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Abstract. We solve an open problem posed by Michael Biro at CCCG 2013 that was1

inspired by his and others’ work on beacon-based routing. Consider a human and a puppy2

on a simple closed curve in the plane. The human can walk along the curve at bounded3

speed and change direction as desired. The puppy runs along the curve (faster than the4

human) always reducing the Euclidean straight-line distance to the human, and stopping5

only when the distance is locally minimal. Assuming that the curve is smooth (with some6

mild genericity constraints) or a simple polygon, we prove that the human can always catch7

the puppy in finite time. Our results hold regardless of the relative speeds of puppy and8

human, and even if the puppy’s speed is unbounded.9
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1 Introduction10

You have lost your puppy somewhere on a simple closed curve. Both of you are forced to11

stay on the curve. You can see each other and both want to reunite. The problem is that the12

puppy runs faster than you, and it believes naively that it is always a good idea to minimize13

its straight-line distance to you. What do you do?14

To be more precise, let γ : S1 ↪→ R2 be a simple closed curve in the plane, which we15

informally call the track. Two special points move around the track, called the puppy p and16

the human h. The human can walk along the track at bounded speed and change direction17

as desired. The puppy runs with unbounded speed along the track as long as its Euclidean18

straight-line distance to the human is decreasing, until it reaches a point on the curve where19

the distance is locally minimized. As the human moves along the track, the puppy moves20

to stay at a local distance minimum. The human’s goal is to move in such a way that the21

puppy and the human meet. See Figure 1 for a simple example.22
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Figure 1: Catching the puppy.

In this paper we show that it is always possible to reunite with the puppy under the23

assumption that the curve is well-behaved (in a sense to be defined), or if the curve is a24

polygon. From this result it easily follows that catching a puppy that moves at any bounded25

speed is also possible: the strategy is essentially the same as for the unbounded-speed case,26

except that the human may have to move at a lower speed or occasionally stop, in order to27

let the puppy reach a point of minimal distance before continuing.28

The problem was posed in a different guise at the open problem session of the 25th29

Canadian Conference on Computational Geometry (CCCG 2013) by Michael Biro. In Biro’s30

formulation, the track was a railway, the human a locomotive, and the puppy a train carriage31

that was attracted to an infinitely strong magnet installed in the locomotive.32

Returning to our formulation of catching a puppy, it was also asked if the human33

will always catch the puppy by choosing an arbitrary direction and walking only in that34

direction. This turns out not to be the case; consider the star-shaped track in Figure 2.35

Suppose the human and puppy start at points h1 and p1, respectively, and the human walks36

counterclockwise around the track. When the human reaches h2, the puppy runs from p237

to p′2. When the human reaches h3, the puppy runs from p3 to p′3. Then the pattern repeats38

indefinitely. Examples of this type, where the human walking in the wrong direction will39

never catch the puppy, were independently discovered during the conference by some of the40

authors and by David Eppstein.41
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Figure 2: If the human keeps walking counterclockwise from h1, the human and the puppy
will never meet. To the right are closeups of two of the spikes of the star.

1.1 Related work42

Biro’s problem was inspired by his and others’ work on beacon-based geometric routing, a43

generalization of both greedy geometric routing and the art gallery problem introduced at44

the 2011 Fall Workshop on Computational Geometry [7] and the 2012 Young Researchers45

Forum [8], and further developed in Biro’s PhD thesis [6] and papers [9, 10]. A beacon is46

a stationary point object that can be activated to create a “magnetic pull” towards itself47

everywhere in a given polygonal domain P . When a beacon at point b is activated, a point48

object p moves moves greedily to decrease its Euclidean distance to b, alternately moving49

through the interior of P and sliding along its boundary, until it either reaches b or gets stuck50

at a “dead point” where Euclidean distance is minimized. By activating different beacons one51

at a time, one can route a moving point object through the domain. Initial results for this52

model by Biro and his colleagues [6–10] sparked significant interest and subsequent work in53

the community [2, 3, 5, 14, 19,21–23,27]. More recent works have also studied how to utilize54

objects that repel points instead of attracting them [11,25].55

Biro’s problem can also be viewed as a novel variant of classical pursuit problems,56

which have been an object of intense study for centuries [26]. The oldest pursuit problems ask57

for a description of the pursuit curve traced by a pursuer moving at constant speed directly58

toward a target moving along some other curve. Pursuit curves were first systematically59

studied by Bouguer [12] and de Maupertuis [15] in 1732, who used the metaphor of a pirate60

overtaking a merchant ship; another notable example is Hathaway’s problem [17], which asks61

for the pursuit curve of a dog swimming at unit speed in a circular lake directly toward a duck62

swimming at unit speed around its circumference. In more modern pursuit-evasion problems,63

starting with Rado’s famous “lion and man” problem [24, pp.114–117], the pursuer and target64

both move strategically within some geometric domain; the pursuer attempts to capture65

the target by making their positions coincide while the target attempts to evade capture.66

Countless variants of pursuit-evasion problems have been studied, with multiple pursuers67

and/or targets, different classes of domains, various constraints on motion or visibility,68

different capture conditions, and so on. Biro’s problem can be naturally described as a69

cooperative pursuit or pursuit-attraction problem, in which a strategic target (the human)70

wants to be captured by a greedy pursuer (the puppy).71
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Kouhestani and Rappaport [20] studied a natural variant of Biro’s problem, which we72

can recast as follows. A guppy is restricted to a closed and simply-connected lake, while the73

human is restricted to the boundary of the lake. The guppy swims with unbounded speed74

to decrease its Euclidean distance to the human. Kouhestani and Rappaport described a75

polynomial-time algorithm that finds a strategy for the human to catch the guppy, if such76

a strategy exists, given a simple polygon as input; they also conjectured that a capturing77

strategy always exists. Abel, Akitaya, Demaine, Demaine, Hesterberg, Korman, Ku, and78

Lynch [1] recently proved that for some polygons and starting configurations, the human79

cannot catch the guppy, even if the human is allowed to walk in the exterior of the polygon,80

thereby disproving Kouhestani and Rappaport’s conjecture. Their simplest counterexample81

is an orthogonal polygon with about 50 vertices.82

1.2 Our results83

Before describing our results in detail, we need to carefully define the terms of the problem.84

The track is a simple closed curve γ : S1 ↪→ R2. We consider the motion of two points on this85

curve, called the human (or beacon or target) and the puppy (or pursuer). A configuration86

is a pair (x, y) ∈ S1 × S1 that specifies the locations h = γ(x) and p = γ(y) for the human87

and puppy, respectively. Let D(x, y) denote the straight-line Euclidean distance between88

these two points. When the human is located at h = γ(x), the puppy moves from p = γ(y)89

to greedily decrease its distance to the human, as follows.90

• If D(x, y + ε) < D(x, y) for all sufficiently small ε > 0, the puppy runs forward along91

the track, by increasing the parameter y.92

• If D(x, y− ε) < D(x, y) for all sufficiently small ε > 0, the puppy runs backward along93

the track, by decreasing the parameter y.94

If both of these conditions hold, the puppy runs in an arbitrary direction. While the puppy95

is running, the human remains stationary. If neither condition holds, the configuration is96

stable; the puppy does not move until the human does. When the configuration is stable,97

the human can walk in either direction along the track; the puppy walks along the track in98

response to keep the configuration stable, until it is forced to run again. The human’s goal is99

to catch the puppy; that is, to reach a configuration in which the two points coincide.100

Our main result is that the human can always catch the puppy in finite time, starting101

from any initial configuration, provided the track is either a generic simple smooth curve or102

an arbitrary simple polygon.103

The remainder of the paper is structured as follows. We begin in Section 2 by104

considering some variants and special cases of the problem. In particular, we give a simple105

self-contained proof of our main result for the special case of orthogonal polygons.106

We consider generic smooth tracks in Sections 3 and 3.4. Specifically, in Section 3 we107

define two important diagrams, which we call the attraction diagram and the dual attraction108

diagram, and prove some useful structural results. At a high level, the attraction diagram is a109

decomposition of the configuration space S1 × S1 according to the puppy’s behavior, similar110
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to the free space diagrams introduced by Alt and Godau to compute Fréchet distance [4].111

