
Token Shifting on Graphs

Win Hlaing Hlaing Myint, Ryuhei Uehara, and Giovanni Viglietta

School of Information Science, Japan Advanced Institute of Science and Technology
(JAIST) {winhlainghlaingmyint,uehara,johnny}@jaist.ac.jp

Abstract. We investigate a new variation of a token reconfiguration
problem on graphs using the cyclic shift operation. A colored or labeled
token is placed on each vertex of a given graph, and a “move” consists in
choosing a cycle in the graph and shifting tokens by one position along
its edges. Given a target arrangement of tokens on the graph, our goal
is to find a shortest sequence of moves that will re-arrange the tokens as
in the target arrangement. The novelty of our model is that tokens are
allowed to shift along any cycle in the graph, as opposed to a given sub-
set of its cycles. We first discuss the problem on special graph classes:
we give efficient algorithms for optimally solving the 2-Colored Token
Shifting Problem on complete graphs and block graphs, as well as the
Labeled Token Shifting Problem on complete graphs and variants of bar-
bell graphs. We then show that, in the 2-Colored Token Shifting Problem,
the shortest sequence of moves is NP-hard to approximate within a factor
of 2− ε, even for grid graphs. The latter result settles an open problem
posed by Sai et al.

Keywords: reconfiguration problem · cyclic shift · barbell graph · block
graph · NP-hard.

1 Introduction

Reconfiguration arises in countless problems that involve movement and change,
including problems in computational geometry such as morphing graph draw-
ings and polygons, and problems relating to games and puzzles, such as the
15-puzzle, a topic of research since 1879 [5]. The general questions that are con-
sidered in reconfiguration problems are: can any arrangement be reconfigured
to any other; what is the worst-case number of steps required; and what is the
complexity of computing the minimum number of steps required to get from
one given configuration to another given configuration [5]. These questions can
be rephrased in terms of the configuration graph, which is the graph whose ver-
tices are all possible configurations, and whose edges represent feasible moves:
is the configuration graph connected; what is its diameter; how efficiently can
one compute distances between vertices in this graph? Previously studied token
reconfiguration problems include the Token Swapping Problem, where pairs of
tokens can be swapped along the edges of a graph. The Token Swapping Problem
is proved to be NP-complete, and there are many special classes of graphs on
which the Token Swapping Problem can be solved exactly by polynomial-time
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algorithms, including complete graphs, paths, cycles, stars, brooms, complete
bipartite graphs, and complete split graphs (see, e.g., [2] for comprehensive sur-
veys).

Recently, the Token Shifting Problem was introduced by Sai et al. in [6],
inspired by puzzles based on cyclic shift operations. The input of the problem is
a graph with a distinguished set of cycles C, and an initial and a final arrangement
of colored tokens on the vertices of the graph. The basic operation is called “shift”
along a cycle C ∈ C, and it moves each token located on a vertex of C into the
next vertex along C. The problem asks for a sequence of shift operations that
transforms the initial configuration into the final configuration. We can further
distinguish between the Labeled Token Shifting Problem, where all tokens are
distinct, and the k-Colored Token Shifting Problem, where tokens come in k
different colors, and same-colored tokens are indistinguishable.

It was shown in [6] that the Labeled Token Shifting Problem is solvable in
polynomial time on a large class of graphs, while solving the k-Colored Token
Shifting Problem in the minimum number of moves is NP-hard, even for k = 2.

In this paper, we study a variation of the Token Shifting Problem where the
set of cycles C consists of all cycles in the graph (as opposed to a subset of them).
On one hand, our choice makes the problem’s description more natural and
compact; on the other hand, proving hardness results is now more challenging.
Indeed, previous NP-hardess proofs for variations of the Token Shifting Problem
crucially relied on the fact that only shifts along certain cycles were allowed.

In Section 3, we give linear-time algorithms for the shortest shift sequence
for both the 2-Colored and the Labeled Token Shifting Problem for complete
graphs. In Section 4, we discuss the shortest shift sequence for the Labeled
Token Shifting Problem on standard barbell graphs, and then on generalized
barbell graphs with more than one connecting edge. In Section 5, we study the
2-Colored Token Shifting Problem for block graphs. Finally, in Section 6 we
prove that, in the 2-Colored Token Shifting Problem, the shortest sequence of
moves is NP-hard to approximate within a factor of 2−ε, even for planar graphs
with a maximum degree of 4.

