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Abstract

We investigate the reconfiguration of n blocks, or “tokens”, in the square grid using line
pushes. A line push is performed from one of the four cardinal directions and pushes all
tokens that are maximum in that direction to the opposite direction by one unit. Tokens
that are in the way of other tokens are displaced in the same direction, as well.

Similar models of manipulating objects using uniform external forces match the mechan-
ics of existing games and puzzles, such as Mega Maze, 2048 and Labyrinth, and have also
been investigated in the context of self-assembly, programmable matter and robotic motion
planning. The problem of obtaining a given shape from a starting configuration is known
to be NP-complete.

We show that, for every n, there are sparse initial configurations of n tokens (i.e., where
no two tokens are in the same row or column) that can be rearranged into any a × b
box such that ab = n. However, only 1 × k, 2 × k and 3 × 3 boxes are obtainable from
any arbitrary sparse configuration with a matching number of tokens. We also study the
problem of rearranging labeled tokens into a configuration of the same shape, but with
permuted tokens. For every initial “compact” configuration of the tokens, we provide a
complete characterization of what other configurations can be obtained by means of line
pushes.
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1 Introduction

Background. Manipulating a set of objects with uniform external forces is a concept that
appears in many game and puzzle mechanics, such as Mega Maze [2], the 2048 puzzle [4, 6],
Tilt [14] and dexterity games such as the Labyrinth marble game [1] and Pigs in Clover [3]. It
also appears in self-assembly, programmable matter and robotic motion planning, with many
applications involving controlling particles in the micro and nanoscale [10–12, 14]. Having the
particles being controlled by a uniform external force is of particular interest since it might be
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Figure 1: A configuration of tokens in the square lattice (left), and the configuration after a
push (right). Tokens can be thought of as being pushed by a line coming from the left or,

equivalently, as “falling” to the left without exiting their bounding box.

unfeasible to control them individually due to their small scale. The most studied model for
self-assembly using uniform external forces is the tilt model. Objects called “tokens” are in a
2D board where some locations are marked “blocked”. A tilt move moves all tokens maximally
in one of the four cardinal directions, stopping the movement only if there is a collision with a
blocked position or with another token [12]. Another model that resembles the dexterity games
model uses a single step to control tokens via uniform signals to move a single unit in one of
the cardinal directions [13, 15, 18].

Akitaya et al. [5] introduced the trash compaction problem that displaces tokens in a square
grid via a line push, or simply push. A push is also caused by an external force, but unlike
the tilt, each token moves by at most one unit in the direction of the force, perhaps better
approximating a dexterity game model. Informally, a push is applied in one of the four cardinal
directions from which we sweep an axis-aligned line. The first tokens hit by the line are displaced
by one unit; in turn, these tokens might displace other tokens, and so on. Figure 1 illustrates an
example. If we consider configurations equivalent under translation, the same push operation
can be seen as placing a line barrier on one of the sides of the bounding box and applying a
uniform force pushing all tokens towards the barrier by at most one unit. Note that pushes are
not necessarily reversible.

The trash compaction problem gives an initial configuration of 1×1 tokens in the square grid
and asks whether it can be reconfigured via pushes into a rectangular box of given dimensions.
It is shown in [5] that the problem is NP-complete in general, but it is polynomial-time solvable
for 2× k rectangles, where k is an arbitrary constant.

Our contributions. In this paper, we consider reconfiguration problems using pushes in
two scenarios: labeled and unlabeled. Two tokens with the same label are indistinguishable; a
configuration is unlabeled if all tokens have the same label, and labeled otherwise.

In Section 2 we make some preliminary observations, where we study certain important
configurations called compact and the ways they can be reconfigured.

Next, we investigate two types of puzzles. The first is called Compaction Puzzle, and is
equivalent to the trash compaction problem. In Section 3 we show that, for sparse configurations
of unlabeled tokens (i.e., where no two tokens are in the same row or column), only rectangles
of sizes 1× k, 2× k, and 3× 3 can be obtained in general. That is, we give algorithms to push
tokens into these rectangles, and we show that there are sparse configurations that cannot be
pushed into rectangles of any other size.

The second puzzle is called Permutation Puzzle, and the goal is to reconfigure a labeled
configuration into another; Figure 2 shows an example. In Section 4 we give a complete charac-
terization of which labeled compact configurations can be obtained from one another. Namely,
in Section 4.1 we prove that only even permutations of the tokens are possible, and in Section 4.2
we show exactly which even permutations can be obtained, depending on the initial configura-
tion. Our characterization can be considered a (partial) universality result; that is, after ruling
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Figure 2: A Permutation Puzzle, where the goal is to rearrange the tokens from the left config-
uration to the right configuration by means of line pushes. Due to Theorem 18, this puzzle is
solvable (the top row has seven empty cells, and so the core is empty; see Section 4.2).

out cases using some easily identifiable necessary conditions, every pair of configurations can
be reconfigured into each other (Theorem 18 gives a precise statement).

Section 5 concludes the paper with some directions for future research.
A preliminary version of this paper appeared in [8].

Related work. There is a rich literature regarding reconfiguration through pushing objects,
including sliding-block puzzles [20, 21], block-pushing puzzles [19, 22], the 15-puzzle [24], the
2048 puzzle [4, 6], etc. In the block-pushing model, a 1×1 agent moves through empty positions
in the square lattice and can displace (push) objects that are free, while some objects are blocked
and cannot be moved. The problem of whether the agent can reach a target position, depending
on the model of the push move, is known to be PSPACE-complete. Note that this operation,
albeit being called “push”, differs from our model since the agent can move specific individual
objects.

As previously discussed, models that consider movement of objects by uniform external
forces have received some attention due to their applications to programmable matter. In
the tilt model with 1 × 1 free and blocked objects, deciding whether a given free object can
get to a given position is PSPACE-complete [10]. This implies the same complexity for the
reconfiguration problem. Other papers considered some form of universality given a certain
placement of blocked objects such as reconfiguration [12, 28], particle computations [14], and
building shapes when given edges of free objects stick together when in contact [10, 11]. In the
single-step model, for a given configuration of blocked objects, reconfiguration is NP-complete
with single steps limited to two directions [16], and universality results also exist for a special
configuration of blocked objects [17]. Note that the hardness of the trash compaction problem [5]
implies the hardness of the problem of constructing a given shape in the single-step model.

Concerning our line-push model, in addition to the aforementioned paper [5] about trash
compaction, a second short paper has appeared [7], introducing some 2-player games based on
the same mechanic.

2 Definitions and Preliminaries

Let L be the 2D square lattice. Let T be a set of n labeled objects called tokens, and let Σ
be the set of labels. A configuration of T is an arrangement of T in L where no two tokens
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Figure 3: An incompressible non-compact configuration (left); a canonical configuration (cen-
ter); a compact configuration (right). The central and right configurations are compatible.

occupy the same position. Formally, a configuration is a function C : L → Σ ∪ {empty} where
the cardinality of the preimage of an element ℓ ∈ Σ is the number of tokens labeled ℓ, and
|C−1(Σ)| = |T | = n. A lattice position (x, y) is full if its image is in Σ, and empty otherwise.
Notice that we do not distinguish two tokens that have the same label. However we may refer
to full positions and tokens interchangeably for ease of reference. The bounding box of C is the
minimum rectangular subset of L containing all full positions. In the following, we will identify
configurations that are equal under translation.

A push is an operation that takes a configuration C and a direction d ∈ { , , , } and
returns a configuration C ′ as follows. We describe a push; the other cases are symmetric.
Informally, a push moves all leftmost tokens one unit to the right, further displacing tokens
to the right if there are collisions. Without loss of generality, assume that the lower-left corner
of the bounding box is (0, 0), applying the appropriate translation otherwise. For all columns
i ≥ 1 from left to right, and for all rows j, if (i, j) is full and (i− 1, j) is empty, move the token
from (i, j) to (i− 1, j). Finally, translate the configuration making the lower-left corner of the
bounding box (1, 0).