We show that for a sufficiently generic smooth track, the attraction diagram consists of a112

finite number of disjoint simple closed critical curves, exactly two of which are topologically113

nontrivial. Then in Section 3.4, we argue that the human can catch the puppy on any track114

whose attraction diagram has this structure.115

In Section 4, we describe an extension of our analysis from smooth curves to simple116

polygonal tracks. Because polygons do not have well-defined tangent directions at their117

vertices, this extension requires explicitly modeling the puppy’s direction of motion in addition118

to its location. We first prove that the human can catch the puppy on a polygon that has no119

acute vertex angles and where no three vertices form a right angle; under these conditions,120

the attraction diagram has exactly the same structure as for generic smooth curves. We then121

reduce the problem for arbitrary simple polygons to this special case by chamfering—cutting122

off a small triangle at each vertex—and arguing that any strategy for catching the puppy on123

the chamfered track can be pulled back to the original polygon.124

Finally, we close the paper by suggesting several directions for further research.125

Open-source software demonstrating several of the tools developed in this paper126

is available at https://github.com/viglietta/Chasing-Puppies or https://archive.127

softwareheritage.org/swh:1:dir:58dd270b0896aa11024666b5cbd2481068e8eab9 .128

2 Warmup: other settings and a special case129

In this section, we discuss two variants of Biro’s problem and the special case of orthogonal130

polygons.131

In the first variant, both the human h and the puppy p are allowed to move anywhere132

in the interior and on the boundary of a simple polygon P . Here, as in beacon routing133

and Kouhestani and Rappaport’s variant [1, 20], the puppy moves greedily to decrease its134

Euclidean distance to the human, alternately moving through the interior of P and sliding135

along its boundary.136

As we will show in Theorem 1, h has a simple strategy to catch p in this setting,137

essentially by walking along the dual graph of any triangulation. This is an interesting138

contrast to the proof by Abel et al. [1] that h and p cannot always meet when h is restricted139

to the exterior of P and p to the interior. Our main result that h and p can meet when both140

are restricted to the boundary of P (even for a much wider class of simple closed curves),141

somehow sits in between these other two variants.142

When both h and p are restricted to the interior of P , we propose the following143

strategy for h; see Figure 3. Let T be a triangulation of P and let t1, . . . , tk be the path of144

pairwise adjacent triangles in T such that h ∈ t1 and p ∈ tk. Let ei be the common edge145

of ti and ti+1 and let di be the midpoint of ei. Let π = hd1d2 . . . dk−1 be a path from h to146

dk−1, which is contained in the triangles t1, . . . , tk−1. The human starts walking along π. As147

soon as the puppy enters a new triangle, the human recomputes π as described and follows148

the new path.149

Theorem 1. The proposed strategy makes h and p meet.150
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Figure 3: The proposed strategy when h and p are restricted to the interior of a simple
polygon P . The human h follows the path π. Note that the triangle containing p changes
before h reaches d1, and π is updated accordingly.

Proof. First, we observe that if the puppy ever enters the triangle t1 that is occupied by the151

human, then the puppy and the human meet immediately. Assume that the human does not152

meet the puppy right from the beginning. The region P \ t1 consists of one, two, or three153

polygons, one of which Pp contains p. Thus, whenever the human moves from one triangle154

to another, the set of triangles that can possibly contain p shrinks. We conclude that the155

human and the puppy must meet eventually.156

In our second variant, the human and the puppy are both restricted to a simple,157

closed curve γ in R3. Here it is easy to construct curves on which h and p never meet; the158

simplest example is a “double loop” that approximately winds twice around a planar circle,159

as shown in Figure 4.160

h

p

Figure 4: A double loop in R3; the human and puppy never meet.

Finally, we consider the special case of Biro’s original problem where the track γ is161

the boundary of an orthogonal polygon in the plane. This special case of our main results162

admits a much simpler self-contained proof.163

Theorem 2. The human can catch the puppy on any simple orthogonal polygon, by walking164

counterclockwise around the polygon at most twice.165

Proof. Let P be an arbitrary simple orthogonal polygon. Let u1 be the leftmost vertex of P166

among those with maximum y-coordinate, and let u2 be the next vertex of P in clockwise167

order (see Figure 5). Finally, let ` be the horizontal line supporting the segment u1u2.168
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We break the motion of the human into two phases, each of which requires at most169

one complete traversal of P . In the first phase, the human moves counterclockwise around P170

from the starting location to u1. If the human catches the puppy during this phase, we are171

done, so assume otherwise. In the second phase, the human walks counterclockwise around P172

starting from u1 to u2.173

We claim that the puppy p is never in the interior of the segment u1u2 during the174

second phase; thus, p always lies on the closed counterclockwise subpath of P from h to u2175

(or less formally, “between h and u2”). This claim implies that the human and the puppy are176

united during the second phase.177

Figure 5: Proof of Theorem 2. During the human’s second trip around P , the puppy lies
between u2 and the human.

The puppy must first cross the point u2 if it ever enters the interior of u1u2. So178

consider any moment during the second phase when p moves upward to u2. At that moment, h179

must be on the line ` to the right of p. (For any point a below `, there is a point b on the180

segment below u2 that is closer to a than u2.) Thus, the puppy stays at u2 as long as h stays181

on `. As soon as h leaves ` (necessarily downward) the puppy leaves u2 downward. Thus the182

puppy never moves into the interior of the edge u1u2.183

The following construction shows that the analysis in Theorem 2 is nearly tight.184

Consider the n-vertex polygon Pn illustrated in Figure 6, which consists of an orthogonal185

“comb” with n/4−O(1) “teeth” with some extra features at the left end. The height of Pn is186

significantly larger than its width; the right of Figure 6 shows Pn expanded horizontally to187

show its salient features.188

Figure 6: Theorem 2 is nearly tight in the worst case.

Suppose the human and puppy start on either side of the rightmost notch, at points189

h0 and p0, and the human moves counterclockwise around Pn. The other labeled points in190
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Figure 6 indicate later locations of the human and puppy; when the human reaches each191

point hi for the first time, the puppy is at the corresponding point pi. In particular, when the192

human reaches h3 on the bottom edge, the puppy moves to p3. The puppy is then trapped193

in the “bottle” on the left until the human reaches p2 for the second time, at which point the194

puppy runs to meet the human. The total distance traversed by the human, around Pn once195

and then from h0 to p2, is 2−O(1/n) times the perimeter of Pn.196

On the other hand, a single traversal of any orthogonal track suffices to catch the197

puppy, if the human is allowed to choose their direction of motion.198

Theorem 3. The human can catch the puppy on any simple orthogonal polygon by walking199

around the polygon, either clockwise or counterclockwise, at most once.200

Proof. Let P be an arbitrary simple orthogonal polygon. For any points s, t ∈ P , let P [s, t]201

denote the closed counterclockwise subpath of P from s to t. Let h0 denote the initial202

location of the human, and let p0 denote the location of the puppy after running toward h0.203

As in the previous proof, let u1 be the leftmost vertex of P with maximum y-204

coordinate, and let u2 be its clockwise neighbor. Symmetrically, let l1 be the leftmost vertex205

with minimum y-coordinate, and let l2 be its counterclockwise neighbor. By symmetry, we206

can assume without loss of generality that p0 ∈ P [l2, u2].1 The human’s strategy for catching207

the puppy depends on the initial location h0; see Figure 7.208

Figure 7: Proof of Theorem 3. The human moves clockwise if they start on the red subpath
P [p0, l2] and counterclockwise if they start on the green subpath P [u2, p0].

• If h0 ∈ P [u2, p0], the human moves counterclockwise around P . Our proof of Theorem 2209

implies that the puppy never enters the edge u1u2 and thus always lies on the subpath210

P [h, u2]. It follows that the human catches the puppy before reaching u2.211

• On the other hand, if h0 ∈ P [p0, l2], the human moves clockwise around P . Again,212

our proof of Theorem 2 implies that the puppy never enters the edge l1l2 and thus213

always lies on the subpath P [l2, u]. It follows that the human catches the puppy before214

reaching l2.215

1If p0 ∈ P [l1, u1], we rotate P by 180◦; if p0 ∈ P [u2, u1] (p0 ∈ P [l1, l2]), we rotate P by −90◦ (90◦).
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The two subpaths P [u2, p0] and P [p0, l2] cover the entire polygon P , so the proof is complete.216

In particular, if h0 ∈ P [u2, l2], the human can catch the puppy by walking at most once217

around P in either direction.218

The star-shaped track in Figure 2 shows that the simple strategy described by219

Theorem 2 does not extend to arbitrary polygons, even with a constant number of edge220

directions. Nevertheless, we optimistically conjecture that Theorem 3 extends to arbitrary221

simple tracks in the plane.222

3 Smooth tracks223

We first formalize both the problem and our solution under the assumption that the track224

is a generic smooth simple closed curve γ : S1 ↪→ R2. In particular, for ease of exposition,225

we assume that γ is regular and C3, meaning it has well-defined continuous first, second,226

and third derivatives, and its first derivative is nowhere zero. We also assume γ satisfies227

some additional genericity constraints, to be specified later. We consider polygonal tracks in228