Notably, our NP-hardness result settles a problem left open in [6], which asked
whether the Token Shifting Problem remains NP-hard when restricted to planar
graphs or graphs of constant maximum degree. We remark that in [1], Amano
et al. proved that a 2-Colored Token Shifting Problem called Torus Puzzle is
NP-hard to solve in the minimum number of shifts. This puzzle consists of two
arrays of horizontal and vertical cycles arranged in a grid, which yields a planar
graph of maximum degree 4. However, in this puzzle the number of moves is
measured in a different way: any number k > 0 of consecutive shifts along the
same cycle is counted as only one move, while in our model (as well as in [6])
we count them as k moves. Because of this, the NP-hardness reduction in [1]
does not work in our model. In addition, the majority of cycles in the graph of
the Torus Puzzle are forbidden from shifting (such is, for example, the 4-cycle
determined by any cell in the grid). However, as already remarked, in our model
we insist on allowing shifts along any cycle.
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2 Preliminaries

Let G = (V,E) be an undirected connected graph, where V is the vertex set and
E is the edge set, and let Col = {1, 2, . . . , c} be the color set for tokens, where c
is constant. A token arrangement (or configuration) is a function f : V → Col,
where f(v) represents the color of the token located on the vertex v ∈ V .

The token shift operation can be defined as follows. Let C = (v1, v2, . . . , vk)
be a cycle of k > 1 distinct vertices of G = (V,E), where {vi, vi+1} ∈ E for all
1 ≤ i < k and {vk, v1} ∈ E. Then, a token shift along C will transform any
arrangement f into the arrangement f ′, which coincides with f on all vertices
except the ones in C. Specifically, for vi ∈ {v1, v2, . . . , vk−1}, we have f ′(vi+1) =
f(vi), and f ′(v1) = f(vk). All cycles in G are eligible for token shift, and the
length of the cycle can range from 2 to |V |. Note that we consider each edge of
G as a cycle of length 2; in this case, the result of the shift operation will be
equivalent to a token swap along that edge.

The Token Shifting Problem takes as input a connected graph G = (V,E), a
color set Col, an initial arrangement f0, and a final arrangement ft. The problem
asks to determine a shortest sequence of shift operations OPT that transforms
f0 into ft, assuming that such a sequence exists.

Note that, since swaps along edges are allowed, it is possible to transform f0

into ft if and only if they have the same number of tokens of each color, which is
checkable in linear time given f0 and ft. Thus, without loss of generality, we may
assume that there is always a sequence of shift operations that transforms f0

into ft, and our goal is to find the shortest one. Furthermore, it is easy to prove
that |OPT| ≤ |V |(|V | − 1)/2 (this bound is obtained by using swap operations
only; cf. [7, Theorem 1]). Since we have a polynomial upper bound of the number
of shift operations, the Token Shifting Problem is in NP.

We distinguish between the k-Colored Token Shifting Problem, where the
size of Col is a fixed constant k, and the Labeled Token Shifting Problem, where
Col = V , and f0 and ft are permutations of V (that is, all tokens have distinct
labels). In this paper, we will mostly focus on the 2-Colored Token Shifting
Problem (i.e., where Col = {c1, c2}) and the Labeled Token Shifting Problem.

3 Token Shifting on Complete Graphs

3.1 2-Colored Token Shifting on Complete Graphs

In this section, we show that for the 2-Colored Token Shifting Problem on com-
plete graphs, an optimal shift sequence can be constructed in linear time.

Theorem 1. The 2-Colored Token Shifting Problem on a complete graph G =
(V,E) can be solved in linear time by a single shift operation.

Proof. Let Col = {c1, c2} be the color set and let f0 and ft be the initial and
target token arrangements, respectively. We can construct two sets V1 and V2 of
vertices as follows:

V1 = {v ∈ V | f0(v) = c1 and ft(v) = c2} and
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Fig. 1. 2-colored token shifting on a complete graph: (a) an initial token arrangement
f0, (b) a target token arrangement ft, and (c) an optimal shift cycle

V2 = {v ∈ V | f0(v) = c2 and ft(v) = c1}.

