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A Theory of Spherical Diagrams

Giovanni Viglietta*

Abstract

We introduce the axiomatic theory of Spherical Occlu-
sion Diagrams as a tool to study certain combinatorial
properties of polyhedra in R3, which are of central inter-
est in the context of Art Gallery problems for polyhedra
and other visibility-related problems in discrete and com-
putational geometry.

1 Introduction

Geometric intuition. Consider a set P of internally
disjoint opaque polygons in R3 and a viewpoint v ∈ R3

such that no vertex of any polygon in P is visible to
v. An example is given by the set of six rectangles in
Figure 1 (left) with respect to the point v located at the
center of the arrangement.

Let S be a sphere centered at v that does not intersect
any of the polygons in P, and let SP be the set of pro-
jections onto S of the portions of edges of polygons in P
that are visible to v (i.e., where polygons occlude projec-
tion rays). We call SP a Spherical Occlusion Diagram.
Figure 1 (right) shows an example of such a projection.

In this paper we set out to study the combinatorial
structure of Spherical Occlusion Diagrams.

Applications. Spherical Occlusion Diagrams naturally
arise in visibility-related problems for arrangements of
polygons in R3, and especially for polyhedra.

An example is found in [3], where an upper bound is
given on the number of edge guards that solve the Art
Gallery problem in a general polyhedron. That is, given
a polyhedron P, the problem is to find a (small) set of
edges that collectively see the whole interior of P (refer
to [2, 9] for more results on this problem). An edge e
sees a point x if and only if there is a point y ∈ e such
that the line segment xy does not properly cross the
boundary of P.

The idea of [3] is to preliminarily select a (small) set
E of edges that cover all vertices of P . Note that E may
be insufficient to guard the interior of P, as some of its
points may be invisible to all vertices; Figure 1 (center)
shows an example. Thus, an additional (small) set of
edges E′ is selected, which collectively see all internal
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points of P that do not see any vertices. Clearly, E ∪E′

is a set of edges that see all internal points of P.
The selection of the edges E′ is carried out in [3] by

means of an ad-hoc analysis of some properties of points
that do not see any vertices of P. Spherical Occlusion
Diagrams offer a systematic and general tool to reason
about points in a polyhedron that do not see any vertices.

Spherical Occlusion Diagrams have also provided a
framework for proving the main result of [8]: Any point
that sees no vertex of a polyhedron must see at least 8
of its edges, and that the bound is tight.

2 Axiomatic Theory

Toward an axiomatization. The construction outlined
in Section 1 produces an arrangement SP of arcs on the
surface of a sphere S. For each arc a ∈ SP , let ea be the
edge of a polygon in P whose orthographic projection on
S (partly occluded by other polygons) contains a. Since
ea is a line segment, a must be an arc of a great circle.
The fact that each vertex of a polygon in P is occluded
by some other polygon translates into the property that
each endpoint of each arc in SP must lie in the interior of
another arc of SP . Also, since ea is an edge of a polygon
P ∈ P , all arcs of SP that end on the interior of a must
reach it from the same side (as these correspond to edges
of polygons partially hidden by P ).

Axioms. In the following, S will denote the unit sphere
immersed in R3, and we will abstract from a specific set
of polygons P and a viewpoint v. Some terms will be
useful.

Definition 1 Let a and b be two non-collinear arcs of
great circles on a sphere. If an endpoint p of a lies in
the relative interior of b, we say that a hits b at p (or
feeds into b at p) and b blocks a at p.

We are now ready to formulate an abstract theory of
Spherical Occlusion Diagrams.

Definition 2 A Spherical Occlusion Diagram, or sim-
ply Diagram, is a finite non-empty collection D of arcs
of great circles on the unit sphere in R3 satisfying the
following axioms.

A1. If two arcs a, b ∈ D have a non-empty intersection,
then a hits b or b hits a.
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Figure 1: Construction of a Spherical Occlusion Diagram (right) from an arrangement of six rectangles (left) or a
polyhedron whose central point does not see any vertices (center)

A2. Each arc in D is blocked by arcs of D at each end-
point.

A3. All arcs in D that hit the same arc of D reach it
from the same side.

Figure 2 shows a Diagram with 18 arcs.