Section 4.229

3.1 Configurations and genericity assumptions230

We analyze the behavior of the puppy in terms of the configuration space S1 × S1, which231

is the standard torus. Each configuration point (x, y) ∈ S1 × S1 corresponds to the human232

being located at h = γ(x) and the puppy being located at p = γ(y).233

For any configuration (x, y), recall that D(x, y) denotes the straight-line Euclidean234

distance between the points γ(x) and γ(y). We classify all configurations (x, y) ∈ S1 × S1
235

into three types, according to the sign of the partial derivative of distance with respect to236

the puppy’s position.237

• (x, y) is a forward configuration if ∂
∂yD(x, y) < 0.238

• (x, y) is a backward configuration if ∂
∂yD(x, y) > 0.239

• (x, y) is a critical configuration if ∂
∂yD(x, y) = 0.240

Starting in any forward (resp. backward) configuration, the puppy automatically runs forward241

(resp. backward) along the track γ. We further classify the critical configurations as follows:242

• (x, y) is a stable critical configuration if ∂2

∂y2
D(x, y) > 0.243

• (x, y) is an unstable critical configuration if ∂2

∂y2
D(x, y) < 0.244

• (x, y) is a pivot configuration if ∂2

∂y2
D(x, y) = 0.245

Finally, we consider two classes of pivot configurations:246

• (x, y) is a forward pivot configuration if ∂3

∂y3
D(x, y) < 0.247
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• (x, y) is a backward pivot configuration if ∂3

∂y3
D(x, y) > 0.248

We do not consider pivot configurations where the third derivative is also zero, which only249

occur on degenerate tracks γ; see our discussion of genericity below. We emphasize that this250

classification requires the curve γ to be C3.251

In any stable configuration, the puppy’s distance to the human is locally minimized,252

so the puppy does not move unless the human moves. In any unstable configuration, the253

puppy can decrease its distance by running in either direction. Finally, in any forward254

(resp. backward) pivot configuration, the puppy can decrease its distance by moving in one255

direction but not the other, and thus automatically runs forward (resp. backward) along the256

track.257

Critical configurations can also be characterized geometrically as follows. Refer to258

Figure 8. A configuration (x, y) is critical if the human γ(x) lies on the line N(y) normal259

to γ at the puppy’s location γ(y). Let C(y) denote the center of curvature of the track at260

γ(y). Then (x, y) is a pivot configuration if γ(x) = C(y), a stable critical configuration if the261

open ray from C(y) through the human point γ(x) contains the puppy point γ(y), and an262

unstable critical configuration otherwise.263

Figure 8: Three critical configurations: (h1, p) is unstable; (h2, p) is a pivot configuration,
and (h3, p) is stable.

Our analysis assumes that the curve γ satisfies several generic properties.264

(1) There is no pivot configuration (x, y) such that ∂2

∂x∂yD(x, y) = 0.265

(2) There is no pivot configuration (x, y) such that ∂3

∂y3
D(x, y) = 0.266

(3) There are a finite number of critical configurations (x, y) for any fixed value of x.267

(4) There are a finite number of critical configurations (x, y) for any fixed value of y.268

(5) There are a finite number of pivot configurations.269

Condition (1) implies, via the implicit function theorem, that the set of critical configurations270

is the union of disjoint simple closed curves, which we call critical cycles. Condition (2)271

implies that our classification of critical configurations is exhaustive; without this assumption,272

we would need higher derivatives to disambiguate the puppy’s behavior. Conditions (3)273

and (4) exclude certain pathological fractal-like curves and simplify our analysis of critical274
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cycles in Lemma 4.2 Finally, condition (5) ensures that our eventual strategy for the human275

to catch the puppy will have a finite description.276

Several of these conditions can be interpreted geometrically in terms of the evolute277

of γ, which is both the locus of centers of curvature of γ and the envelope of normals of γ.278

Condition (1) states that in any pivot configuration (x, y), the normal line N(y) is not tangent279

to γ at the human’s location γ(y). Condition (2) states that in any pivot configuration, the280

puppy point γ(y) is not a local curvature minimum or maximum. Thus, together conditions281

(1), (2), and (5) state that γ intersects its evolute transversely, away from its cusps, at a282

finite number of points. For further background on curvature, evolutes, and their generic283

properties, we refer the reader to Bruce and Giblin [13].284

Conditions (3) and (4) also have simple geometric interpretations. Condition (3)285

states that every line normal to γ intersects γ at a finite number of points, and condition (4)286

states that every point of γ lies on a finite number of lines normal to γ.287

3.2 Attraction diagrams288

The attraction diagram of the track γ is a decomposition of the configuration space S1×S1
289

by critical configurations of various types. At least one critical cycle, the main diagonal x = y,290

consists entirely of stable configurations; critical cycles can also consist entirely of unstable291

configurations. For any critical configuration (x, y) on any critical cycle C, the gradient292

vector ∇ ∂
∂yD(x, y) = ( ∂2

∂x∂yD(x, y), ∂
2

∂y2
D(x, y)) is normal to C at (x, y). Thus, if a critical293

cycle is neither entirely stable nor entirely unstable, then its points of vertical tangency are294

pivot configurations, and these points subdivide the critical cycle into x-monotone paths,295

which alternately consist of stable and unstable configurations.296

Figure 9 shows a sketch of the attraction diagram of a simple closed curve.3 We297

visualize the configuration torus S1 × S1 as a square with opposite sides identified. Thicker298

green and thinner red paths indicate stable and unstable configurations, respectively; blue dots299

indicate pivot configurations; and backward configurations are shaded light gray. Figure 10300

shows the attraction diagram for a more complex polygonal track, with slightly different301

coloring conventions. (Again, we will discuss polygonal tracks in more detail in Section 4.)302

The critical cycles in any attraction diagram have a simple but important topological303

structure. A simple closed curve in the torus S1 × S1 is contractible if it is the boundary of304

a topological disk and essential otherwise. For example, the main diagonal is essential, and305

the attraction diagram in Figure 9 contains two contractible critical cycles and two essential306

critical cycles.307

Lemma 4. The attraction diagram of any generic closed curve contains an even number of308

essential critical cycles.309

Proof. This lemma follows immediately from standard homological arguments, but for the310

2This assumption is not strictly necessary, as Lemma 4 can also be proved for more general curves by
homological arguments.

3The figure is topologically but not geometrically accurate. In the actual diagram, the red and green
paths are smooth, not polygonal.
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Figure 9: The attraction diagram of a simple closed curve, with one unstable critical
configuration emphasized.

sake of completeness we sketch a self-contained proof.311

Fix a generic closed curve γ. Let α and β denote the horizontal and vertical cycles312

S1×{0} and {0}×S1, respectively. Without loss of generality, assume α and β only intersect313

critical cycles in the attraction diagram of γ transversely.314

A critical cycle C in the attraction diagram is contractible if and only if α and β315

each cross C an even number of times. (Indeed, this parity condition characterizes all simple316

contractible closed curves in the torus.) On the other hand, α and β each cross the main317

diagonal once. It follows that α and β each cross every essential critical cycle an odd number318

of times; otherwise, some pair of essential critical cycles would intersect, and our genericity319

assumptions imply that critical cycles are pairwise disjoint.320

Because the critical cycles are the boundary between the forward and backward321

configurations, α and β each contain an even number of critical points. The lemma now322

follows immediately.323

We emphasize that this lemma does not actually require the track γ to be simple;324

the argument relies only on properties of generic functions over the torus that are minimized325

along the main diagonal.326

3.3 Dual attraction diagrams327

Our analysis also relies on a second diagram, which we call the dual attraction diagram328

of the track. We hope the following intuition is helpful. While the attraction diagram tells329

us the possible positions of the puppy depending on the position of the human, the dual330

attraction diagram gives us the possible positions of the human depending on the position of331

the puppy. For each puppy configuration y ∈ S1, we consider the normal line N(y). We are332

interested in the intersection points of γ with N(y), as those are the possible positions of the333

human. The idea of the dual attraction diagram is to trace the positions of the human as a334

function of the position of the puppy; see Figure 12.335
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Figure 10: The attraction diagram of a complex simple polygon. Serrations in the diagram
are artifacts of the curve being polygonal instead of smooth. The river is highlighted in blue.
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Let T (y) denote the line tangent to γ at the point γ(y), directed along the derivative336

vector γ′(x) = d
dxγ(x). For any configuration (x, y), let `(x, y) denote the distance from337