Note that the last step just translates the configuration, producing an equivalent one. Then,
we can also consider an alternative informal interpretation of a push: A push places a vertical
barrier to the left of x = 0 and lets all tokens that can move “fall” towards the left by one unit.
We call this interpretation the “gravity” formulation of the puzzle.

Observe that pushes are not necessarily reversible, and every push either does not affect
the size of the bounding box, or decreases its area by exactly one row or column. We denote a
sequence of pushes by the respective sequence of directions ⟨d1 . . . dm⟩. We use the notation dk

to express k repetitions of direction d. A configuration is compressible if a push can decrease
the area of its bounding box, or incompressible otherwise. By definition, it is easy to see that
a configuration is incompressible if and only if its bounding box contains a full row and a full
column. If |Σ| = 1, i.e., all tokens have the same label, we call the configuration unlabeled.
When no restrictions are made on |Σ|, we say that the configuration is labeled.

We can now define our Compaction Puzzle.

Problem 1 (Compaction Puzzle). Given an unlabeled starting configuration, is there a sequence
of pushes that produces a configuration whose tokens form an a× b box?

If we start from any configuration and we keep pushing in the two directions and
alternately, we eventually reach a configuration for which any push in these two directions
produces an equivalent configuration. We call such a configuration canonical. By definition, a
canonical configuration forms an orthogonally convex polyomino with its leftmost column and
bottommost row full. A compact configuration is a configuration that can be obtained from a
canonical configuration by pushes (see Figure 3). Note that all canonical configurations are also
compact.
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Observation 1. A configuration C is compact if and only if every row r (resp., column) has
a single contiguous interval of tokens and its projection on any other row r′ (resp., column c′)
with the same amount or more tokens is contained in the interval of tokens of r′ (resp., c′).

Proof. Let P denote the conditions after the “if and only if”. Observe that all canonical
configurations satisfy P. Also, P is easily seen to be preserved by pushes, and therefore all
compact configurations satisfy P, as well.

In order to prove the converse, we first show that if C satisfies P, then any push performed in
C is reversible. The remainder of the proof follows from the fact that we can obtain a canonical
configuration by applying and pushes.

Without loss of generality, assume a push in C and that the lower-left corner of the
bounding box is (0, 0). Let H be the set of rows with a token in the leftmost column (0, ·). Let
V be the set of columns to the right of (0, ·) that contain a token in each row in H. Observe that
each token in C must be in H or in V , or else there would be a column whose interval of tokens’
projection neither contains nor is contained in the interval of tokens of the first column (0, ·).
Note that applying the push causes only tokens in H to move. We reverse this operation
by applying ⟨ k ⟩, with k chosen so that the right side of the bounding box coincides with the
rightmost column in V , then applying ⟨ k−1 ⟩. By construction, only tokens in H move, and
the sequence brings the leftmost token in each row in H back to its original position in column
(0, ·). This proof works for the labeled as well as the unlabeled case.

The proof of Observation 1 immediately implies the following corollary.

Corollary 2. A push applied to a (labeled) compact configuration is reversible.

Note that, by Observation 1, compact configurations are orthogonally convex polyominoes;
also, all compact configurations are incompressible. Moreover, a random sequence of pushes
results in a compact configuration with high probability (this certainly happens, for instance,

if the sequence of pushes has a subsequence of the form ⟨ k k ⟩ for a large-enough k).
The number of tokens in a row or a column of a compact configuration is said to be the

length of that row or column. Two compact configurations are compatible if they have the same
number of rows (resp., columns) of each given length. For example, in Figure 3, the central and
right configurations are compatible. The observation below shows that the set of compatible
compact configurations is closed under pushes.

Observation 3. A push applied to a compact configuration C results in a compatible compact
configuration C ′.

Proof. Since C can be obtained from a canonical configuration by pushes, then so can C ′, and
therefore C ′ is compact, as well. It is enough to show that a push in C does not change the
number of rows (resp., columns) of each given length. Note that labels are irrelevant, and so
we will assume C and C ′ to be unlabeled, without loss of generality. We reuse the notation
of the proof of Observation 1. The push only moves tokens in H, so it is clear that the
lengths of rows do not change. We can see the push as removing the leftmost column (which
has length |H|), moving all columns to the right of V by one unit to the right, and creating a
new column of length |H| immediately to the right of V . Thus, the number of columns of each
length remains the same, and C ′ is compatible with C.

Note that compatibility is an equivalence relation on the set of compact configurations. By
Observation 3, in any equivalence class of unlabeled compatible compact configurations there
is exactly one canonical configuration. Once we reach a compact configuration via a sequence
of pushes, no other canonical configuration can be reached, except for the one corresponding to
the current compact configuration.

The following observation follows from the fact that we can obtain a canonical configuration
by applying and pushes and by Corollary 2.
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Observation 4. Any two unlabeled compatible compact configurations can be obtained from
each other by pushes.

Two labeled configurations are said to have the same shape if they have the same set of full
positions (recall that we are identifying configurations that only differ by a translation). We
can now define our Permutation Puzzle.

Problem 2 (Permutation Puzzle). Given two same-shaped labeled compact configurations C
and C ′, is there a sequence of pushes that transforms C into C ′?

Two same-shaped labeled configurations differ by a permutation of their tokens. If we obtain
a same-shaped configuration C ′ from C, the sequence of pushes results in such a permutation.
Note that the set of possible permutations is finite and closed under composition, and therefore
is a permutation group, which we denote as GC .

The following observation allows us to focus on sequences between canonical configurations.
We say that the labeled canonical configuration C obtained from a compact configuration C ′

by ⟨ k1 k2 ⟩, for some k1, k2, is the canonical form of C ′. Then the following is a direct
consequence of Corollary 2.

Observation 5. A labeled compact configuration C can be obtained from a same-shaped labeled
compact configuration C ′ if and only if the canonical form of C is reachable from the canonical
form of C ′.

3 Compaction Puzzles

In this section, we focus on Compaction Puzzles (Problem 1) where the input configuration is
sparse; that is, where no row or column has more than one token. We assume that the number
of tokens is n = ab, and we wonder if there is a sequence of pushes that produces an a × b
box. Note that, as long as the configuration is sparse, any push shrinks the bounding box,
and therefore is irreversible (unless n = 1). Recall that without the sparseness assumption, the
problem is NP-complete [5].

One may wonder if the leeway given by sparse configurations is enough to obtain every
compact configuration; in this section, we will show that this is not the case.

We begin by observing that, for every n, there exists a “universal” configuration that can
be reconfigured into any compact configuration with n tokens (such as an a× b box).

Observation 6. There exists a sparse unlabeled configuration with n tokens that can be recon-
figured into any compact configuration with n tokens.

Proof. Such a configuration is the secondary diagonal of an n×n matrix, i.e., all positions (i, i)
are full, for i ∈ {1, . . . , n}, and all other positions are empty. Due to Observation 4, it suffices
to show that any canonical configuration can be formed.

By definition, a canonical configuration has a monotonic decreasing sequence of column
lengths. After k pushes, the configuration will have a column of length k. We then perform
k pushes bringing the column up aligning its bottom with the next token. Any subsequent
k′ ≤ k pushes would accumulate tokens in the bottommost contiguous positions of the second
leftmost column. We can then repeat this procedure to produce any monotonic decreasing
sequence of column lengths.

We will now show that not all configurations can be reconfigured into an a× b box.

Lemma 7. For all a ≥ 4 and b ≥ 3, there exists a sparse configuration that cannot be reconfig-
ured into an a× b box.
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Figure 4: The configuration Ca,b defined in Lemma 7, with a = 4 and b = 3 (left). Any sequence
of pushes produces an “L-shaped” pattern (center), which eventually causes the formation of
rows with more than a tokens or columns with more than b tokens (right).