Figure 2: Example of a Diagram with 18 arcs

Realizability. It is immediate to recognize that the Di-
agrams SP constructed in Section 1 indeed provide a
model for our theory, as they satisfy all its axioms. The
proof of the following statement is essentially contained
in the first paragraph of Section 2.

Proposition 1 Any set SP , as constructed in Section 1
for an arrangement of polygons P and a viewpoint v
that sees no vertices of such polygons (re-scaled in such
a way that S is the unit sphere), satisfies the axioms
of Spherical Occlusion Diagrams, provided that v is in
general position with respect to P, i.e., no ray emanating
from v intersects the interiors of more than two distinct
edges of polygons of P. �

Observe that the general-position requirement in
Proposition 1 is irrelevant in the context of the Art
Gallery problem and was introduced only for the sake of
a more aesthetically pleasing axiomatization of Diagrams.
Indeed, the set of points in general position with respect
to P is dense in R3, whereas the set of points that are
visible to any finite set E of edges is topologically closed.
Thus, for instance, if the edges in E collectively see all
points in general position, then they also see all points
that are not in general position.

Although there is compelling evidence that the con-
verse of Proposition 1 is not true, we do not yet have a
definitive answer to this fundamental problem, which we
leave open. We actually formulate a stronger conjecture.
We say that a Diagram D is irreducible if no proper
subset of D is a Diagram.

Conjecture 1 There is an irreducible Spherical Occlu-
sion Diagram D (satisfying the conditions in Defini-
tion 2) such that D 6= SP for any set of internally dis-
joint polygons P.

It can be shown that Conjecture 1 is equivalent to
its restricted version where P is a polyhedron of genus
zero. Indeed, a set of polygons P that gives rise to a
Diagram D with respect to a viewpoint v can easily be
extended by adding a mesh of polygons whose edges are
either shared with P or concealed from v by polygons
in P. The resulting polyhedron gives rise to the same
Diagram D.

3 Elementary Properties

We will prove some basic properties of Diagrams.

Proposition 2 Every arc in a Diagram is strictly
shorter than a great semicircle.

Proof. Referring to Figure 3, assume that an arc a (in
red) is at least as long as a great semicircle. Then, taking
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an endpoint p of a as the North pole and a itself as the
prime meridian, consider an arc b0 that blocks a at p
(which exists by Axiom 2). The arc b0 has exactly one
endpoint in the Eastern hemisphere; let b1 be an arc
that blocks b0 at this endpoint. We can construct a
sequence (b0, b1, b2, . . . ) of arcs, each of which hits the
next at a point of smaller (or equal) latitude, until one of
them hits a from the East (this must eventually happen,
because a is at least as long as a great semicircle). Note
that no bi other than b0 can pass through p without
contradicting Axiom 1. Symmetrically, we can construct
a similar sequence of arcs starting from the endpoint
of b0 that lies in the Western hemisphere. The last arc
of this sequence hits a from the West, contradicting
Axiom 3. �

p

a

0b

1b

2b

3b

4b

Figure 3: Proof of Proposition 2

We can now prove a stronger form of Axiom 2.

Proposition 3 Every arc in a Diagram hits exactly two
distinct arcs, one at each endpoint.

Proof. Assume for a contradiction that an endpoint
p of an arc a lies in the interior of two arcs b and c.
Then b and c intersect at p. By Axiom 1, without loss
of generality, b hits c at p, and therefore b and a share
an endpoint, which contradicts Axiom 1. Thus, a hits
at most one arc at each endpoint; by Axiom 2, it hits
exactly one. Moreover, a cannot hit the same arc b
at both endpoints p and p′, or else p and p′ would be
antipodal points, and b would be longer than a great
semicircle, contradicting Proposition 2. Thus, a hits
exactly two distinct arcs. �

Proposition 4 No two arcs in a Diagram feed into each
other.

Proof. Two arcs feeding into each other must be longer
than a great semicircle, as Figure 4 shows. This contra-
dicts Proposition 2. �

Figure 4: Proof of Proposition 4

Proposition 5 A Diagram partitions the unit sphere
into spherically convex regions.