γ(x) to the tangent line T (y), signed so that `(x, y) > 0 if the human point γ(x) lies to the338

left of T (y) and `(x, y) < 0 if γ(y) lies to the right of T (y). More concisely, assuming without339

loss of generality that the track γ is parameterized by arc length, `(x, y) is twice the signed340

area of the triangle with vertices γ(x), γ(y), and γ(y) + γ′(y).341

Let L : S1 × S1 → S1 × R denote the function L(x, y) = (y, `(x, y)). The dual342

attraction diagram is the decomposition of the infinite cylinder S1 × R by the points343

{L(x, y) | (x, y) is critical}. At the risk of confusing the reader, we refer to the image344

L(x, y) ∈ S1 × R of any critical configuration (x, y) as a critical point of the dual attraction345

diagram.346

The dual attraction diagram can also be described as follows. For any y ∈ S1
347

and d ∈ R, let Γ(y, d) denote the point on the normal line N(y) at distance d to the left348

of the tangent vector γ′(y). More formally, assuming without loss of generality that γ349

is parameterized by arc length, we have Γ(y, d) = γ(y) + d
[
0 −1
1 0

]
γ′(y). We emphasize350

that Γ(y, d) does not necessarily lie on the curve γ. The dual attraction diagram is the351

decomposition of the cylinder S1 × R by the preimage Γ−1(γ) of γ.352

Figure 11: Examples of the functions ` and Γ used to define the dual attraction diagram.

Because γ is simple and regular, the dual attraction diagram is the union of simple353

disjoint closed curves. The function L continuously maps each critical cycle in the attraction354

diagram to a closed curve in the cylinder S1×R; we also call this image curve a critical cycle.355

Thus, the restriction of L to the set of critical configurations is a homeomorphism onto its356

image in the dual attraction diagram. In particular, L maps the main diagonal x = y to the357

horizontal axis `(x, y) = 0 of the dual attraction diagram. We emphasize, however, that the358

two diagrams are not topologically equivalent: this is exemplified by Figure 12, which shows359

the dual attraction diagram of the same track whose attraction diagram is shown in Figure 9.360

In Figure 12, the preimages under Γ of points inside the track are shaded.361

Just as in the attraction diagram, a critical cycle in the dual attraction diagram is362

contractible if it is the boundary of a simply connected subset of the cylinder S1 × R and363

essential otherwise.364

Lemma 5. The function L bijectively maps essential critical cycles in the attraction diagram365

to essential critical cycles in the dual attraction diagram. In particular, the two diagrams366

have the same number of essential critical cycles.367
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0 1

3 2
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7 6
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0 1 2 3 4 5 6 7 0

Figure 12: The dual attraction diagram of a simple closed curve, with one critical configuration
emphasized. Compare with Figure 9.

Proof. Let α = S1×{0} and α′ = S1×{0} denote the horizontal cycles in the torus S1×S1
368

and in the infinite cylinder S1×R, respectively. Let C be any critical cycle on the attraction369

diagram, and let C ′ = L(C) be the corresponding critical cycle in the dual attraction diagram.370

Recall from the proof of Lemma 4 that C is contractible on the torus if and only if371

|C ∩ α| is even. Similarly, C ′ is contractible in the cylinder if and only if |C ′ ∩ α′| is even.372

The map L : S1 × S1 → S1 × R maps C ∩ α bijectively to C ′ ∩ α′. We conclude that C is373

essential if and only if C ′ is essential.374

With this correspondence in hand, we can now more carefully describe the topological375

structure of the attraction diagram when the track is simple.376

Lemma 6. The attraction diagram of a simple generic closed curve contains exactly two377

essential critical cycles.378

Proof. Fix a generic closed curve γ. Lemma 4 implies that the attraction diagram of γ379

contains at least two essential critical cycles, one of which is the main diagonal. Thus, to380

prove the lemma, it remains to show that there are at most two essential critical cycles, in381

either the attraction diagram or the dual attraction diagram.382

Let Σ ⊂ S1 × R denote the set of essential critical cycles in the dual attraction383

diagram. Any two cycles in Σ are homotopic—meaning one can be continuously deformed384

into the other—because there is only one homotopy class of simple essential cycles on the385

infinite cylinder S1 × R. Since γ is simple and generic, the cycles in Σ do not intersect386

each other, and therefore have a well-defined vertical total order. In particular, the highest387

and lowest intersection points between any vertical line and Σ always lie on the same two388

essential cycles in Σ.389

Without loss of generality, suppose γ(0) is a point on the boundary of the convex hull390

of γ. Let C be any essential critical cycle in the attraction diagram of γ, and let C ′ = L(C)391

denote the corresponding essential cycle in the dual attraction diagram. The cycle C must392

pass through all possible puppy positions and all possible human positions; thus, C contains393

a configuration (0, y) for some parameter y ∈ S1. Recall that N(y) denotes the line normal394

to γ at γ(y). Then γ(0) must be an endpoint of the convex hull of γ ∩N(y), which is a line395
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segment. We conclude that C ′ must be either the highest or lowest essential critical cycle in396

the dual attraction diagram. Therefore, there are at most two critical cycles, completing the397

proof.398

In the rest of the paper, we mnemonically refer to the two essential critical cycles in399

the attraction diagram of a simple track as the main diagonal and the river .400

We emphasize that the converse of Lemma 6 is false; there are non-simple tracks401

whose attraction diagrams have exactly two essential critical cycles. (Consider the figure-eight402

curve ∞.) Moreover, we conjecture that Lemma 6 can be generalized to all (smooth) tracks403

with turning number ±1.404

3.4 Dexter and sinister strategies405

We can visualize any strategy for the human to catch the puppy as a path through the406

attraction diagram, consisting entirely of segments of stable critical paths and vertical407

segments, that ends on the main diagonal, as shown in Figure 13. We refer to the vertical408

segments as pivots. Every pivot (except possibly the first) starts at a pivot configuration,409

and every pivot ends at a stable configuration.410

p

h

p

h

p

h

p

h

p

h =p h

Figure 13: A sinister strategy for catching the puppy; compare with Figures 1 and 9.

We call a strategy dexter if it ends with a backward pivot—a downward segment,411

with the main diagonal to the right—and we call a configuration (x, y) dexter if there is a412

dexter strategy for catching the puppy starting at (x, y). Similarly, a strategy is sinister if413

it ends with a forward pivot—a skyward segment, with the main diagonal to the left—and a414

configuration is sinister if it is the start of a sinister strategy.4 A single configuration can be415

both dexter and sinister; see Figure 14.416

Theorem 7. Let γ be a generic track whose attraction diagram has exactly two essential417

critical cycles. Every configuration on γ is dexter or sinister, or possibly both; thus, the418

human can catch the puppy on γ from any starting configuration.419

4Dexter and sinister are Latin for right (or skillful, or fortunate, or proper, from a Proto-Indo-European
root meaning “south”) and left (or unlucky, or unfavorable, or malicious), respectively.
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Figure 14: Dexter (orange) and sinister (cyan) configurations in the example attraction
diagram. Arrows on the stable critical paths describe dexter and sinister strategies for
catching the puppy.