Given that f0 is re-configurable to ft, |V1| = |V2| = m for a complete graph
with 2m misplaced tokens. Thus, we can construct a cycle of length 2m that
visits each vertex in V1 and V2 alternately. For V1 = {x1, x2, . . . , xm} and V2 =
{y1, y2, . . . , ym}, the shift (x1, y1, x2, y2, . . . , xm, ym) transforms f0 into ft. ut

For example, in Fig. 1, V1 = {v5, v8} and V2 = {v2, v4}. From V1 and V2 the
shift cycle (v2, v5, v4, v8) can be constructed, which transforms f0 into ft.

3.2 Labeled Token Shifting on Complete Graphs

In this section, we show that the Labeled Token Shifting Problem on a complete
graph can be solved by at most two shift operations.

Theorem 2. The Labeled Token Shifting Problem on a complete graph G =
(V,E) can be solved with a minimum shift sequence |OPT| ≤ 2 in linear time.

Proof. Let f0 and ft be the initial and target token arrangements, respectively.
We define the conflict graph D(fa, fb) = (V ′, E′) for two arrangements fa and
fb as follows [7]:

V ′ = {v ∈ V | fa(v) 6= fb(v)} and

E′ = {e = (vi, vj)| fa(vi) = fb(vj) and vi, vj ∈ V ′}.

D(f0, ft) is a digraph that includes vertices that hold different tokens in the
initial and target token arrangements and there is an arc from vi to vj if the
token on vi needs to be moved to vj . A simple example is given in Fig. 2. One way
to transform f0 to ft would be to perform a token shift along each directed cycle
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Fig. 2. (a) An initial token arrangement f0, (b) the conflict graphs DA(f0, ft) and
DB(f0, ft)

in D(f0, ft); if there are only 1 or 2 cycles, this strategy is optimal. However, it
is not optimal when the number of cycles is greater than 2.

We consider the disjoint cycles in D(f0, ft) as permutation cycles. For ex-
ample, in Fig. 2(c) we have the three disjoint cycles (v1, v4), (v2, v6, v3, v7), and
(v5, v8), which collectively correspond to the permutation (14)(2637)(58).

We will use the following general fact: let us be given m disjoint cyclic per-
mutations involving n elements in total; the product of these m disjoint cycles
and a length-m cycle consisting of one element from each disjoint cycle is a single
length-n cycle that includes all n elements. For example, (14)(2637)(58)(521) =
(18563724). Equivalently, (14)(2637)(58) = (18563724)(125). In other words, we
can express the product of any set of m > 2 disjoint cyclic permutations as the
product of only two cycles.

Therefore, we construct a first cycle including one vertex from each cycle in
D(f0, ft), and we shift along this cycle once. This will result in an arrangement f1

whose conflict graph D(f1, ft) consists of a single directed cycle (see Fig. 2(d)).
We can then perform a single shift along this cycle to obtain the target token
arrangement ft. ut

Corollary 1. For the k-Colored Token Shifting Problem on a complete graph
G = (V,E), we have |OPT| ≤ 2.

Proof. Let f0 and ft be the initial and final arrangements, respectively. Let
Col′ = V , and let us define f ′0 as an arbitrary bijection f ′0 : V → Col′. We then
define f ′t : V → Col′ as a bijection that, for all vi, vj ∈ V , satisfies f ′0(vi) =
f ′t(vj) =⇒ f0(vi) = ft(vj). Essentially, we assign unique labels to tokens in
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a way that is consistent with their colors. Thus, we obtain an instance of the
Labeled Token Shifting Problem, which we can solve by Theorem 2. The same
sequence of moves also solves the original instance, by construction. ut

Note that, for the k-Colored Token Shifting Problem with k > 2, we do not have
an efficient algorithm to determine when |OPT| = 1 and when |OPT| = 2. We
leave this as an open problem.

4 Token Shifting on Barbell Graphs and Their
Generalizations

In this section, we consider the Labeled Token Shifting Problem on barbell
graphs and their generalization. A barbell graph is a simple graph obtained by
connecting two complete graphs by an edge, which is called its bar. Our goal is
to find the minimum shift sequence between initial and final token arrangements
f0 and ft on a barbell graph. Then we extend our result to generalized barbell
graphs that have two or more bars.

4.1 Token Shifting on Barbell Graphs

We first show that we can find the minimum shift sequence on a barbell graph
in linear time. Let G be a barbell graph composed of two cliques A and B, each
of size n, connected by a single edge: the bar.