Proof. Let D be a Diagram, and let p and q be two
points in the same connected component of S \ ⋃D.
There is a chain C of arcs of great circles (drawn in
green in Figure 5) that connects p and q without inter-
secting the Diagram. The arc of a great circle joining p
with the third vertex of C (drawn in orange) does not
intersect the Diagram either, or else we could reason as
in Proposition 2 to construct a sequence of arcs of D
which eventually intersect one of the first two arcs of
C. Hence, we can simplify the chain by joining p with
its third vertex. Proceeding by induction, we conclude
that the arc of a great circle connecting p and q does not
intersect D, implying that each connected component of
S \⋃D is spherically convex. �

p

q

D

Figure 5: Proof of Proposition 5

Definition 3 Each of the convex regions into which the
unit sphere is partitioned by a Diagram is called a tile.

It is easy to derive the following from Proposition 5.
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Corollary 1 In a Diagram, the topological closure of
no tile contains two antipodal points. Moreover, the
relative interior of any great semicircle on the unit sphere
intersects some arc of the Diagram. �

Proposition 6 The union of all the arcs in a Diagram
is a connected set of points.

Proof. Let the union of the arcs in a Diagram D have
two connected components, given by D1 and D2. Note
that D1 and D2 individually satisfy all axioms, and
therefore both are Diagrams. Hence, D2 is contained
in a tile F determined by D1, as shown in Figure 6.
Take two points p, q ∈ F close to the boundary of F
such that the arc of great circle connecting p and q (in
orange) intersects D2. Observe that there exists a chain
of arcs of great circle (in green) that connects p and q
without intersecting D1 nor D2. Hence p and q are in
the same tile determined by D. However, since the arc
pq intersects D, the tile cannot be spherically convex,
contradicting Proposition 5. �

F

1D

2D

p

q

Figure 6: Proof of Proposition 6

Proposition 7 A Diagram with n arcs partitions the
unit sphere into n + 2 tiles.

Proof. Every endpoint of an arc of a Diagram divides
the arc it hits into two sub-arcs. The set of these sub-
arcs induces a spherical drawing of a planar graph with
2n vertices and 3n edges. Each face of this drawing
coincides with a tile of the Diagram. By Euler’s formula,
the number of faces is 3n− 2n + 2 = n + 2. �

4 Swirls

There is a curious similarity between Diagrams and
continuous vector fields on a sphere. According to the
hairy ball theorem, “it is impossible to comb a hairy ball
without creating cowlicks”. Similarly, it is impossible to
construct a Diagram without creating “swirls”, as we
shall see in this section.

Definition 4 A swirl in a Diagram is a cycle of arcs,
each of which feeds into the next going clockwise or
counterclockwise. The spherically convex region enclosed
by a swirl is called the eye of that swirl.

Figure 2 shows a Diagram with six clockwise swirls
and six counterclockwise swirls. Observe that, in an
irreducible Diagram, the eye of each swirl coincides with
a single tile; in general, the eye of a swirl is a union of
tiles, as it may have internal arcs.

Definition 5 The swirl graph of a Diagram D is the
undirected multigraph on the set of swirls of D having
an edge between two swirls for every arc in D shared by
the two swirls.
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Figure 7: A Diagram and its swirl graph

In Figure 7, the eyes of clockwise swirls are colored
green, and the eyes of counterclockwise swirls are colored
red. Note that the swirl graph is simple and bipartite;
this is true in general.

Theorem 1 The swirl graph of any Diagram is a simple
planar bipartite graph with non-empty partite sets.

Proof. The swirl graph is spherical, hence planar. It is
bipartite, where the partite sets correspond to clockwise
and counterclockwise swirls, respectively. Indeed, if
the same arc is shared by two concordant swirls (say,
clockwise), then it is hit by arcs from both sides, violating
Axiom 3.

Figure 8 shows how to find a clockwise and a counter-
clockwise swirl in any Diagram. For a clockwise swirl,
start from any arc and follow it in any direction until it
hits another arc. Then turn clockwise and follow this
arc until it hits another arc, and so on. The sequence of
arcs encountered is eventually periodic, and the period
identifies a clockwise swirl. A counterclockwise swirl is
found in a similar way.

