks, and networks of
smart devices. Typically, the distributed system consists of 𝑛 pro-
cesses that communicate with each other in synchronous rounds.
At each round, the network topology is rearranged arbitrarily, and
communication links appear or disappear unpredictably.

There are efficient algorithms for various tasks that work under
the assumption that processes have unique IDs [6, 27–29, 32, 34].
However, unique IDs may not be available due to operational lim-
itations [34] or to protect user privacy; for instance, assigning
temporary random IDs to users of COVID-19 tracking apps was
not sufficient to eliminate privacy concerns [40]. Systems where
processes are indistinguishable are called anonymous.

It is known that many fundamental problems for anonymous
networks cannot be solved without additional “symmetry-breaking”
assumptions: A notable example is the Counting problem, i.e., deter-
mining the total number of processes𝑛. The most typical symmetry-
breaking choice is assuming the presence of a single distinguished
process in the system, called leader [1–4, 14, 19, 21, 23, 31, 39, 42].
A leader process may represent a base station in a sensor network,
a super-node in a P2P network, etc.

Almost all previous research on anonymous dynamic networks
pertains to the LOCAL model, which imposes no limit on the size
of messages exchanged by processes [11, 15, 21–24, 26, 34, 36]. Un-
fortunately, in most mobile networks, sending small-size messages
is not only desirable but also a necessity; for example, in sensor
networks, short communication times significantly increase bat-
tery life. A more realistic model is CONGEST, which assumes the
network to be “congested” and limits the size of every message to
𝑂 (log𝑛) bits, where 𝑛 is the number of processes [38].1

A recent innovation in the study of anonymous dynamic net-
works with leaders was the introduction of history trees in [15],
which led to an optimal deterministic solution to the Generalized
Counting problem2 in the LOCAL model. This problem is “complete”
for a large class of functions calledmulti-aggregate functions, which
in turn are the only computable functions in this model. The the-
ory of history trees was extended in [17] to leaderless networks,

1This𝑂 (log𝑛) limit on message sizes does not imply that the processes have a-priori
information about 𝑛. The size limit is not explicitly given to the processes, and it is up
to the algorithm to automatically prevent larger messages from being sent.
2In the Generalized Counting problem, each process starts with a certain input, and
the goal is to determine how many processes have each input.
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Figure 1: The first rounds of a dynamic network with 𝑛 = 9
processes and the corresponding levels of the history tree.

providing optimal algorithms for the Frequency problem:3 This prob-
lem is complete for the class of frequency-based multi-aggregate
functions, which are the only computable functions in leaderless
systems. Thus, the computational landscape for the LOCAL model
is fully understood, and optimal linear-time algorithms are known
for anonymous dynamic systems with and without leaders.4 No
previous research exists on the CONGEST model, except for a re-
cent preprint that gives a Counting algorithm in 𝑂 (𝑛5+𝜖 ) rounds
for networks with leaders [25].

2 CONTRIBUTIONS AND TECHNIQUES
We provide a state-of-the-art general algorithmic technique for
anonymous dynamic networks in the CONGEST model, with and
without leaders. The resulting algorithms run in 𝑂 (𝑛3) rounds,
where 𝑛 is the (initially unknown) total number of processes.

Technical background. We model a dynamic network as an in-
finite sequence G = (𝐺𝑡 )𝑡≥1, where 𝐺𝑡 = (𝑉 , 𝐸𝑡 ) is an undirected
multigraph whose vertex set 𝑉 = {𝑝1, 𝑝2, . . . , 𝑝𝑛} is a system of 𝑛
anonymous processes and 𝐸𝑡 is a multiset of edges representing links
between processes. Each process has an initial input and an internal
state; at every round 𝑡 ≥ 1, all processes send each other messages
through the links of 𝐺𝑡 and update their states accordingly.

Informally, a history tree is a way of representing the history
of a dynamic network in the form of an infinite tree. Each node
in a history tree represents a set of anonymous processes that are
“indistinguishable” at a certain round, where two processes become
“distinguishable” as soon as they receive different sets of messages.