Proof. We will describe a sparse configuration Ca,b and argue that it cannot be reconfigured into
an a × b box; refer to Figure 4. The configuration Ca,b is subdivided into four quadrants; the
lower-left and upper-right quadrants are empty, and all tokens are in the other two quadrants.
Specifically, we place n1 =

⌊
ab
2

⌋
tokens in the upper-left quadrant and n2 =

⌈
ab
2

⌉
in the lower-

right quadrant; each of those quadrants is a square matrix with only its secondary diagonal
full.

Initially, all the and pushes (resp., and pushes) only affect tokens in the upper-left
(resp., lower-right) quadrant. Thus, as soon as either n1 − 1 pushes have been made in the
upper-left quadrant or n2 − 1 pushes have been made in the lower-right quadrant (whichever
comes sooner), all the tokens in that quadrant must be located on the union between a single
row and a single column, forming a connected “L-shaped” pattern.

If the L-shaped pattern contains x tokens on the same row and y tokens on the same column,
we must have x+ y = ni+1 for some i ∈ {1, 2}. Thus, x+ y ≥

⌊
ab
2

⌋
+1. It is easy to see (cf. [5,

Observation 3]) that it is impossible to form an a× b box from a configuration where more than
a (resp., b) tokens are on the same row (resp., column). Therefore, we must have x ≤ a and
y ≤ b, which implies a+ b ≥

⌊
ab
2

⌋
+1 ≥ ab+1

2 . By rearranging terms we have (a− 2)(b− 2) ≤ 3,
whose only solutions with a ≥ 4 and b ≥ 3 are a = 4, b = 3 and a = 5, b = 3.

Let a = 4 and b = 3 (resp., a = 5 and b = 3), and let x and y be defined as above.
Since x + y ≥ 7 (resp., x + y ≥ 8), we must have x = a and y = b. Now, further pushes in
the same quadrant cause the L-shaped pattern to rigidly move toward the opposite quadrant,
eventually creating a row with more than a tokens or a column with more than b tokens. On the
other hand, making more pushes in the opposite quadrant ends up forming another, oppositely
oriented, L-shaped pattern identical to the first. At this point, any push causes the two L-
shaped patterns to rigidly approach each other, eventually creating a row or a column with too
many tokens.

In all other cases, any sparse configuration can be reconfigured into an a × b box, which
yields the following theorem.

Theorem 8. All sparse configurations of n = ab tokens can be pushed into an a× b box if and
only if a ≤ 2 or b ≤ 2 or a = b = 3.

Proof. Lemma 7 provides counterexamples for a ≥ 4 and b ≥ 3 (and, symmetrically, for a ≥ 3
and b ≥ 4); it remains to show the positive cases.

First, note that the claim for a = 1 is trivial (and b = 1 is symmetric): Perform pushes
until all tokens are in the same row, then perform pushes until they occupy consecutive
positions.
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Figure 5: Pushing a sparse configuration of n = 9 tokens into a 3× 3 box (Theorem 8).

Now assume a = 2 (b = 2 is symmetric). Perform pushes until half of the tokens are in
the same row r. Then, the other half form a sparse subconfiguration below r. Perform pushes
until all such tokens are in the row immediately below r. Then, a 2 × n

2 box is obtainable by
performing pushes.

Finally, assume that a = b = 3; refer to Figure 5. Because the initial configuration is sparse,
if we perform pushes, the number of tokens in the leftmost column increases by at most one
with every push. Apply pushes until there are three tokens in the leftmost column. The
subconfiguration obtained by deleting the leftmost column is also sparse. Then, by the same
argument we can perform pushes until there are three tokens in the rightmost column. Since
we have not yet performed any vertical push, every row has at most one token. There are exactly
three tokens that are not in the leftmost or rightmost columns. Let t1, t2 and t3, respectively,
be those tokens, from smallest to largest y-coordinate. Perform pushes until the bottommost
row of the configuration is one unit below t2. Note that t1 must be in the bottommost row.
Symmetrically, apply pushes until the topmost row of the configuration is one unit above t2.
Now, t1, t2 and t3 are strictly between the leftmost and rightmost columns, and are one in each
row. Then, we obtain a 3× 3 box by performing pushes.

4 Permutation Puzzles

In this section, we will give a complete solution to the Permutation Puzzle (Problem 2): For
any given starting compact labeled configuration C, we will determine the set of labeled con-
figurations of the same shape as C that we can reach by means of pushes. Specifically, we will
give a description of the permutation group GC , as defined in Section 2.

By Observation 5, it is not restrictive to limit our attention to canonical configurations. For
most of this section, we will assume that all tokens have distinct labels; the general case will be
discussed at the end of the section.

We will show that all feasible permutations in this setting are even (Section 4.1), and fur-
thermore that all even permutations are feasible, with some simple restrictions (Section 4.2).

It will be convenient to always consider the lower-left corner of the bounding box to be
(0, 0), even after a sequence of pushes. That is, we consider the “gravity” formulation of the
puzzle, where the bounding box remains still and the tokens move within it (recall that compact
configurations are uncompressible). As a consequence, a push in one direction will cause the
tokens to “fall” in the opposite direction within the bounding box.
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1 2 3 1 2 3 4 5 6

4 5 6 7 8 9 10 11 12

7 8 9 10 11 13 14 15 16

12 13 14 15 16 17 18 17 18

19 20 21 22 23 24 25 19 20

26 27 28 29 30 31 32 33 34

35 36 37 38 39 40 41 42 43

6 1 2 3 1 2 3 4 5

12 4 5 6 7 8 9 10 11

16 7 8 9 10 11 13 14 15

18 12 13 14 15 16 17 18 17

20 19 20 21 22 23 24 25 19

26 27 28 29 30 31 32 33 34

35 36 37 38 39 40 41 42 43

5 6 1 2 3 1 2 3 4

11 12 4 5 6 7 8 9 10

15 16 7 8 9 10 11 13 14

17 18 12 13 14 15 16 17 18

19 20 19 20 21 22 23 24 25

26 27 28 29 30 31 32 33 34

35 36 37 38 39 40 41 42 43

4 5 6 1 2 3 1 2 3

10 11 12 4 5 6 7 8 9

14 15 16 7 8 9 10 11 13

17 18 12 13 14 15 16 17 18

19 20 19 20 21 22 23 24 25

26 27 28 29 30 31 32 33 34

35 36 37 38 39 40 41 42 43

10 11 12 1 2 3 7 8 9

14 15 16 4 5 6 10 11 13

17 18 12 7 8 9 16 17 18

19 20 19 13 14 15 23 24 25

26 27 28 20 21 22 32 33 34

35 36 37 29 30 31 41 42 43

4 5 6 38 39 40 1 2 3

Figure 6: A configuration with labeled empty cells and the result after the sequence of pushes
⟨ ⟩. We use yellow for full tokens and light blue for empty cells (and later, dual tokens)
in this section.

4.1 All Feasible Permutations Are Even

In this section, we will prove Theorem 11, which states that only even permutations are possible
in the Permutation Puzzle.

For a labeled canonical configuration C, let C ′ be an extension of the labeling where also
the empty cells inside the bounding box of C get a unique label. Our proof strategy is to first
extend permutations of C to permutations of C ′, and argue that a permutation of full and
empty cells must be even. We then introduce a dual game played on the empty cells only, and
argue that this dual game has similar properties. Since the dual of any game is always smaller
(in terms of bounding box) than the original, our theorem then follows by induction.

Permutations on Full Cells and Empty Cells

Let C be a labeled canonical configuration; that is, a function C : L → Σ∪{empty}. We extend
C to another function C ′ : L → Σ ∪ Σ′ ∪ {empty}, where Σ′ is a second set of unique labels
and C ′(x) ∈ Σ′ if and only if x is in the bounding box of C, but not in C (for all other x,
C ′(x) = C(x)).