To prove that the swirl graph is simple, assume for
a contradiction that the swirl S1 shares two arcs a and
b with another swirl S2. Then, the eye of S2 must be
entirely contained in the spherical lune determined by
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Figure 8: Finding swirls in a Diagram

a and b, as shown in Figure 9. Since the eye of S2 is
bounded by a, it must lie in the region A. However, the
eye of S2 is also bounded by b, and thus it must lie in
the region B. This is a contradiction, since A and B are
disjoint. �

A

B

b

a

Figure 9: Two swirls cannot share more than one arc

More is actually known about swirl graphs.

Theorem 2 Every Diagram has at least four swirls. �

This result has been announced in [8]. From Theo-
rem 2, it easily follows that every Diagram has at least
eight arcs. On the other hand, Figure 10 shows an ex-
ample of a Diagram with exactly eight arcs and exactly
four swirls, which is therefore minimal.

It is not yet clear if there are Diagrams with only one
clockwise swirl, but we believe this is not the case.

Conjecture 2 Every Diagram has at least two clockwise
and two counterclockwise swirls.

Figure 10: A Diagram with eight arcs and four swirls

5 Swirling Diagrams

This section is devoted to a special type of Diagrams
whose arcs always meet forming swirls. Patterns arising
in these Diagrams are found in modular origami, globe
knots, rattan balls, etc.

Definition 6 A Diagram is swirling if every arc is part
of two swirls.

An example of a swirling Diagram is found in Figure 2;
further examples are in Figure 14. All of these Diagrams
were obtained from convex polyhedra or, equivalently,
from convex tilings of the sphere, by a process that we
call swirlification.

Definition 7 A subdivision of the unit sphere into
strictly convex spherical polygons is swirlable if each
polygon of the subdivision has an even number of edges.

Proposition 8 A subdivision of the unit sphere into
strictly convex spherical polygons is swirlable if and only
if its 1-skeleton is bipartite.

Proof. The 1-skeleton is bipartite if and only if its has
no odd cycles, which is true if and only if each face has
an even number of edges. �

Hence, we can always deform the 1-skeleton of a
swirlable tiling, turning each of its vertices into a swirl,
going clockwise or counterclockwise according to the
bipartition of the 1-skeleton. Conversely, by “shrinking”
the eye of each swirl of a swirling Diagram to a point,
one obtains a swirlable subdivision of the sphere.

In other words, the swirlification operation establishes
a natural correspondence between swirling Diagrams and
swirlable subdivisions of the sphere.

Theorem 3 Every swirling Diagram is the swirlification
of a swirlable subdivision of the sphere. �
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Note that we can also obtain a swirlable subdivision
of the sphere by taking the dual of a subdivision whose
vertices have even degree, or by truncating it. More
generally, we have the following.

Proposition 9 A subdivision of the sphere is swirlable
if and only if its truncated dual is swirlable. �

6 Uniform Diagrams

We now turn to a class of Diagrams that generalizes the
swirling ones.

Definition 8 A Diagram is uniform if every arc blocks
exactly two arcs.

Proposition 10 A Diagram is uniform if and only if
every arc blocks at most (respectively, at least) two arcs.

Proof. By Proposition 3, each arc hits exactly two dis-
tinct arcs. Hence, each arc blocks two arcs on average.
Thus, if every arc blocks at most two arcs (or at least
two arcs), it must block exactly two arcs. �

Proposition 11 Every uniform Diagram is irreducible.

Proof. Let D be a uniform Diagram, and assume that
there is a proper subset of arcs D′ ⊂ D that is itself
a Diagram. By Proposition 6, D is connected; thus,
removing arcs from D causes some arcs to block fewer
than two arcs. Since D is uniform, it follows that the arcs
of D′ block fewer than two arcs on average, contradicting
Proposition 3. �

Corollary 2 In a uniform Diagram, the eye of each
swirl coincides with a single tile.

Proof. If the interior of the eye of a swirl contains some
arcs, then such arcs can be removed without violating
the Diagram axioms. Hence, such a Diagram is not irre-
ducible, and by Proposition 11 it cannot be uniform. �

Theorem 4 Every swirling Diagram is uniform.

Proof. In a swirling Diagram, each arc a is part of two
distinct swirls. By Theorem 1, these two swirls share
no arcs other than a, and hence a must block one arc
from each of them. Therefore, every arc in a swirling
Diagram blocks at least two arcs, and by Proposition 10
the Diagram is uniform. �

The converse of Theorem 4 is not true in general, as
Figure 11 shows.