Before giving the proof, we emphasize that Theorem 7 does not require the track γ420

to be simple. Also, it is an open question whether having exactly two essential critical cycle421

curves is a necessary condition for the human to always be able to catch the puppy. (We422

conjecture that it is not.)423

Proof. Fix a generic track γ whose attraction diagram has exactly two essential critical cycles,424

which we call the main diagonal and the river. Assume γ has at least one pivot configuration,425

since otherwise, from any starting configuration, the puppy runs directly to the human.426

Let D be the set of all dexter configurations, and let S be the set of all sinister427

configurations. We claim that D and S are both annuli that contain both the main diagonal428

and the river. Because S and D meet on opposite sides of the main diagonal, this claim429

implies that D ∪ S is the entire torus, completing the proof of the lemma. We prove our430

claim explicitly for D; a symmetric argument establishes the claim for S.431

For purposes of argument, we partition the attraction diagram of γ by extending432

vertical segments from each pivot configuration to the next critical cycles directly above and433

below. We call the cells in this decomposition trapezoids, even though their top and bottom434

boundaries may not be straight line segments. At each forward pivot configuration p, we435

color the vertical segment above (x, y) green and the vertical segment below p red ; the colors436

are reversed for backward vertical segments, see Figure 15.437

The first step of any strategy is a (possibly trivial) pivot onto a stable critical path.438

Because the human-puppy configuration can move freely within any stable critical path σ,439

either every point in σ is dexter, or no point in σ is dexter. Similarly, for any green pivot440

segment π, either every point in π is dexter or no point in π is dexter.441

Consider any trapezoid τ , and let σ be the stable critical path on its boundary.442

Starting in any configuration in τ , the puppy immediately moves to a configuration on σ.443

Thus, if any point in τ is dexter, then σ is dexter, which implies that every point in τ is444

dexter. It follows that we can describe entire trapezoids as dexter or not dexter. In particular,445
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D is the union of all dexter trapezoids.446

If two trapezoids share a stable critical path other than the main diagonal, then either447

both trapezoids are dexter or neither is dexter. Similarly, if the green pivot segment leaving448

a pivot configuration p is dexter, then all four trapezoids incident to p are dexter; otherwise,449

either two or none of these four trapezoids are dexter.450

We conclude that aside from the main diagonal, the boundary of D consists entirely451

of unstable critical paths, pivot configurations, and red vertical segments. Moreover, for452

every pivot configuration p on the boundary of D, the green pivot segment leaving p is not453

dexter.454

Figure 15: Possible arrangements of dexter trapezoids near a forward pivot configuration.

By definition, every point in D is connected by a (dexter) path to the main diagonal,455

so D is non-empty and connected. On the other hand, D excludes a complete cycle of456

forward configurations just below the main diagonal. For any x ∈ S1, let D(x) denote the457

set of dexter configurations (x, y); this set consists of one or more vertical line segments in458

the attraction diagram.459

Suppose for the sake of argument that some set D(x) is disconnected. Because D is460

connected, the boundary of D must contain a concave vertical bracket : A vertical boundary461

segment π whose adjacent critical boundary segments both lie (without loss of generality)462

to the right of π, but D lies locally to the left of π. See Figure 16. Let p be the pivot463

configuration at one end of π. The green vertical segment on the other side of p is dexter,464

which implies that all trapezoids incident to p are dexter, contradicting the assumption465

that π lies on the boundary of D. We conclude that for all x, the set D(x) is a single vertical466

line segment; in other words, D is a monotone annulus.467

p

Figure 16: A hypothetical concave vertical bracket on the boundary of D.

The bottom boundary of D is the main diagonal. The monotonicity of D implies that468

the top boundary of D is a monotone “staircase” alternating between upward red vertical469

segments and rightward unstable critical paths. Every trapezoid immediately above the top470

boundary of D contains only forward configurations. Thus, there is a complete essential471
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cycle φ of forward configurations just above the upper boundary of D. Note that φ does472

not intersect any critical cycle, and therefore it lies either entirely above or entirely below473

the river. However, all forward configurations below the river lie in the regions enclosed by474

contractible critical cycles (cf. Figure 9); thus, there can be no essential cycle of forward475

configurations below the river. We conclude that φ must lie entirely above the river, which476

implies that D contains the entire river.477

Symmetrically, S is an annulus bounded above by the main diagonal and bounded478

below by a non-contractible cycle of backward configurations; in particular, the entire river479

lies inside S. We conclude that D ∪ S is the entire configuration torus.480

If the attraction diagram of γ has more than two essential critical cycles curves, then481

D and S are still monotone annuli, each bounded by the main diagonal and an essential482

cycle of red vertical segments and unstable paths, and thus S and D each contain at least483

one essential critical cycle other than the main diagonal. However, D ∪ S need not cover the484

entire torus.485

Corollary 8. The human can catch the puppy on any generic simple closed track, from any486

starting configuration.487

4 Polygonal tracks488

Our previous arguments require, at a minimum, that the track has a continuous derivative489

that is never equal to zero. We now extend our results to polygonal tracks, which do not490

have well-defined tangent directions at their vertices.491

4.1 Polygonal attraction diagrams492

Throughout this section, we fix a simple polygonal track P with n vertices. We regard P as493

a continuous piecewise linear function P : S1 ↪→ R2, parameterized by arc length. Without494

loss of generality P (0) is a vertex of the track. We index the vertices and edges of P in order,495

starting with v0 = P (0), where edge ei connects vi to vi+1; all index arithmetic is implicitly496

performed modulo n.497

To properly describe the puppy’s behavior, we must also account for the direction498

that the puppy is facing, even when the puppy lies at a vertex. To that end, we represent499

the track using both a continuous position function π : S1 → R2 and a continuous direction500

function θ : S1 → S1. Intuitively, the two functions describe the position and orientation of501

the puppy as it makes a complete circuit along P : it advances at constant speed along each502

edge, and it stops at each vertex to modify its direction vector, again at constant speed.503

To be precise, both π(y) and θ(y) are piecewise linear functions of the puppy’s504

parameter y ∈ S1. The curve π(y) is a re-parameterization of P such that, when π(y) is505

in the interior of an edge ei of P , its derivative π′(y) is a constant positive multiple of506

θ(y) = (vi+1 − vi)/‖vi+1 − vi‖. Moreover, for each vertex vi of P , the preimage π−1(vi)507

is a non-degenerate interval [ai, bi] ⊂ S1 such that π′(y) = 0 whenever ai < y < bi; also,508
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θ(ai) = (vi−vi−1)/‖vi−vi−1‖, θ(bi) = (vi+1−vi)/‖vi+1−vi‖, and θ(y) is linear and injective509

on [ai, bi], turning clockwise if the edges ei−1 and ei define a clockwise turn, and vice versa.510

(The ratio of the speeds at which the puppy moves along edges and turns around at vertices511

is not relevant.)512

We classify any human-puppy configuration (x, y) ∈ S1 × S1 as forward, backward, or513

critical, if the dot product (P (x)−π(y))·θ(y) is negative, positive, or zero, respectively. In any514

forward configuration (x, y), the puppy moves to increase the parameter y; in any backward515

configuration, the puppy moves to decrease the parameter y. (The human’s direction is516

irrelevant.) The attraction diagram is the set of all critical configurations (x, y) ∈ S1 × S1.517

We further classify critical configurations (x, y) as follows:518

• final if P (x) = π(y),519

• stable if (x, y − ε) is forward and (x, y + ε) is backward for all suffic. small ε > 0,520

• unstable if (x, y − ε) is backward and (x, y + ε) is forward for all suffic. small ε > 0,521

• forward pivot if (x, y − ε) and (x, y + ε) are both forward for all suffic. small ε > 0, or522

• backward pivot if (x, y − ε) and (x, y + ε) are both backward for all suffic. small ε > 0.523

A straightforward case analysis implies that this classification is exhaustive.524

To define the attraction diagram of P , we decompose the torus S1×S1 into a 2n×n525

grid of rectangular cells, where each column corresponds to an edge ej containing the human,526

and each row corresponds to either a vertex vi or an edge ei containing the puppy. The main527

diagonal of the attraction diagram is the set of all final configurations. Strictly speaking, in528

this case the “main diagonal” is not just a straight line, but consists of alternating diagonal529

and vertical segments. We can characterize the critical points inside each cell as follows:530

Each edge-edge cell ei× ej contains at most one boundary-to-boundary path of stable531

critical configurations (x, y). Refer to Figure 17.532

p

h

Figure 17: All edge-edge critical configurations are stable.

Each vertex-edge cell vi × ej contains at most one boundary-to-boundary path of533

stable critical configurations and at most one boundary-to-boundary path of unstable critical534

configurations. If the cell contains both paths, they are disjoint. A configuration (x, y) with535

π(y) = vi is stable if and only if P (x) lies in the outer normal cone at vi, and unstable if and536

only if P (x) lies in the inner normal cone at vi; see Figure 18.537
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Figure 18: Stable and unstable vertex-edge critical configurations.

4.2 Polygonal pivot configurations538

Unlike the attraction diagrams of generic smooth curves defined in Section 3.2, the attraction539

diagrams of polygons are not always well-behaved. In particular, a pivot configuration540

may be incident to more (or fewer) than two critical curves, and in extreme cases, pivot541

configurations need not even be discrete. We call such a configuration a degenerate pivot542

configuration.543

In any pivot configuration (x, y), the puppy π(y) lies at some vertex vi, the puppy’s544

direction θ(y) is parallel to either ei (or ei+1). Generically, each pivot configuration is a545

shared endpoint of an unstable critical path in cell vi × ej and a stable critical path in cell546

ei × ej (or ei−1 × ej); see Figure 19.547

p

h

Figure 19: Near a non-degenerate pivot configuration.