The two cliques A and B contain n vertices each, from v1 to vn and from
vn+1 to v2n, respectively. The two vertices joined by the bar will be referred
as gate vertices. Furthermore, we subdivide the tokens into two types, based
on their matching vertices in the target arrangement: local tokens and foreign
tokens, as follows. Tokens on vertices in a clique whose target vertices are in
the other clique are referred to as foreign tokens. Let foreign(A) be the set of
foreign tokens in A in f0 and foreign(B) be the set of foreign tokens in B in f0,
as follows:

foreign(A) = {vi ∈ V | f0(vi) = ft(vj) where vi ∈ A and vj ∈ B},

foreign(B) = {vi ∈ V | f0(vi) = ft(vj) where vi ∈ B and vj ∈ A}.

Let F = |foreign(A)| = |foreign(B)|. In the following, we will prove that 3F − 2 ≤
|OPT| ≤ 3F + 4. Note that |foreign(A)| = |foreign(B)| = F must hold in or-
der for f0 to be re-configurable to ft. Let SF be a shortest sequence of shifts
that moves all 2F foreign tokens to their matching vertices. Note that this may
still leave some non-foreign tokens on incorrect vertices; we will deal with re-
configuring these tokens later.

Lemma 1. In the Labeled Token Shifting Problem on a barbell graph, we have
3F − 2 ≤ |SF | ≤ 3F + 2.
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Proof. To transform f0 to ft, it is required for every foreign token on A and
B to cross the bar at least once. Note that we can move two foreign tokens by
performing a token exchange across the bar. In the worst case, a foreign token
needs to be moved three times: from the current vertex to the nearest gate vertex,
then across the bar to the gate vertex of the target clique, and then to the target
vertex. Firstly, a foreign token on each clique must be moved to the gate vertex
of that clique, which takes 2 shifts in total. Then, the actual exchange of tokens
on gate vertices in a shift cycle (vn, vn+1) of length 2 occurs. Next, in each clique,
the token on the gate vertex, say vn, is moved to its target vertex vi, while a
new foreign token is moved from vj to the gate. This is done with the single
cycle (vn, vi, vj). After the F th exchange, we need one more shift in each clique
to move the token from the gate vertex to its target vertex. Therefore, in the
worst case we do F exchanging shifts and 2F + 2 local shifts, which is 3F + 2
shifts in total. However, we also need to consider the following special cases.

Condition 1. A gate vertex already holds a foreign token in the initial arrange-
ment f0.

If a gate vertex already holds a foreign token in the initial arrangement, then
the initial shift for moving a foreign token to that gate vertex is not necessary.
Hence, in the cases where A or B (or both) satisfy Condition 1, we need one (or
two) fewer shift than 2F + 2.

Condition 2. The target token of a gate vertex (i.e., the token that is on a gate
vertex in ft) is in the opposite clique in f0.

If this condition is satisfied, we can move that gate’s final token across the bar in
the F th exchange. This way it is already in place when it enters the clique, and
we can spare the final shift in that clique. Thus, in the extreme case where both
gate vertices satisfy Conditions 1 and 2, and only 3F −2 shifts are necessary. ut

As for the local tokens, their target vertices are within the same clique. Hence,
by Theorem 2, at most 2 shifts are necessary to solve the problem in each clique.
We can now present this section’s main result (for a proof, see the Appendix).

Theorem 3. The Labeled Token Shifting Problem on a barbell graph G = (V,E)
can be solved with an optimal shift sequence in linear time, satisfying 3F − 2 ≤
|OPT| ≤ 3F + 4. ut

4.2 Token Shifting on Generalized Barbell Graphs with Two Bars

In this section, we extend our previous result to generalized barbell graphs. That
is, we join two cliques by two bars instead of one, and this allows us to more
effectively exploit the cyclic shift operation.

Let G be a generalized barbell graph with 2n vertices, with cliques A and
B consisting of vertices from v1 to vn and vn+1 to v2n, respectively. Two bars
e1 and e2 connect A and B such that e1 is incident to vn and vn+1 and e2 is
incident to vn−1 and vn+2. Let F = |foreign(A)| = |foreign(B)|, defined as in
the previous section.