We now define the effect of a push operation on C ′ (illustrated in Figure 6). We define it
for a push; the other directions are symmetric. A single push affects each row as follows:

� For each row in which the rightmost cell is empty, we shift all tokens and empty cells one
position to the right and place the rightmost empty cell at the left; in other words, we
perform a single cyclic permutation on the tokens in the row.

� For each row in which the rightmost cell is full, nothing changes.

We now argue that for any sequence of pushes which transforms C into another canonical
configuration, the effect of these moves on C ′ must be an even permutation.

Lemma 9. Every achievable permutation on the union of full and empty cells must be even.

Proof. By definition, every horizontal (resp., vertical) push causes a cyclic permutation on some
rows (resp., on some columns) involving both labeled tokens and labeled empty cells. We will
argue that the total number of cyclic permutations on the rows (resp., on the columns) caused
by these pushes is even. Since all cyclic permutations on rows (resp., on columns) have the
same parity, which depends only on the width (resp., height) of the bounding box, this implies
that the overall permutation is even.

From Observations 1 and 3 it follows that all rows (resp., columns) of the same length must
always be aligned throughout the reconfiguration (see Figure 7). In particular, observe that a
vertical push never influences the horizontal placement of the rows of a particular length (note
that here we only argue about the shape, not the labels). Now consider the set of rows of length
k. Every horizontal push either moves all such rows one cell to the right, or one cell to the
left, or not at all. Since both at the start and at the end of the process all rows of length k
are aligned with the left border of the bounding box, the total number of pushes that influence
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1 2 3

4 5 6

7 8 9 10 11

12 13 14 15 16 17 18

19 20 21 22 23 24 25

26 27 28 29 30 31 32 33 34

35 36 37 38 39 40 41 42 43

1 2 3

6 13 14

8 20 21 9 10 11 18

4 5 26 27 19 15 16 17 25

12 7 35 36 28 22 23 24 34

37 29 30 31 32 33 43

38 39 40 41 42

1 2 3

4 5 6

7 8 9 10 11

12 13 14 15 16 17 18

19 20 21 22 23 24 25

26 27 28 29 30 31 32 33 34

35 36 37 38 39 40 41 42 43

1 2 3

6 13 14

8 20 21 9 10 11 18

4 5 26 27 19 15 16 17 25

12 7 35 36 28 22 23 24 34

37 29 30 31 32 33 43

38 39 40 41 42

Figure 7: Rows and columns of the same length are always aligned.

2

111 2

3 4

8 5 7

9 6 10 11 12

13 14 15 16 17 18

19 39 30 21 23 33 24 25 27

20 28 29 22 32 42 34 26 36

37 38 40 31 41 43 44 35 45

1 9 4 5 6 7

8 3 10 18 12 14

15 16 17 13 19 20

21 22 23 24

25 26 27

Figure 8: The fact that the overall permutation on full and empty cells is even does not neces-
sarily imply that the permutation on the full cells is even.

the horizontal placement of these rows is even, and thus the number of cyclic permutations
performed on these rows is also even.

Note that a single push may influence the placement of rows of different lengths; however, for
each specific length k, the total number of pushes that influences them is even, and therefore the
total number of cyclic permutations on rows is even. The same holds for the cyclic permutations
on columns, which concludes the proof.

Now, in order to prove our main theorem, we still need to show that the resulting permuta-
tion restricted to the tokens is also even; see Figure 8.

Dual Puzzles

Given a configuration C, we have extended its labeling to a configuration C ′ having labels on
the empty cells, as well. Now, consider the restriction of C ′ to only the empty cells; that is,
the function D : L → Σ′ ∪ {empty} which labels exactly the cells that are empty in C but lie
inside the bounding box of C. Clearly, if we can prove that a permutation on D is even, then
Lemma 9 implies that the corresponding permutation on C must also be even (the product of
two permutations is even if and only if they have the same parity).

For convenience, we will consider the bounding box of C as a torus and display it in such
a way that all full rows and columns are aligned with the left and bottom of the rectangle (see

1 2 1 2 3 4 5 6 7

3 4 8 9 10 11 12 13 14

5 6 7 15 16 17 18 19 20

8 9 10 11 12 21 22 23 24

13 14 15 16 17 18 25 26 27

19 20 21 22 23 24 25 26 27
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Figure 9: A primal puzzle (yellow) with its corresponding dual puzzle (light blue). The blue
rectangle represents the bounding box of the dual puzzle. Note that the tokens in the dual
puzzle match the labels on the empty cells of the primal puzzle.
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Figure 10: Rules of the dual puzzle. The sequence of pulls ⟨ ⟩ is shown.
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Figure 11: The dual of a dual puzzle is again a primal puzzle; we see the result after the sequence
of pulls ⟨ ⟩.

Figure 9). We call D a dual configuration, and we will study the effects of push moves on D,
which we will treat as a dual puzzle (while the original puzzle on C is the primal puzzle).

When considering a dual puzzle in isolation, we swap terminology and refer to the empty
cells as full, and vice versa. In this context, a push move in the primal puzzle either leaves the
dual puzzle unchanged or causes a pull move in the dual puzzle. Specifically, if we perform a

push move in the primal puzzle from a configuration where only the full rows are touching
the right side of the bounding box, nothing happens in the dual puzzle. Otherwise, the push
move in the primal puzzle causes a pull move in the dual puzzle, where exactly those rows
that are farthest from the left boundary are pulled one unit to the left (refer to Figure 10, where
the blue line represents a side of the bounding box of the primal puzzle).

Thus, as we play the primal puzzle, we are also playing the dual puzzle. We say that a dual
configuration is canonical when all tokens are aligned with the top and right borders of their
bounding box; this way, the empty cells in a canonical (primal) configuration form a canonical
(dual) configuration. Most of the results obtained so far for primal puzzles automatically apply
to dual puzzles, as well.

In particular, we claim that in the dual game, the equivalent of Lemma 9 still holds. For
this, we now consider again an extension of our dual configuration D which labels both the
full and empty cells of the bounding box of D. Crucially, this is not the same as the original
extension C ′, because the bounding box of D is smaller than the bounding box of C.

Lemma 10. Let D be a labeled canonical configuration, and let D′ be an extension of D that
labels also the empty cells of the bounding box of D′. Every achievable permutation on D′ under
a sequence of dual moves must be even.

Proof. Since the number of rows (resp., columns) of any given length in the primal puzzle
remains constant, then the same is true in the dual puzzle. Moreover, all of the rows (resp.,
columns) of the same length must always be aligned in the primal puzzle, and therefore they
must be aligned in the dual puzzle, as well. The proof now proceeds exactly as in Lemma 9.

Induction

We are now ready to prove that all permutations in GC must be even.
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Figure 12: A configuration with a = 10, b = 9, a′ = 7, and b′ = 6. The blue rectangle in the
center surrounds the core tokens.

Theorem 11. Let C be a labeled canonical configuration, and let π ∈ GC . Then, π is an even
permutation.

Proof. The proof follows from two simple observations. Firstly, if we take the dual of a dual-
type puzzle, we obtain another puzzle that again follows the rules of a primal-type puzzle (refer
to Figure 11). Secondly, the bounding box of a (primal or dual) puzzle is strictly larger than
the bounding box of its dual.

We will prove a stronger statement: that our theorem holds for both primal-type and dual-
type puzzles. The proof is by well-founded induction on the size of the bounding box.

If the bounding box of our puzzle is completely full, then moves have no effect, and the only
allowed permutation is the identity, which is even.

Now, consider a canonical configuration C in a (primal or dual) puzzle with a bounding
box which is not completely full. Such a puzzle has a dual, with a canonical configuration
D corresponding to C. The bounding box of D has smaller size, and therefore the induction
hypothesis applies to the dual puzzle. After performing some moves and restoring a canonical
configuration in both puzzles, the tokens in C have undergone a permutation π ∈ GC , while
the tokens in D have undergone a permutation σ ∈ GD. By Lemmas 9 and 10, the overall
permutation πσ is even; by the induction hypothesis, σ is even; hence, π is even, as well.