There are three distinct ways in which degenerate pivot configurations can appear.548

A type-1 degeneracy is caused by an acute angle on P . Specifically, let vi be a549

vertex of P . The configuration (x, y) with P (x) = π(y) = vi is degenerate if the angle550

between ei−1 and ei is strictly acute. In the attraction diagram of a type-1 degeneracy, two551

stable critical curves and two unstable critical curves end on a single vertical section of the552

main diagonal (corresponding to the human and the puppy being both at vi, but the puppy553

facing in different directions). Refer to Figure 20.554

A type-2 degeneracy is caused by a more specific configuration. Let ei be an edge555

of P , and let ` be the line perpendicular to ei through vi (or, symmetrically, through vi+1).556

Let vj be another vertex of P which lies on `. The configuration (x, y) with P (x) = vj and557

π(y) = vi is degenerate if:558

• vi−1 and vj lie in the same open halfspace of the supporting line of ei; and559

• vj−1 and vj+1 lie in the same open halfspace of `.560

A type-2 degeneracy corresponds to a vertex (pivot configuration) of degree 4 or 0 in the561
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Figure 20: Stable and unstable configurations near an acute vertex angle.

attraction diagram. We further distinguish these as type-2a and type-2b. Refer to Figure 21.562

p

h

p

h

Figure 21: Type-2a and type-2b degenerate pivot configurations.

Finally, a type-3 degeneracy is essentially a limit of both of the previous types of563

degeneracies. Let ei be an edge of P , let ` be the line perpendicular to ei through vi, and564

let ej be another edge of P which lies on `. The configuration (x, y) with P (x) ∈ ej and565

π(y) = vi is degenerate if vertices vi−1 and vj lie in the same open halfspace of the supporting566

line of ei. When this degeneracy occurs, pivot configurations are not discrete, because567

the point P (x) ∈ ej can be chosen arbitrarily. Moreover, the vertex-vertex configurations568

(vj , vi) and (vj−1, vi) have odd degree in the attraction diagram. A type-3 degeneracy can569

be connected to (two or more) other critical curves, or be isolated. We further distinguish570

these as type-3a and type-3b, depending on whether vi is an endpoint of ej . See Figure 22.571

p

h

p

h

Figure 22: Type-3a and type-3b degenerate pivot configurations.

In Section 4.3 we first consider polygonal tracks which do not have any degeneracies572

of these three types. To simplify exposition, we first only consider generic obtuse polygons:573

we forbid degeneracies by assuming that no vertex angle in P is acute and that no three574

vertices of P define a right angle. In Section 4.5 we lift these assumptions by chamfering the575

polygon, cutting off a small triangle at each vertex.576
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4.3 Catching puppies on generic obtuse polygons577

Generic obtuse polygonal tracks behave almost identically to smooth tracks, once we properly578

define the attraction diagram and dual attraction diagram.579

Lemma 9. Let P be a simple polygon with no acute vertex angles, in which no three vertices580

define a right angle. The attraction diagram of P is the union of disjoint simple critical581

cycles.582

Proof. Each edge-edge cell ei×ej contains at most one section of stable critical configurations583

(x, y) (Figure 17). For each such configuration, the points π(y) ∈ ei and P (x) ∈ ej are584

connected by a line perpendicular to ei. Because no three vertices of P define a right angle,585

these points cannot both be vertices of P ; thus, any critical path inside the cell ei× ej avoids586

the corners of that cell.587

Each vertex-edge cell vi × ej contains at most one section of a stable and one section588

of an unstable path (Figure 18). Again, because no three vertices of P define a right angle,589

these paths avoid the corners of the cell vi × ej .590

It follows from the definition of pivot that, in any pivot configuration (x, y), the591

puppy lies at a vertex π(y) = vi, and the puppy’s direction θ(y) is parallel to either ei (or592

ei+1). Also, by the above, the human lies in the interior of some edge: P (x) ∈ ej . Moreover,593

our assumptions on P imply that there are no degenerate pivot configurations; thus, each594

pivot configuration is a shared endpoint of exactly one unstable critical path in cell vi × ej595

and exactly one stable critical path in cell ei × ej (or ei−1 × ej).596

Thus, the set of unstable critical configurations is the union of x-monotone paths597

whose endpoints are pivot configurations. Similarly, the set of stable critical configurations598

is also the union of x-monotone paths whose endpoints are pivot configurations. Moreover,599

each unstable critical path lies in a single vertex strip.600

Because every vertex angle in P is obtuse, every configuration (x, y) where the human601

P (x) lies on an edge ei and the puppy π(y) lies on the previous edge ei−1 is either forward or602

final. Similarly, if P (x) ∈ ei−1 and π(y) ∈ ei, then the configuration (x, y) is either backward603

or final. Thus, the main diagonal is disjoint from all other critical cycles; in fact, no other604

critical cycle intersects any grid cell that touches the main diagonal.605

Figure 23: Near the main diagonal.

This completes the classification of all critical configurations. We conclude that the606

attraction diagram consists of the (simple, closed) main diagonal and possibly other simple607
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closed curves composed of stable and unstable critical paths meeting at pivot configurations.608

All these critical cycles are disjoint.609

The remainder of the proof is essentially unchanged from our earlier analysis of610

smooth tracks. For any configuration (x, y), let T (y) denote the directed “tangent” line611

through π(y) in direction θ(y), and let L(x, y) denote the signed distance from P (x) to T (y),612

signed positively if P (x) lies to the left of T (y) and negatively if P (x) lies to the right of613

T (y). The dual attraction diagram of P consists of all points (y, L(x, y)) ∈ S1 × R where614

(x, y) is a critical configuration. As in the smooth case, the map (x, y) 7→ (y, L(x, y)) is a615

homeomorphism from the critical cycles in the attraction diagram to the curves in the dual616

attraction diagram; moreover, this map preserves the contractibility of each critical cycle.617

Lemma 10. Let P be a simple polygon with no acute vertex angles, in which no three vertices618

define a right angle. The attraction diagram of P contains exactly two essential critical619

cycles.620

Lemma 11. Let P be a simple polygon with no acute vertex angles, in which no three vertices621

define a right angle. If the attraction diagram of P has exactly two essential critical cycles,622

then the human can catch the puppy on P , starting from any initial configuration.623

Theorem 12. Let P be a simple polygon with no acute vertex angles, in which no three624

vertices define a right angle. The human can catch the puppy on P , starting from any initial625

configuration.626

We can also relax the assumption that no three vertices define a right angle by627

allowing degenerate pivot configurations of type 2b and type 3b. Since these correspond to628

vertically isolated forward or backward pivot configurations in the attraction diagram, they629

do not impact the existence of a strategy to catch the puppy. The puppy will just move630

over them as if they were normal forward or backward configurations. When we ignore these631

degenerate pivot configurations, the remaining attraction diagram still consists of disjoint632

simple critical cycles, and our previous proof can be repeated verbatim.633

Corollary 13. Let P be a simple polygon with no acute vertex angles and no degeneracies of634

type 1, type 2a, or type 3a. The human can catch the puppy on P , starting from any initial635

configuration.636

4.4 Chamfering637

We now extend our analysis to arbitrary simple polygons. We define a chamfering operation,638

which transforms a polygon P into a new polygon P̄ . First we show that P̄ has no degenerate639

pivot configurations of type 1, 2a, or 3a (although it may still have degeneracies of type 2b640

and type 3b). Hence there is a strategy to catch the puppy on P̄ . Finally, we show that such641

a strategy can be correctly translated back to a strategy on P .642

Let P be an arbitrary simple polygon, and let ε > 0 be smaller than half of any643

distance between two non-incident features of P . Then the ε-chamfered polygon P̄ is another644

polygon with twice as many vertices as P , defined as follows. Refer to Figure 24. For each645
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vertex vi of P , we create two new vertices v′i and v
′′
i , where v

′
i is placed on ei−1 at distance ε646

from vi, and v′′i is placed on ei at distance ε from vi. Edge e′i in P̄ connects v′′i to v′i+1, and647

a new short edge si connects v′i to v
′′
i . Note that the condition on ε implies that P̄ is itself a648

simple (i.e., not self-intersecting) polygon.649

ε

ε

ε
vi

vi+1

ei
ei+1

ei−1

P P̄

e′i
e′i+1

e′i−1

si

si+1

v′i
v′′i

v′i+1 v′′i+1

ε

Figure 24: The chamfering operation.