The proof of the next theorem is found in the Appendix.
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Fig. 3. Representation of token shifting on (a) a barbell graph, (b) a generalized barbell
graph with 2 bars, and (c) a generalized barbell graph with k > 2 bars

Theorem 4. The Labeled Token Shifting Problem on a generalized barbell graph
G = (V,E) with 2 bars can be solved with an optimal shift sequence in linear
time, satisfying F ≤ |OPT| ≤ F + 4. ut

4.3 Token Shifting on Generalized Barbell Graphs with k ≥ 2 Bars

For the next step, we discuss the Labeled Token Shifting Problem on generalized
barbell graphs with k > 2 bars. Here, G is a graph consisting of two equal cliques
A and B connected by k edges, called bars, such that no two bars are incident
to the same vertex. Let F = foreign(A) = foreign(B), defined as usual.

Theorem 5. The Labeled Token Shifting Problem on a generalized barbell graph
G = (V,E) with k ≥ 2 bars can be solved with an optimal shift sequence that
satisfies F/bk/2c ≤ |OPT| ≤ F/bk/2c+ 4.

Proof. In the previous section, we proved that token shifting on a barbell graph
with 2 connecting edges for 2F foreign tokens uses F + 4 shifts: 2 local shifts
for moving foreign tokens on gate vertices at the start, F shifts for exchanging
foreign tokens between cliques, and 2 local shifts to rearrange tokens within
cliques. Now, while the number of local shifts remains the same, the number of
exchanging shifts decreases as k increases.

Half of the k edges can be used to move the foreign tokens from A to B and
another half of the k edges can be used to move foreign tokens from B to A. In
one shift, we can exchange k tokens for even k and k − 1 tokens for odd k (see
Figure 3(c)). Thus, for F tokens, we only need F/bk/2c shifts. ut
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5 2-Colored Token Shifting on Block Graphs

In this section, we discuss the 2-Colored Token Shifting Problem on block graphs.
A block graph (or a clique tree) is a graph in which every bi-connected component
(block) is a clique (see Fig. 4).

Definitions. In order to state this section’s result, we need some definitions.
Given a block graph G = (V,E), where a block is a maximal clique, an articu-
lation point is a vertex that belongs to more than one block. Let P ⊆ V be the
set of articulation points of G, and let K be the set of blocks of G. We define
the tree representation of G (see [3]) as the undirected graph T (G) = (V ′, E′),
where V ′ = P ∪K and

E′ = {{k, p}| the articulation point p ∈ P lies in the block k ∈ K}.

When referring to T (G), the nodes in P are called articulation nodes, and the
nodes in K are called clique nodes. Fig. 4(c) shows an example of a tree repre-
sentation. For a clique node k ∈ K, we write I(k) to indicate the vertices of G
that are in the block k but are not articulation points, i.e., I(k) = k \ P . Note
that I(k) induces a (possibly empty) clique in G.

Now, let G = (V,E) be a block graph with n vertices, let Col = {c1, c2} be
the color set, and let f0 and ft be the initial and target token arrangements on
G. We say that an articulation node p ∈ P holds color c ∈ Col if f0(p) = c.
Also, if f is an arbitrary arrangement, we write nc(f(p)) = 1 if f(p) = c, and
nc(f(p)) = 0 otherwise. Similarly, for a clique node k ∈ K, let nc(f(k)) be the
number of c-colored tokens in I(k) ⊆ V in the arrangement f . Then, we say that
a clique node k of T (G) holds color c if nc(f0(k)) > nc(ft(k)).

For each node x in T (G), x has a value of nc1(f0(x))− nc1(ft(x)). For each
edge e in E′ connecting two nodes k ∈ K and p ∈ P , we define the number diff(e)
as follows (cf. [8]). Let Tk be the subtree including node k resulted by the removal
of e from T (G). nc1(f(T ′)) is the number of c1 tokens on the set of vertices of G
represented by T ′ in arrangement f . Then, diff(e) = nc1(ft(Tk))− nc1(f0(Tk)),
i.e., the difference in number of c1 tokens on T ′ between f0 and ft. For simplicity,
diff(e) can be defined as the number of c1 tokens (and, symmetrically, also c2

tokens) that we must move along e to transform f0 into ft. If diff(e) = d > 0, it
means we need to move d tokens of color c1 to k. If diff(e) = −d < 0, it means
we need to move d tokens of color c2 to k.

Finally, we define E′k ⊆ E′ to be the set of edge of T (G) that are incident to
the clique node k.