4.2 Generating All Feasible Permutations

In this section, we will give a complete description of the permutation group GC , which we
already know from Section 4.1 to be a subgroup of the alternating group Alt(n).

Unmovable Central Core

Let the bounding box be an a× b rectangle. Our first observation is that, if more than half of
the rows and more than half of the columns of the bounding box are full, then there is a central
box of tokens that cannot be moved. Let a′ (resp., b′) be the number of full columns (resp., full
rows), and let a′′ = a− a′ and b′′ = b− b′.

Definition 1 (Core). If a′ > a′′ and b′ > b′′, the core of C is the set of lattice points in the
bounding box of C that are in the central a′ − a′′ columns and in the central b′ − b′′ rows.1 If
a′ ≤ a′′ or b′ ≤ b′′, the core of C is empty.

The lattice points in the core are called core points, and the tokens in core points are called
core tokens. Figure 12 shows an example of a non-empty core.

Observation 12. No permutation in GC moves any core token.

1Equivalently, if a > 2a′′ and b > 2b′′, the core is obtained by discarding the a′′ leftmost columns, the a′′

rightmost columns, the b′′ topmost rows, and the b′′ bottommost rows.
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Proof. If the core is empty, there is nothing to prove; hence, let us assume that a′ > a′′ and
b′ > b′′. From Section 2, we know that there are always exactly a′ contiguous full columns and b′

contiguous full rows, no matter how the tokens are pushed. Hence, the central a−2a′′ = a′−a′′
columns (resp., the central b− 2b′′ = b′ − b′′ rows) are always full, and are not affected by or
pushes (resp., or pushes). Therefore, no push can affect the core tokens.

Permutation Groups

In order to understand the structure of GC , we will review some notions of group theory and
prove three technical lemmas.

Definition 2. A permutation group G on {1, 2, . . . , n} is 2-transitive if, for every 1 ≤ x, y, w, z ≤
n with x ̸= y and w ̸= z, there is a permutation π ∈ G such that π(x) = w and π(y) = z.

Theorem 13 (Jones, [23]). If G is a 2-transitive permutation group on {1, 2, . . . , n} and G
contains a cycle of length n− 3 or less, then G contains all even permutations.2

To express cyclic permutations, we use the standard notation σ = (s1 s2 s3 . . . sk), oc-
casionally adding commas between terms when doing so improves readability. The cycle σ is
the permutation that fixes all items except s1, s2, . . . , sk such that σ(s1) = s2, σ(s2) = s3,
. . . , σ(sk) = s1. Since we are studying permutations puzzles, it is visually more convenient to
interpret a permutation as acting on places rather than on items. Thus, for example, (1 2 3) is
understood as the cycle involving the tokens occupying the locations labeled 1, 2, and 3 rather
than the tokens labeled 1, 2, and 3. Also, we will follow the convention to compose chains of
permutations from left to right, which is the common one in permutation theory.

Lemma 14. Let α = (1, 2, . . . , a) and β = (a−b+1, a−b+2, . . . , 2a−b) be two cycles spanning
n = 2a− b items, with a ≥ 2 and 1 ≤ b < a. Then, the permutation group generated by α and
β acts 2-transitively on {1, 2, . . . , n}.

Proof. Let G be the group generated by α and β, and let A (resp., B) be the set of items spanned
by α (resp., β). Observe that |A| = |B| = a, |A ∩ B| = b, and |A \ B| = |B \ A| = a − b > 0.
Assume that w = a− b and z = n; we will prove that, for all 1 ≤ x, y ≤ n with x ̸= y, there is a
permutation π ∈ G such that π(x) = w and π(y) = z. This will be sufficient to conclude that G
acts 2-transitively on {1, 2, . . . , n}. Indeed, let 1 ≤ x, y, w′, z′ ≤ n with x ̸= y and w′ ̸= z′. Since
we have two permutations π1, π2 ∈ G such that π1(x) = w, π1(y) = z, π2(w

′) = w, π2(z
′) = z,

then the permutation π1π
−1
2 ∈ G maps x to w′ and y to z′, respectively.

Assume first that x ∈ A and y ∈ B. Let 0 ≤ d < a be such that αd(x) = w, and let
0 ≤ d′ < a be such that βd

′
(y) = z. For symmetry reasons, we may assume without loss of

generality that d ≤ d′. Then, it is easy to see that αd(y) = y′ ∈ B. Let 0 ≤ d′′ < a be such
that βd

′′
(y′) = z. Now, if we set π = αdβd

′′
, we have π(x) = (αdβd

′′
)(x) = βd

′′
(w) = w and

π(y) = (αdβd
′′
)(y) = βd

′′
(y′) = z, as desired.

Assume now that x ∈ B and y ∈ A. We can construct a permutation τ such that τ(x) = z
and τ(y) = w as we did above. Then, we define σ = α−1β−1αβ2 if b = 1 and σ = α−1β−1αβ if
b > 1. It is easy to see that σ(w) = z and σ(z) = w. Let π = τσ; we have π(x) = (τσ)(x) =
σ(z) = w and π(y) = (τσ)(y) = σ(w) = z.

Finally, assume that x, y ∈ A\B (the case where x, y ∈ B \A is symmetric). We can iterate
α until either x or y (say y) is mapped to A ∩ B. At this point, we are in a situation where
x ∈ A and y ∈ B, which we already solved.

2Jones’ theorem in [23] holds more generally for primitive permutation groups. The fact that all 2-transitive
permutation groups are primitive is an easy observation.
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Figure 13: Example of the two cycles in Lemma 15 with a = 2 and b = 4.

Lemma 15. Let α = (1, . . . , 2a + b + 1, 3a + b + 2, . . . , 3a + 2b + 1) and β = (a + 1, . . . , a +
b, 2a + b + 2, . . . , 4a + 2b + 2) be two cycles spanning n = 4a + 2b + 2 items, with a ≥ 0 and
b ≥ 1. Then, the permutation group generated by α and β acts 2-transitively on {1, 2, . . . , n}.

Proof. The two cycles are illustrated in Figure 13. Let G be the group generated by α and β,
and let A (resp., B) be the set of items spanned by α (resp., β). Assume that x = n/2 and
y = n; we will prove that, for all 1 ≤ w, z ≤ n with w ̸= z, there is a permutation π ∈ G such
that π(x) = w and π(y) = z. This suffices to conclude that G acts 2-transitively on {1, 2, . . . , n},
in a similar way to the previous lemma.

Assume first that w, z ∈ A, and let 0 < d < |A| = 2a+ 2b+ 1 be such that αd(w) = z (i.e.,
d is the “distance” from w to z along α). We construct a permutation τ as follows:

� If 1 ≤ d ≤ a (and a > 0), we set τ = αa+b+1−dβ.

� If a+ 1 ≤ d ≤ a+ b− 1 (and b > 1), we set τ = αa+b−dβ.

� If d = a+ b, we set τ = α−aβ−a−1αa+1.

� If a+ b+ 1 ≤ d ≤ 2a+ b+ 1, we set τ = αa+b+1−dβ.

� If 2a+ b+ 2 ≤ d ≤ 2a+ 2b (and b > 1), we set τ = αa+b−dβ.

It is straightforward to check that τ(y) = a+1 = (ταd)(x); that is, τ places y in position a+1
and places x at the correct distance from y along α. Now we can set π = ταi, where αi(a+1) = z,
so that π(y) = z and π(x) = (ταi)(x) = (ταdαiα−d)(x) = (αiα−d)(a+ 1) = α−d(z) = w.