Definition 9 An endpoint of an arc of a Diagram is
called a non-swirling vertex if it is not incident to the
eye of any swirl. A walk on a Diagram is non-swirling
if it only touches non-swirling vertices and, whenever it
touches an arc, it follows it until it reaches one of its
endpoints, without touching any other arc along the way.
A cyclic non-swirling walk is called a non-swirling cycle.

Figure 11: A uniform Diagram that is not swirling

Observe that there is a non-swirling cycle that covers
all the non-swirling vertices of the Diagram in Figure 11
(drawn in red). This is not a coincidence.

Theorem 5 In any uniform Diagram, all non-swirling
vertices are covered by disjoint non-swirling cycles.

Proof. Consider a non-swirling walk W on a uniform
Diagram terminating at a non-swirling vertex pi, end-
point of an arc ai, as Figure 12 illustrates. We will prove
that W can be extended to a longer non-swirling walk
in a unique way.

+1ia
1−ia

ia

ip

1−ip
+1ip

Figure 12: Proof of Theorem 5

Let ai+1 be the arc that blocks ai at pi. Since exactly
two arcs feed into ai+1, there is exactly one endpoint
of ai+1, say pi+1, that can be reached from pi without
touching any arc other than ai+1.

By definition of non-swirling walk, pi+1 can be used
to extend W if and only if it is a non-swirling vertex.
However, if pi+1 were incident to a swirl’s eye E, then
an arc of that swirl would either hit ai+1 between pi
and pi+1, contradicting the fact that ai+1 blocks exactly
two arcs, or it would hit ai+1 on the other side of pi,
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implying that E contains the arc ai in its interior, which
contradicts Corollary 2.

Hence, W can be extended uniquely to a non-swirling
walk. By a similar reasoning, we argue that W can also
be uniquely extended backwards to a non-swirling walk.
Thus, W is part of a unique non-swirling cycle. Now we
conclude the proof by inductively repeating the same
argument with any remaining non-swirling vertices. �

We can construct uniform Diagrams with any number
of arbitrarily long non-swirling cycles. An example with
two non-swirling cycles is shown in Figure 13.

Figure 13: A uniform Diagram with two non-swirling
cycles

7 Conclusions

We introduced the theory of Spherical Occlusion Di-
agrams and studied their basic properties, while also
discussing some applications to visibility-related prob-
lems in discrete and computational geometry.

Although we strongly believe Conjecture 1 to be true,
a related and more subtle question can be asked, inspired
by previous work on weaving patterns [1, 7]. Namely,
whether for every Diagram D there is a combinatorially
equivalent Diagram D′ and a set P of internally disjoint
polygons such that D′ = SP . In other words, does every
class of combinatorially equivalent Diagrams contain a
realizable instance?

We have introduced three remarkable families of Di-
agrams: irreducible, uniform, and swirling. We proved
that all swirling Diagrams are uniform, and all uniform
Diagrams are irreducible; moreover, Theorem 5 reveals
a deeper structural connection between swirling and uni-
form Diagrams. A complementary observation is that
it seems to be possible to systematically transform any
uniform Diagram into a swirling Diagram by “sliding”

arcs’ endpoints along other arcs and “merging” coinci-
dent arcs. Making this observation rigorous is left as a
direction for future work.

More generally, we may wonder which Diagrams can
be transformed into swirling ones by sequences of elemen-
tary operations on arcs (defining suitable “elementary
operations” is in itself an open problem). The Diagram
in Figure 10 shows that the question is not trivial. In-
deed, this is the unique configuration of any Diagram
with eight or fewer arcs; since the Diagram itself is not
swirling, it cannot be transformed into a swirling one by
means of operations that only rearrange or merge arcs.
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Figure 14: Examples of the swirlification method developed in Section 5 to produce swirling Diagrams from convex
polyhedra with a bipartite 1-skeleton (or, equivalently, from swirlable subdivisions of the unit sphere). The pictures
show swirling Diagrams resulting from a truncated antiprism, a trapezohedron, a rhombic triacontahedron, and a
truncated icosidodecahedron, respectively.
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