The chamfering operation alters the local structure of the attraction diagram near650

every vertex. The idea is that at non-degenerate configurations, the change will not influence651

the behavior of the puppy, and as such will not influence the existence of any catching652

strategies. However, at degenerate configurations, the change in the structure is significant.653

We will argue in Section 4.5 that the changes are such that every strategy in the chamfered654

polygon translates to a strategy in the original polygon.655

Here we review again the different types of degenerate pivot configurations, and how656

the ε-chamfering operation, for a small-enough ε, affects the local structure of the attraction657

diagram in each case. Refer to Figure 25.658

• Near type-1 degeneracies, the higher-degree vertices on the main diagonal disappear.659

Instead, two separate critical curves almost touch the main diagonal: one from above660

and one from below.661

• Near type-2a degeneracies, the degree-4 vertex disappears. Instead, the two incident662

critical curves coming from the left are connected, and the two incident curves coming663

from the right are connected.664

• Near type-2b degeneracies, the isolated pivot vertex simply disappears.665

• Near type-3 degeneracies, the degenerate pivot “vertex” disappears. Any connected666

critical curve is locally rerouted away from the degenerate location.667

4.5 Catching puppies on arbitrary simple polygons668

Even when the chamfering radius ε is arbitrarily small, the attraction diagram of the chamfered669

polygon P̄ may have type-2b and type-3b degeneracies, and even new non-degenerate critical670

curves that are not present in the original attraction diagram. See Figures 26, 27 and 29 for671

examples. We argue in Lemma 14 that these are the only degeneracies that can appear in P̄ .672

Note that it may be tempting to define a different chamfering parameter ε for each673

vertex of P , in order to eliminate also the type-2b and type-3b degeneracies from P̄ . The674
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Figure 25: Effect of the chamfering operation on the attraction diagram near degenerate pivot
configurations. The size of ε is exaggerated; the figures show the combinatorial structure of
the chamfered diagram for a much smaller value of ε. Only the effect of chamfering vertices
relevant for the degeneracy is shown.
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Figure 26: Chamfering P can create a new non-degenerate critical curve when one vertex of
P lies on the angle bisector of another.

reason why we insist on having the same ε for all vertices will become apparent shortly, when675

proving Lemma 15.676

Lemma 14. Let P be an arbitrary simple polygon. For all sufficiently small ε, the ε-chamfered677

polygon P̄ has no degenerate pivot configurations of type 1, type 2a, or type 3a.678

Proof. First, note that P̄ has no type-1 or type-3a degeneracies: we replace each vertex vi with679

angle αi by two new vertices v′i and v
′′
i with angles α′i = α′′i = π− 1

2(π−αi) = 1
2π+ 1

2αi >
1
2π.680

Next, we consider the type-2 degeneracies, which may occur for some values of ε. We681

argue that each potential type-2a degeneracy only occurs for at most one value of ε; since682

there are finitely many potential degeneracies, the lemma then follows.683

Note that, as we vary ε, all vertices of P̄ move linearly and with equal speed. Thus, if684

more than one value of ε gives rise to a type-2a degeneracy, then all of them do. There are two685

configurations in P̄ that could potentially give rise to infinitely many type-2a degeneracies.686

We argue that, in fact, such configurations cannot satisfy all requirements of a type-2a687

degeneracy.688

• An edge e′i has endpoint v
′
i (or symmetrically, v′′i−1) such that the line ` through v′i and689

perpendicular to e′i contains another vertex v
′
j (or v

′′
j−1). Refer to Figure 28. Then, as690

v′i moves along e′i, ` moves at the same speed as v′i, and v
′
j moves in the same direction691

at the same speed along e′j . So e
′
j is parallel to e

′
i. But since the angles of P̄ are obtuse,692

we conclude that v′′j−1 and v′′j lie on the opposite sides of `; thus, this cannot be a693

type-2 degeneracy.694

• A short edge si of P̄ has an endpoint v′i (or symmetrically, v′′i ) such that the line `695

through v′i and perpendicular to si contains another vertex v′j (or v′′j−1). Refer to696

Figure 29. In this case, vertex vj must lie on the angle bisector of edges ei and ei+1,697

and edges ei and ej must be parallel. Because the angles of P̄ are obtuse, si and e′i698

lie on opposite sides of `. Now, as ε varies, v′i moves along e′i, the slope of si does not699

change, and thus ` remains parallel to itself. Since v′j moves in a direction concordant700

with `’s direction, e′j lies on the same sides of ` as e′i. Thus, this cannot be a type-2a701
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Figure 27: The attraction diagram of a degenerate polygon, before and after chamfering. All
existing degeneracies disappeared in the chamfered polygon, which does have one new but
harmless type-3b degeneracy.
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e′i

`
viv′i

vjv′j

ε

εv′′j
v′′j−1 e′j

Figure 28: Potential new degenerate pivot configurations based on a (shortened) original
edge e′i. For ε small enough, there can be no degeneracy.

degeneracy. Note that it is possible that v′′j lies on the same side of ` as e′j , in which702

case we have a degeneracy of type 2b (Figure 29 (left)), or that v′′j lies on `, in which703

case we have a degeneracy of type 3b (Figure 29 (middle)). If v′′j lies on the opposite704

side of `, there is no degeneracy (Figure 29 (right)).705

e′i

`
vi

v′iv′′i ε

e′j

vj
v′jε

v′′j

e′i

vi
v′i

ε

e′j

vj
v′j

ε

v′′j

e′i

vi
v′i

ε

e′j

vj
v′j

ε

v′′j

si

`

v′′i
si

`

v′′i
si

Figure 29: Potential new degenerate pivot configurations based on a short edge si. For any ε
we may still have a new degeneracy of type 2b (left), 3b (middle), or no degeneracy (right).

Let P be an arbitrary simple polygon and P̄ an ε-chamfered copy without degeneracies706

of type 1, type 2a, or type 3a. We say a parameter value x is verty whenever P (x) is at707

distance at most ε from a vertex of P . We say a parameter value x is edgy if it is not verty.708

We reparameterize P̄ such that P (x) = P̄ (x) whenever x is edgy; the parameterization of P̄709

is uniformly scaled for verty parameters. We say a configuration (x, y) is edgy when x and y710

are both edgy.711

We say a path in the attraction diagram is valid if it describes a human and puppy712

behavior that obeys the rules imposed on the puppy and the human, as explained in Section 1.713

For polygonal tracks, it is not restrictive to assume that a valid path is piecewise linear and714

that the derivative of the human’s parameter value x only changes sign at pivot configurations715

(that is, the human may invert direction along the curve only when the configuration is a716

pivot one).717

Lemma 15. Assuming ε is sufficiently small, for any valid path σ between two stable edgy718

configurations (x1, y1) and (x2, y2) in the attraction diagram of P̄ , there is a valid path σ′719

between (x1, y1) and (x2, y2) in the attraction diagram of P .720

Proof. We will describe how to obtain σ′ by slightly deforming σ in the non-edgy config-721

urations, assuming that ε is small enough. In fact, it will suffice to show that σ and σ′722
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Figure 30: As long as the puppy stays on the chamfered edge e′i, its qualitative behavior is
the same on the original and chamfered polygon.

determine the same “qualitative behavior” of the puppy. That is, let ψ be a valid path in723

the attraction diagram of P or P̄ , and consider the ordered sequence of all configurations724

((x̃i, ỹi))1≤i≤k along ψ where the puppy’s parameter value ỹi transitions from edgy to verty or725

vice versa. The qualitative behavior of the puppy determined by ψ is defined as the sequence726

qψ = (ỹi)1≤i≤k. We will show that qσ = qσ′ , thus proving the lemma.727

The intuition is that there is a direct correspondence between edgy configurations728

in the two diagrams, and we only have to ensure that the puppy has the correct behavior729

when the configuration is not edgy, i.e., the human or the puppy is in an ε-neighborhood of730

a vertex of P .731

Let ρ be a maximal subpath of σ where the puppy’s parameter y remains edgy except732

possibly at the endpoints, i.e., the puppy remains on some edge e′i of P̄ while the human walks733

along P̄ . We argue that, if the human moves in the same way along P , thus determining734

a path ρ′ in the attraction diagram of P , then the puppy never leaves ei. Moreover, if ρ735

terminates with the puppy on an endpoint of e′i, say v
′′
i , then ρ

′ terminates with the puppy736

in a verty position corresponding to vi. See Figure 30.737

Observe that, if the projection of a vertex vj on the line supporting ei lies in the738

interior of ei, then the projection of the short edge sj on the same line lies in the interior of739

e′i, assuming that ε is small enough. Thus, the puppy’s behavior according to ρ′ is the same740

as with ρ, except when the human reaches a neighborhood of a vertex vj that projects on an741

endpoint of ei, say vi.742

In the latter case, since the chamfering parameter ε is the same for both vi and vj ,743

the human cannot reach the interior of the short edge sj before the puppy reaches the interior744

of the short edge si. However, since ρ keeps the puppy on e′i, this is not possible. Thus, the745

puppy in ρ′ behaves in the same way as in ρ in every case.746

Let us now consider a maximal subpath τ of σ where the puppy’s parameter y747

remains verty. Furthermore, assume that both endpoints of τ have a puppy parameter at748

the boundary between verty and edgy (such is the situation when τ is between two subpaths749
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D ′S
S