The case with w, z ∈ B is symmetric and will be omitted.
Assume now that w ∈ A\B and z ∈ B\A. Therefore, we can set π = αiβj , where αi(x) = w

and βj(y) = z. Since y /∈ A, we have αi(y) = y; since w /∈ B, we have βj(w) = w. We conclude
that π(x) = w and π(y) = z.

Finally, assume that w ∈ B \ A and z ∈ A \ B. We first construct a permutation ρ that
swaps x and y as follows:

� If b = 1, we set ρ = αβαa+1βa.

� If b > 1, we set ρ = αβαb−2βαa+1βa.

It is straightforward to check that ρ(x) = ρ(n/2) = n = y and ρ(y) = ρ(n) = n/2 = x. Now
that x and y are on the correct cycles, we can proceed as in the previous case.

Lemma 16. Let A and B be two finite sets such that A ∩ B ̸= ∅ and A \ B ̸= ∅. Let G be
a permutation group on A ∪ B whose restriction to A is 2-transitive and whose restriction to
B \A is trivial, and let β be a cycle spanning B. Then, the permutation group generated by G
and β acts 2-transitively on A ∪B.
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Proof. Let us fix x ∈ A \B and y ∈ A∩B. For all w, z ∈ A∪B with w ̸= z, we will prove that
there is a permutation π in the group generated by G and β such that π(x) = w and π(y) = z.
As in the previous lemmas, this is sufficient to conclude that the group acts 2-transitively on
A ∪B.

If w, z ∈ A, there is a permutation π ∈ G that maps x to w and y to z, because x, y ∈ A
and G acts 2-transitively on A.

Assume now that w, z ∈ B, and let 0 < d < |B| be such that βd(w) = z. Let y′ = βd(y),
and let τ ∈ G be a permutation such that τ(x) = y and τ(y′) = y′, which exists because G
acts 2-transitively on A and fixes B \ A. We can set π = βdτβi, where βi(y′) = z. Clearly,
π(y) = (βdτβi)(y) = (τβi)(y′) = βi(y′) = z, and π(x) = (βdτβi)(x) = (τβi)(x) = βi(y) =
βi−d(y′) = β−d(z) = w.

Let us now consider the case where w ∈ A \ B and z ∈ B \ A. We can set π = βjρ, where
βj(y) = z and ρ ∈ G such that ρ(x) = w. It is easy to verify that π(x) = (βjρ)(x) = ρ(x) = w
and π(y) = (βjρ)(y) = ρ(z) = z.

Finally, if w ∈ B \A and z ∈ A \B, we can swap x and y via a permutation in G, and then
proceed as in the previous case.

Generating Cycles

We will now assume that all labels are distinct. Specifically, the n tokens in C are labeled 1 to
n from left to right and from top to bottom, as in Figure 12. The general case will be discussed
later.

We introduce three types of sequences of moves:

� Type-A k-sequence: ⟨ k k ⟩ for 0 ≤ k < a′′.

� Type-B k-sequence: ⟨ k k ⟩ for 0 ≤ k < b′′.

� Type-C k-sequence: ⟨ k k ⟩ for 0 ≤ k < a′′.

It is straightforward to check that a type-A k-sequence always produces a cycle of length
2a′ + 2b′ − 1 (refer to Figure 14), which involves the lattice points (k, i) and (a′ + k, i) for all
0 ≤ i < b′ (plus some other points in the rows (0, ·) and (b′, ·)). Such cycles are called type-A
cycles.

Symmetrically, a type-B k-sequence produces a type-B cycle of length 2a′+2b′−1 involving
(among others) the lattice points (i, k) and (i, b′ + k) for all 0 ≤ i < a′ (see Figure 15). Thus,
the type-A and the type-B cycles collectively cover all the non-core points that lie in one of the
a′ full columns or in one of the b′ full rows (see Figures 17 and 18).

A type-C k-sequence produces a cycle, as well, which we call type-C cycle (see Figure 16).
However, unlike previous cycles, a type-C cycle’s length may vary depending on k. It is easy
to see that, if the row (·, i), with 0 ≤ i < b, has length ℓi, then the cycle produced by a type-C
k-sequence with a− ℓi ≤ k < a′′ involves (among others) the lattice point (ℓi + k − a′′, i). Such
a point lies at distance a′′ − k − 1 from the rightmost full token in the row. Thus, the type-C
cycles collectively cover all the tokens that are not in a full column (see Figure 19). We conclude
that type-A, type-B, and type-C tokens collectively cover all non-core points (see Figure 20).

The next theorem states that, in most cases, the group GC is exactly the alternating group
on the non-core tokens, i.e., the group of all even permutations on the n − (a′ − a′′)(b′ − b′′)
tokens not in the core (or on all n tokens if the core is empty).

Theorem 17. If n/2 ≥ a′ + b′ + 1 and a′′b′′ > 1, then GC is the alternating group on the
non-core tokens.

Proof. We know from Theorem 11 that GC only contains even permutations; also, by Obser-
vation 12, no permutation in GC can move any core tokens. Hence, it suffices to show that
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Figure 14: Performing a type-A k-sequence: ⟨ k+1 k ⟩. Recall that a push in a
direction causes the tokens to “fall” in the opposite direction within the bounding box.
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Figure 15: Performing a type-B k-sequence: ⟨ k+1 k ⟩.

GC contains all even permutations of the non-core tokens. By applying a reflection to C if
necessary, we may assume that a′′ ≥ b′′. Also, since a′′b′′ > 1, we have a′′ ≥ 2, and therefore
there are at least two distinct type-A cycles.

Let α and β be the type-A cycles for k = 0 and k = 1, respectively. Observe that, if a′ = 1,
then α and (the inverse of) β satisfy the hypotheses of Lemma 14; if a′ > 1, then α and β
satisfy the hypotheses of Lemma 15. In both cases, the group G1 ≤ GC generated by α and β
acts 2-transitively on the points spanned by α and β and acts trivially on all other points.

The group G1, together with the type-A cycle for k = 2, satisfies the assumptions of
Lemma 16. Therefore, GC has a subgroup G2 that acts 2-transitively on the points spanned
by the first three type-A cycles and acts trivially on all other points. By repeatedly apply-
ing Lemma 16 to all remaining type-A cycles, we conclude that GC has a subgroup that acts
2-transitively on a set that includes all the non-core points in the b′ full rows of C.

By applying Lemma 16 again to the type-B cycles (the first of which properly intersects all of
the full rows), we obtain a subgroup of GC that acts 2-transitively on a set that includes all the
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Figure 16: Performing a type-C k-sequence: ⟨ k k+1 ⟩.

non-core points in the a′ full columns and in the b′ full rows. Finally, we can apply Lemma 16
to the type-C cycles (all of which properly intersect the full rows) to obtain a subgroup of GC

that acts 2-transitively on all non-core tokens. This implies that GC itself acts 2-transitively
on all non-core tokens, as well.

To conclude the proof, we recall that each type-A cycle has length 2a′ + 2b′ − 1. Since
n/2 ≥ a′+b′+1, these cycles have length at most n−3. Thus, GC contains all even permutations
of the non-core tokens, due to Theorem 13.
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Figure 17: The type-A cycles span, among others, all the (non-core) tokens in the b′ full rows.

Special Configurations

We will now discuss all the configurations of the Permutation Puzzle not covered by Theorem 17.

� If a′′ = b′′ = 0, i.e., there are no empty cells in the bounding box, then clearly no token
can be moved, and GC is the trivial permutation group (Figure 21, left).

� Let a′′ = b′′ = 1, i.e., there is exactly one empty cell, located at the top-right corner of
the bounding box. The core includes all the tokens, except the ones on the perimeter of
the bounding box, which are spanned by the type-A cycle with k = 0. It is easy to see
that the only possible permutations are iterations of this cycle and its inverse. Therefore,
GC is isomorphic to the cyclic group C2a+2b−5 (Figure 21, right).