The theory of history trees developed in [15, 17] yields optimal
general algorithms for anonymous dynamic networks with and
without leaders in the LOCAL model. The idea is that processes
can work together to incrementally construct the history tree by re-
peatedly exchanging and merging together their respective “views”
of it. Once they have a sufficiently large portion of the history tree
3In the Frequency problem, the goal is to determine the percentage of processes that
have each input.
4By the word “optimal” we mean “asymptotically worst-case optimal as a function of
the total number of processes 𝑛”.

(specifically, 3𝑛 “levels”), each process can locally analyze its struc-
ture and perform arbitrary computations on the multiset of input
values originally assigned to the processes.

Challenges. Unfortunately, implementing the above idea requires
sending messages containing entire “views” of the history tree. The
size of a view is Θ(𝑛3 log𝑛) bits in the worst case, and is therefore
unsuitable for the CONGEST model [15]. There is a major difficulty
in dealing with this problem deterministically, which stems from
the lack of unique IDs combined with the dynamic nature of the
network. Although a process can break down a large message into
small pieces to be sent in different rounds, it is not clear how the
original message can then be reconstructed, because the pieces
carry no IDs and a process’ neighbors may change at every round.
This may result in messages from different processes being mixed
up and non-existent messages being reconstructed.

Methodology. Our main contribution is a general method that
allows history trees to be transmitted reliably and deterministically
between anonymous processes in a dynamic network in the CON-
GEST model with a leader. To overcome the fundamental issues
outlined above, we devised a basic protocol combining different
techniques, as well as a number of extensions, including leaderless
ones. Although the techniques we introduce are self-contained and
do not rely on the results of [15], they effectively allow us to reduce
the CONGESTmodel to the LOCAL one, making it possible to apply
the Counting algorithm in [15] as a “black box”.

Firstly, we developed a method for dynamically assigning tem-
porary (non-unique) IDs to process; this method is an essential part
of the history tree transmission algorithm. In fact, the nodes of our
history trees are now augmented with IDs, meaning that each node
represents the set of processes with a certain ID. When processes
with equal IDs get disambiguated, they get new IDs.

The transmission of history trees occurs level by level, one edge
at a time. Since the total ordering between IDs induces a total or-
dering on the history tree’s edges, the processes can collectively
transmit sets of edges with a method reminiscent of Token Dissemi-
nation [28].

Essentially, all processes participate in a series of broadcasts; the
goal of each broadcast is to transmit the next “highest-value” edge
to the whole network. The problem is that no upper bound on the
dynamic diameter of the network is known, and therefore there is
no way of knowing how many rounds it may take for all processes
to receive the edge being broadcast.

We adopt a self-stabilizing approach to ensure that all messages
are successfully broadcast.We give a communication protocol based
on acknowledgments by the leader, where failure to broadcast ames-
sage alerts at least one process. Alerted processes start broadcasting
error messages, which eventually cause a reset of the broadcast
that caused the error. A mechanism that dynamically estimates the
diameter of the network guarantees that no more than 𝑂 (log𝑛)
resets are performed.

Moreover, in order to achieve a cubic running time, we do not
construct the history tree of the actual network, but a more compact
history tree corresponding to a virtual network. The virtual network
is carefully derived from the real one in such a way as to amortize
the number of edges in the resulting history tree and further reduce
the final worst-case running time by a factor of 𝑛.
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Figure 2: The virtual network 𝑁2 is constructed by remov-
ing the blue edges from the real network 𝐺2 and adding the
green edges. The corresponding level 𝐿2 of the virtual history
tree (VHT) is constructed one red edge at a time, via several
broadcast phases. The addition of a red edge to the VHT also
causes some processes to update their temporary IDs.

3 ALGORITHM OUTLINE
Our main algorithm assumes the presence of a unique leader in the
network, but it can also be generalized to leaderless networks. Each
process has some private memory which is used to permanently
store information in the form of internal variables.

Virtual history tree (VHT). The overall goal of the algorithm is for
the processes to implicitly agree on the first 3𝑛 levels of a particular
history tree, called virtual history tree (VHT), which corresponds to a
dynamic networkN of 𝑛 processes. Once the construction of a new
level of the VHT is complete, the leader locally runs the Counting
algorithm from [15] on the VHT. If this algorithm successfully
returns a number (as opposed to “Unknown”), the leader outputs it;
otherwise, the construction of a new level of the VHT is initiated.