Figure 31: When the puppy is around a vertex, its qualitative behavior is determined by the
region where the human lies (either A, B, C, or D).

of σ where the puppy parameter is edgy). As before, we will construct a path τ ′ in the750

attraction diagram of P such that the puppy has the same qualitative behavior as in τ . Refer751

to Figure 31.752

By assumption, throughout τ , the puppy always remains on a short edge, say si,753

possibly rotating its direction vector while it is at a vertex of si. Let ` and `′ be the lines754

through vi orthogonal to ei−1 and ei, respectively. We say that vi is generic if no other755

vertex lies on either ` or `′. We denote by S the infinite strip of width ε bounded by ` and756

v′i. Similarly, we denote the infinite strip bounded by `′ and v′′i by S′.757

If vi is generic, then we can choose ε small enough such that the strips S and S′758

intersect no short edges of P̄ other than si. Thus, whenever the human moves within one759

of the strips S or S′, it stays within some edge e′j of P̄ . It follows that, if the human in τ ′760

replicates the identical behavior within S and S′ as the human in τ , this determines the same761

qualitative behavior of the puppy (i.e., the puppy in τ leaves si from one of its endpoints if762

and only if the puppy in τ ′ moves to the corresponding edgy position in P ).763

Denote by A, B, C, D the four regions of the plane bounded by ` and `′, as in764

Figure 31, and assume that the human in τ moves outside of S and S′ within one of these765

four regions. As long as the human is in D, the puppy can never leave si and transition to766

an edgy parameter value. Hence, replicating the human’s movements in P (straightforwardly767

modified around the vertices to match the shape of P ) causes the puppy to stay at vi, thus768

having the same qualitative behavior.769

Suppose now that the human is in A, B, or C, and consider the open strip S′′770

consisting of the union of all the lines perpendicular to si that intersect the interior of si (not771

shown in Figure 31). If the human is not in S′′ (and not in S or S′), the puppy immediately772

moves to an edgy position, both in P̄ and in P . On the other hand, if the human is in S′′,773

then the configuration stabilizes with the puppy in the interior of si. However, observe that,774

in order to reach this region, the human must have crossed the boundary of S′′ while in A,775

B, or C, thus causing the puppy to move outside of si or never enter si in the first place.776

Hence, this case never occurs.777

Finally, let us consider the case where vi is not generic. We can argue in the same778

way as in the generic case, except when the human moves in a neighborhood of a vertex vj779
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Figure 32: Once the human reaches a neighborhood of the lower vertex, the puppy makes
a jump forward, traversing two short edges of P̄ , both of which correspond to type-2a
degeneracies in the attraction diagram of P . This behavior can be replicated in P .

that lies on, say, `. In this case, we can choose ε small enough so that both S′ and S′′ (as780

defined above) are disjoint from the disk of radius ε centered at vj . Now, if the human ever781

enters the region C while in a neighborhood of vj , we can reason as above.782

The only remaining case is the one where vi and vj give rise to a type-2a degeneracy783

in the attraction diagram of P , as illustrated in Figure 32. Since the chamfering parameter ε784

is the same for both vi and vj , the short segment sj lies entirely in the strip S. Also, by our785

choice of ε, sj lies outside the open strip S′′. Thus, if the human in τ ever reaches sj , the786

puppy exits si, say from v′′i . This behavior can be replicated in P if the human moves to the787

vertex vj , which causes the puppy to travel around vertex vi. Note that, after traversing si,788

the puppy may immediately reach and traverse more edges of P̄ ; this is true in particular if789

vi+1 gives rise to a type-2a degeneracy too, as shown in Figure 32. Our previous analysis790

also applies to this case verbatim.791

We have proved that the path σ can be decomposed into subpaths ρ1, τ1, ρ2, τ2,792

. . . , ρk, each of which has a corresponding path ρ′i or τ
′
i in the attraction diagram of P793

which determines the same qualitative behavior of the puppy. By definition of “qualitative794

behavior”, the ending point of any path in the sequence ρ′1, τ ′1, ρ′2, τ ′2, . . . , ρ′k coincides with795

the starting point of the next path. Thus, the paths can be concatenated to form the desired796

path σ′.797

We are now ready to prove our main result.798

Theorem 16. Let P be a simple polygon. The human can catch the puppy on P , starting799
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from any initial configuration.800

Proof. Let ε be so small as to satisfy both Lemma 14 and Lemma 15. Consider an arbitrary801

starting configuration on P . If the starting configuration is not stable, we let the puppy802

move until it is. If the resulting configuration is not edgy, we move the human along P until803

we reach an edgy configuration (x, y). (This must be possible, except if the puppy stays804

in an ε-neighborhood of a vertex for the entire time; in that case, we can catch the puppy805

trivially, by going to that vertex.)806

The ε-chamfered polygon P̄ has no acute vertex angles and, by Lemma 14, it has no807

degeneracies of type 1 or type 2a or type 3a. Thus, by Corollary 13, there exists a strategy808

for the human to catch the puppy on P̄ . If the end configuration of this strategy is not edgy,809

we may now simply move human and puppy together to an edgy final configuration (f, f).810

By Lemma 15, there is an equivalent strategy to reach (f, f) from (x, y) on P . Combined811

with the initial path to (x, y), this gives us a path from an arbitrary starting configuration812

to a final configuration on P .813

5 Further questions814

For simple curves, we have only proved that a catching strategy exists. At least for polygonal815

tracks, it is straightforward to compute such a strategy in O(n2) time by searching the816

attraction diagram. In fact, we can compute a strategy that minimizes the total distance817

traveled by either the human or the puppy in O(n2) time, using fast algorithms for shortest818

paths in toroidal graphs [16,18]. Unfortunately, this quadratic bound is tight in the worst819

case if the output strategy must be represented as an explicit path through the attraction820

diagram. We conjecture that an optimal strategy can be described in only O(n) space821

by listing only the human’s initial direction and the sequence of points where the human822

reverses direction. On the other hand, an algorithm to compute such an optimal strategy in823

subquadratic time seems unlikely.824

If the track is a smooth curve of length ` whose attraction diagram has k pivot825

configurations, a trivial upper bound on the distance the human must walk to catch the826

puppy is ` · k/2. In any optimal strategy, the human walks straight to the point on the curve827

corresponding to a pivot located at one of the two endpoints of the current “stable sub-curve”828

of a critical curve (walking less than `). Then the configuration moves to another stable829

sub-curve, and so on, never visiting the same stable sub-curve twice. Our question is whether830

a better upper bound can be proved.831

In fact, if minimizing distance is not a concern, we conjecture that no reversals are832

necessary. That is, on any simple track, starting from any configuration, we conjecture that833

the human can catch the puppy either by walking only forward along the track or by walking834

only backward along the track. Figure 2 and its reflection show examples where each of these835

naïve strategies fails, but we have no examples where both fail. Theorem 3 implies that our836

conjecture holds for orthogonal polygons.837

More ambitiously, we conjecture that the following oblivious strategy is always838

successful: walk twice around the track in one (arbitrary) direction, then walk twice around839
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the track in the opposite direction.840

Another interesting question is to what extent our result applies to self-intersecting841

curves in the plane, when we consider the two strands of the curve at an intersection point to842

be distinct. It is easy to see that the human cannot catch the puppy on a curve that traverses843

a circle twice; see Figure 4. Indeed, we know how to construct examples of bad curves with844

any rotation number except −1 and +1. We conjecture that Lemma 6, and therefore our845

main result, extends to all non-simple tracks with rotation number ±1. Similarly, are there846

interesting families of curves in R3 where the human and puppy can always meet?847

Finally, it is natural to consider similar pursuit-attraction problems in more general848

domains. Theorem 1 shows that the human can always catch the puppy in the interior of a849

simple polygon, by walking along the dual tree of any triangulation. Can the human always850

catch the puppy in any planar straight-line graph? Inside any polygon with holes?851
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