In the following, we will assume that a′′ ≥ b′′ and a′′ ≥ 2, and we will discuss all config-
urations where n/2 < a′ + b′ + 1. We will invoke some theorems from [27] about cyclic shift
puzzles.

18



1 2

3 4

5 6 7 8

9 10 11 12 13

14 15 16 17 18 19 20 21 22

23 24 25 26 27 28 29 30 31

32 33 34 35 36 37 38 39 40 41

43 54 44 45 46 47 48 49 50 51

42 53 67 55 56 57 58 59 60 61 62 63 64

52 65 66 68 69 70 71 72 73 74 75 76 77

1 2

3 4

5 6 7 8

9 10 11 12 13

14 15 16 17 18 19 20 21 22

23 24 25 26 27 28 29 30 31

33 54 34 35 36 37 38 39 40 41

32 43 44 45 46 47 48 49 50 51

42 52 67 55 56 57 58 59 60 61 62 63 64

65 66 53 68 69 70 71 72 73 74 75 76 77

1 2

3 4

5 6 7 8

9 10 11 12 13

14 15 16 17 18 19 20 21 22

24 44 25 26 27 28 29 30 31

23 33 34 35 36 37 38 39 40 41

32 42 54 45 46 47 48 49 50 51

52 53 43 55 56 57 58 59 60 61 62 63 64

65 66 67 68 69 70 71 72 73 74 75 76 77

1 2

3 4

5 6 7 8

9 10 11 12 13

15 34 16 17 18 19 20 21 22

14 24 25 26 27 28 29 30 31

23 32 44 35 36 37 38 39 40 41

42 43 33 45 46 47 48 49 50 51

52 53 54 55 56 57 58 59 60 61 62 63 64

65 66 67 68 69 70 71 72 73 74 75 76 77

1 2

3 4

5 6 7 8

10 25 11 12 13

9 15 16 17 18 19 20 21 22

14 23 34 26 27 28 29 30 31

32 33 24 35 36 37 38 39 40 41

42 43 44 45 46 47 48 49 50 51

52 53 54 55 56 57 58 59 60 61 62 63 64

65 66 67 68 69 70 71 72 73 74 75 76 77

1 2

3 4

6 16 7 8

5 10 11 12 13

9 14 25 17 18 19 20 21 22

23 24 15 26 27 28 29 30 31

32 33 34 35 36 37 38 39 40 41

42 43 44 45 46 47 48 49 50 51

52 53 54 55 56 57 58 59 60 61 62 63 64

65 66 67 68 69 70 71 72 73 74 75 76 77

1 2

4 11

3 6 7 8

5 9 16 12 13

14 15 10 17 18 19 20 21 22

23 24 25 26 27 28 29 30 31

32 33 34 35 36 37 38 39 40 41

42 43 44 45 46 47 48 49 50 51

52 53 54 55 56 57 58 59 60 61 62 63 64

65 66 67 68 69 70 71 72 73 74 75 76 77

2 7

1 4

3 5 11 8

9 10 6 12 13

14 15 16 17 18 19 20 21 22

23 24 25 26 27 28 29 30 31

32 33 34 35 36 37 38 39 40 41

42 43 44 45 46 47 48 49 50 51

52 53 54 55 56 57 58 59 60 61 62 63 64

65 66 67 68 69 70 71 72 73 74 75 76 77

Figure 18: The type-B cycles span, among others, all the (non-core) tokens in the a′ full columns.

� Let b = 2, and let the two rows have length 1 and 3, respectively (Figure 22, top row,
first image). The two type-A cycles (1 2 3) and (1 3 4) form a 2-connected (3, 3)-puzzle
involving all tokens, and therefore GC = Alt(n), due to [27, Theorem 2].

� Let b = 2, and let the two rows have length 1 and 4, respectively (Figure 22, top row,
second image). The first and third type-A cycles (1 2 3) and (1 4 5) form a 1-connected
(3, 3)-puzzle involving all tokens, and therefore GC = Alt(n), due to [27, Theorem 1].

� Let b = 2, and let the two rows have length 2 and 4, respectively (Figure 22, top row,
third image). We denote the two type-A cycles by α = (1 3 4 5 2) and β = (1 4 5 6 2).
It is easy to see that GC is generated by α and β, because any non-trivial sequence of
four pushes necessarily goes through a configuration whose canonical form yields one the
permutations α, β, α−1, or β−1.

In order to determine GC , we transform α and β by a suitable outer automorphism
ψ : Sym(6) → Sym(6). Since ψ is an automorphism, the group G′

C generated by ψ(α)
and ψ(β) is isomorphic to GC . The automorphism ψ is defined on a set of generators of
Sym(6) as follows (cf. [26, Corollary 7.13]):

ψ((1 2)) = (1 5)(2 3)(4 6),

ψ((1 3)) = (1 4)(2 6)(3 5),

ψ((1 4)) = (1 3)(2 4)(5 6),

ψ((1 5)) = (1 2)(3 6)(4 5),

ψ((1 6)) = (1 6)(2 5)(3 4).
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Figure 19: The type-C cycles span, among others, all the tokens that are not in the a′ full
columns.

We have

α = (1 3 4 5 2) = (1 2)(1 5)(1 4)(1 3),

β = (1 4 5 6 2) = (1 2)(1 6)(1 5)(1 4).

Therefore, the two generators of G′
C are

ψ(α) = ψ((1 2))ψ((1 5))ψ((1 4))ψ((1 3)) = (1 6 2 3 5),

ψ(β) = ψ((1 2))ψ((1 6))ψ((1 5))ψ((1 4)) = (1 3 2 6 5).

Both generators ψ(α) and ψ(β) leave the number 4 fixed, and thus G′
C is isomorphic to

a subgroup of Sym(5). Moreover, the generators are cycles of odd length, and therefore
they produce only even permutations. Hence, G′

C is isomorphic to a subgroup of Alt(5).
Observe that ψ(α)ψ(β) = (1 5 6), which is a 3-cycle involving consecutive elements of the
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Figure 20: The type-A cycles (top row), the type-B cycles (middle row), and the type-C cycles
(bottom row) collectively span all the non-core tokens.

5-cycle ψ(α). These two cycles generate all even permutations on {1, 2, 3, 5, 6} (cf. [27,
Proposition 1]).

We conclude that G′
C , and therefore GC , is isomorphic to Alt(5), which is a group of order

60 and index 12 in Sym(6). A permutation π ∈ Sym(6) is in GC if and only if ψ(π) is
even and leaves the number 4 fixed.

� Let b = 2, and let the two rows have length 2 and 5, respectively (Figure 22, top row,
fourth image). We denote the three type-A cycles by α = (1 3 4 5 2), β = (1 4 5 6 2), and
γ = (1 5 6 7 2). Consider the permutations (αβ−1γ)2 = (2 5 4) and βγα = (1 3 5 4 2 6 7).
We have a 3-cycle involving consecutive elements of a 7-cycle, which generate all even
permutations on {1, 2, . . . , 7} (cf. [27, Proposition 1]). We conclude that GC = Alt(n).

� Let b = 2, and let the two rows have length ℓ ≥ 3 and ℓ+2, respectively (Figure 22, bottom
row, first image). We denote the two type-A cycles by α = (1, ℓ+1, . . . , n−1, ℓ, . . . , 2) and
β = (1, ℓ+ 2, . . . , n, ℓ, . . . , 2). The permutation β−2(α2β−1α−2β)2β2 = (n− 3, n− 2, n) is
a 3-cycle that, together with α, forms a 2-connected (3, n− 1)-puzzle involving all tokens.
We conclude that GC = Alt(n), due to [27, Theorem 2].