Virtual network (N ). The dynamic network N = (𝑁1, 𝑁2, . . . )
represented by the VHT is in fact a virtual network, in the sense
that none of the multigraphs 𝑁𝑡 necessarily coincides with any
multigraph of links actually occurring in the real communication
network G = (𝐺1,𝐺2, . . . ). However, each 𝑁𝑡 is obtained by care-
fully adding and removing links from some 𝐺𝑖𝑡 (see Figure 2). This
manipulation has the purpose of reducing the size of the resulting
VHT by a factor of 𝑛.

Temporary IDs. To cope with the fact that processes are anony-
mous and information can only be sent in small chunks of size
𝑂 (log𝑛), each process has a temporary ID stored in a local variable.
Each node 𝑣 in the VHT also has an ID, indicating that 𝑣 repre-
sents all processes having that ID. Thus, a red-edge triplet of the
form (ID1, ID2, Mult) can be used to unambiguously represent a
red edge of multiplicity Mult between the nodes of the VHT whose
IDs are ID1 and ID2. Since a red-edge triplet has size 𝑂 (log𝑛), it
can be included in a single message. Note that the local ID variable
of each process may be modified over time as the VHT acquires
more nodes.

Broadcast phases. The construction of the VHT is carried out
level by level, and is done through several broadcast phases, which
are indirectly coordinated by the leader. At first, each process knows
the red edges incident to its corresponding node of the VHT. Then,
ideally every two broadcast phases, the whole network learns a

new red edge of the VHT. The broadcast phases continue until all
processes know all red edges in the level.

Estimating the diameter. In order to guarantee the success of
a broadcast phase, all processes must keep sending each other
information for a certain number of rounds, which depends on the
dynamic diameter of the network, and is 𝑛−1 in the worst case [28].
Since the processes have no information about the network, they
can only estimate the dynamic diameter. The current estimate is
stored by each process in a local variable, whose value is initially 1
and is doubled every time the processes detect a faulty broadcast.

Error phases. Detecting broadcasting errors and consistently re-
acting to them is by no means a trivial task. Our broadcasting
technique ensures that, if some red-edge triplet fails to be broadcast
to the entire network and does not become part of the local VHT of
all processes, at least one process becomes aware of this fact. Such
a process enters an error phase, sending a high-priority message
at every round containing the level number at which the error oc-
curred. Error messages supersede the regular ones and eventually
reach the leader.

Reset phases. When the leader finally receives an error message,
it initiates a reset phase, whose goal is to force the whole network to
restore a previous state of the VHT and continue from there. This
is achieved by broadcasting a high-priority reset message. Since
the error must have occurred because the estimated diameter was
too small, its value is doubled at the end of the reset phase.

Note that there is no obvious way for the leader to tell if any
level of the VHT is actually missing some parts. Indeed, at any point
in time, there may be processes in an error phase unbeknownst to
the leader. One of the challenges of our method is to ensure that
the leader will not terminate with an incorrect guess on 𝑛 due to
the VHT being incomplete. The interested reader may refer to the
full version of this paper for extra details [16].

4 CONCLUDING REMARKS
We extended the theory of history trees by introducing the tools
necessary for the distributed construction and transmission of his-
tory trees in the CONGEST model. This results in a new state of the
art for computation in anonymous dynamic congested networks.

Our history tree construction technique leads to general algo-
rithms whose running time is cubic in the size of the network.
Specifically, if there is a unique leader in the network, the algo-
rithm outlined in Section 3 runs in 𝑂 (𝑛3) communication rounds.
If there is no leader but an upper bound 𝐷 on the dynamic diameter
is known, the running time becomes 𝑂 (𝐷𝑛2). Note that, without a
leader, some knowledge about the network is required in order to
solve the Counting problem and other basic problems [17].

An immediate open question is whether these running times
can be reduced. Since our algorithm broadcasts information using a
token-forwarding approach, and by virtue of the Ω(𝑛2/log𝑛) lower
bound of [18], we believe that it would be unlikely to achieve a
better running time without a radical change in the technique used.

Understanding whether the Counting problem has as a super-
linear lower bound in congested networks is of special interest, as it
would mark an inherent computational difference between anony-
mous dynamic networks in the LOCAL and CONGEST models.
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