� Let b = 2, and let the two rows have length ℓ ≥ 3 and ℓ + 3, respectively (Figure 22,
bottom row, second image). Observe that this configuration is the same as the previous
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Figure 21: Two configurations with a′′b′′ ≤ 1.
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Figure 22: Some special configurations with b = 2 and b = 3 rows.

one, except for an extra token, labeled n, in the bottom row. In particular, the first
two type-A cycles are the same, and generate all even permutations on {1, 2, . . . n − 1},
including the 3-cycle (1, ℓ + 1, ℓ + 2). This 3-cycle forms a 1-connected (3, n − 2)-puzzle
with the third type-A cycle. Since all tokens are involved in this puzzle, we conclude that
GC = Alt(n), due to [27, Theorem 1].

� Let b = 3, and let the three rows have length 1, 1, and 3, respectively (Figure 22, bot-
tom row, third image). The two type-A cycles (2 3 4) and (2 4 5) form a 2-connected
(3, 3)-puzzle, and therefore they generate all even permutations on {2, 3, 4, 5}, due to [27,
Theorem 2]. In particular, they generate the 3-cycle (3 4 5), which forms a 1-connected
(3, 3)-puzzle with the type-B cycle (1 2 4), involving all tokens. By [27, Theorem 1],
GC = Alt(n).

� Let b = 3, and let the three rows have length 1, 3, and 3, respectively (Figure 22, bottom
row, fourth image). We denote the two type-A cycles by α = (1 2 5 6 3) and β = (1 3 6 7 4).
Consider the permutations (β2α−1)2 = (2 5 6) and αβ−1 = (1 4 7 3 2 5 6). We have a
3-cycle involving consecutive elements of a 7-cycle, which generate all even permutations
on {1, 2, . . . , 7} (cf. [27, Proposition 1]). We conclude that GC = Alt(n).

We will now prove that all configurations not listed above satisfy n/2 ≥ a′+ b′+1, i.e., they
have at least three tokens not lying on the first type-A cycle.

� If b = 1, then a′′ = b′′ = 0. This case has already been discussed (Figure 21, left).

� For b = 2, we have discussed all cases where a′′ ≤ 3. If a′′ ≥ 4, then n = 2a′ + a′′, while
a type-A cycle spans 2a′ + 1 tokens, and leaves out at least three tokens (Figure 23, top
row, first image).

� Let b ≥ 3 and a′ = b′ = 1. Then, a type-A cycle spans three tokens. We are assuming that
a′′ ≥ 2, and so a ≥ 3, implying that n ≥ 5. The only case where n = 5 has already been
discussed (it is the case with b = 3 rows of length 1, 1, and 3, illustrated in Figure 22,
bottom row, third image); in all other cases we have n ≥ 6, and thus at least three tokens
are left out of the type-A cycle (Figure 23, top row, second image).
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Figure 23: Some small configurations where at least three tokens are not covered by the first
type-A cycle.

� Let b ≥ 3, a′ = 1, and b′ = 2. Then, a type-A cycle spans five tokens. We are assuming
that a′′ ≥ 2, and so a ≥ 3, implying that n ≥ 7. The only case where n = 7 has already
been discussed (it is the case with b = 3 rows of length 1, 3, and 3, illustrated in Figure 22,
bottom row, fourth image); in all other cases we have n ≥ 8, and thus at least three tokens
are left out of the type-A cycle (Figure 23, top row, third image).

� Let b ≥ 3, a′ = 1, and b′ ≥ 3 (Figure 23, bottom row, first image). Since we are assuming
that a′′ ≥ 2, the rightmost column contains at least three tokens, which are not included
in the first type-A cycle.

� Let b ≥ 3, a′ ≥ 2, and b′ = 1 (Figure 23, bottom row, second image). Since we are
assuming that a′′ ≥ 2, the rightmost token is not included in the first type-A cycle.
Moreover, the top row contains at least two tokens, which are not in the type-A cycle. In
total, there are at least three tokens not spanned by the cycle.

� Let b ≥ 3, a′ ≥ 2, and b′ ≥ 2 (Figure 23, bottom row, third image). Since we are assuming
that a′′ ≥ 2, the rightmost column contains at least two tokens, which are not included in
the first type-A cycle. Moreover, the token at (1, 1) is not contained in the first type-A
cycle, either. In total, there are at least three tokens not spanned by the cycle.

Arbitrary Labels

We now discuss the case where not all labels are distinct. Clearly, if all the non-core tokens
have distinct labels, then our previous analysis carries over verbatim.

Let us now assume that at least two non-core tokens x and y have the same label. In this
case, we identify two permutations π1, π2 ∈ GC if the configurations C1, C2 : L → Σ ∪ {empty}
they produce are equal, i.e., C1(p) = C2(p) for all p ∈ L.

Assume that GC contains all even permutations of the non-core tokens, which we know to
be always the case except in some special configurations. Let π be any permutation of the
non-core tokens. If π is even, then π ∈ GC , and we can reconfigure the tokens to match π. If
π is odd, then let π′ = (x y)π. Since π′ is even, we have π′ ∈ GC . However, π and π′ produce
equal configurations, because x and y have the same label, and therefore we can reconfigure the
tokens to match π, as well.

We now have a complete solution to the Permutation Puzzle.

Theorem 18. If the configuration C is compact, then the group GC of possible permutations
is as follows.

� If no cell in the bounding box is empty, then GC is the trivial group.
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� If exactly one cell in the bounding box is empty, then GC is generated by the cycle of the
non-core tokens taken in clockwise order.

� If there are exactly 6 tokens and exactly 2 empty cells in the bounding box, then GC is
isomorphic to the alternating group Alt(5).

� In all other cases, GC is the alternating group on the non-core tokens. Hence, if at least
two non-core tokens have the same label, then all permutations of the non-core labels can be
obtained; otherwise, only the even permutations of the non-core labels can be obtained.

5 Conclusions and Open Problems

Concerning the Compaction Puzzle, we showed that all sparse configurations of n = ab tokens
can be pushed into an a × b box if and only if a ≤ 2 or b ≤ 2 or a = b = 3 (Theorem 8), and
that there exist sparse configurations capable of becoming any compact configuration of size n
(Observation 6). We leave the following as an open problem.

Open Problem 1. Is it NP-complete to decide whether a given unlabeled sparse configuration
can be pushed into a given compact configuration?

We do not know the answer to this problem even if we restrict the target configuration
to be a rectangle (note that the NP-completeness proof in [5] does not hold for sparse initial
configurations).

Concerning the Permutation Puzzle, we have shown that, given two same-shaped compact
configurations, all even permutation of the non-core tokens are reachable, with a few minor
exceptions (Theorem 18). Notably, if at least two tokens have the same label, then all permu-
tations of the non-core labels can be obtained.

In particular, the puzzle in Figure 2 is solvable, because it features a compact configuration
with no core tokens, more than two empty cells, and at least two same-labeled (i.e., same-
colored) tokens. Thus, according to Theorem 18, any permutation of the labels is feasible in
this puzzle, and we only have to verify that the number of tokens with any given label in the
initial configuration matches the number of tokens with that label in the goal configuration.

We remark that, even though our proof relies on Theorem 13, which is a deep, non-
constructive result, we have nonetheless uncovered a great deal of structure in the Permutation
Puzzles. We claim that, when a Permutation Puzzle is solvable, there is a solution within
O(n4) pushes which is computable by a polynomial-time algorithm. However, we conjecture
that finding the shortest solution is NP-hard (this is known to be the case in other token-shifting
puzzles [9, 25, 27]).

Open Problem 2. Is it NP-hard to find the shortest solution in the Permutation Puzzle?

When the initial configuration is not compact, the pushes applied in order to obtain a com-
pact one can affect the permutation, making the problem substantially harder. For example, the
pushes performed before the configuration becomes incompressible may affect the configuration
of core tokens. Furthermore, a solution to the general problem of transforming an arbitrary
labeled configuration into a target compact one would imply a solution to Open Problem 1.

Open Problem 3. Given a (not necessarily compact) labeled configuration, is there a sequence
of pushes that transforms it into a (not necessarily compact) target configuration?
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