Theorem 6. For the 2-Colored Token Shifting Problem on a block graph G =
(V,E), we have

∑
k∈K

max
e∈E′

k

{|diff(e)|} ≤ |OPT| ≤
∑
k∈K

max


∑
e∈E′

k

diff(e)>0

diff(e),
∑
e∈E′

k

diff(e)<0

|diff(e)|, 1

 ,

and a shift sequence within these bounds can be computed in O(n2) time.
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Proof. For the upper bound, we will give a procedure for finding a shift sequence.
We first construct the tree representation T (G) in O(n2) time. From T (G), we
determine the sequence of shifts by deciding on which clique the shift must be
performed in each step (note that, in a block graph, every cycle is included in a
single clique).

For a clique k with an excess of c1 tokens connected to an articulation vertex
p, some c1 tokens in k must be moved out and some c2 tokens must be moved
in through p. We need to perform a shift that moves the extra c1 token in k to
the articulation vertex p and the c2 tokens on p to the target vertex in k. On
T (G), it will be a token exchange between a clique node k that holds color c1

and the articulation node p that holds color c2 along the edge e = {k, p} ∈ E′.
This exchange will decrease |diff(e)| and change the color of p to c1. However,
in the case where the p holds the same color c1 as k, it is pointless to perform
a shift between them. The same goes for a clique with nc2(f0(k)) > nc2(ft(k)).
If diff(e) = 0, no token needs to be moved across e, and e can be removed from
T (G). For G to achieve the target arrangement ft, all the edges in T (G) must
be removed. Thus, we can construct the shift sequence for G from T (G) by
determining the clique nodes for an exchange in each step.

We now discuss how to choose a feasible clique node for token exchange.
There are three types of clique nodes in T (G): (1) leaf node, (2) non-leaf node,
and (3) isolated node.

A leaf node is a clique node with an articulation node, the removal of which
will disconnect the clique node from the other clique nodes in T (G). When we
look for a clique for token exchange, we start with the leaf nodes and go up
the tree T (G). A leaf node k connected to node p by edge e is feasible for an
exchange if k and p hold different colors and |diff(e)| > 0.

Non-leaf nodes are those with multiple articulation nodes connecting them to
other clique nodes in T (G). In non-leaf nodes, we can exchange one or more pairs
of different color tokens in one shift. For a non-leaf node k with m articulation
nodes p1, p2, . . . , pm, k is feasible for an exchange (1) if there are one or more
edges e = (k, p) with |diff(e)| > 0, and k and p hold different colors, where
p ∈ {p1, p2, . . . , pm} and k has non-zero value or (2) if k is connected to one or
more pairs of articulation nodes pi and pj ∈ {p1, p2, . . . , pm} where pi and pj
hold different colors, and diff(ei = {k, pi}) and diff(ej = {k, pj}) have opposite
sign (one positive, one negative).

An isolated node is already disconnected from other clique nodes in T (G)
and the amount of both c1 and c2 tokens in it is the same for f0 and ft. For each
isolated node k with no edge in T (G), if f0(k) 6= ft(k), then one shift suffices to
reach the target arrangement as nc(f0(k)) = nc(ft(k)), c ∈ {c1, c2}.

As for the lower bound, we observe that, for each clique node k, we can
only move one token to or from each articulation point in a shift and decrease
the |diff(e)| of each edge by one. Therefore, if k is incident to an edge e with
|diff(e)| = d, then at least d shifts must be performed in the clique corresponding
to k. Thus, to remove all the edges incident to a clique node k in T (G), at least
maxe∈E′

k
{|diff(e)|} shifts are necessary. ut
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Fig. 4. (a) Initial arrangement f0, (b) target arrangement ft, and (c) tree representa-
tion T (G) of block graph G with positive values over nodes that need black tokens,
negative values over nodes that need white tokens, diff(e) values over each edge e, and
dotted lines for removed edges

6 Hardness of 2-Colored Token Shifting

In this section, we show that a shortest shift sequence for the 2-Colored Token
Shifting Problem is not only NP-hard to compute, but also NP-hard to approx-
imate within a factor of 2 − ε, for any ε > 0. This is true even if the graph
G is a grid graph, hence planar and with maximum degree 4. We will prove it
by a reduction from the NP-complete problem of deciding if a grid graph has a
Hamiltonian cycle, i.e., a cycle involving all vertices [4].

Theorem 7. The optimal shifting sequence for the 2-Colored Token Shifting
Problem is NP-hard to approximate within a factor of 2− ε, for any ε > 0, even
for grid graphs.

Proof. Let G = (V,E) be a connected grid graph (i.e., a vertex-induced finite
subgraph of the infinite grid), and let a checkered arrangement be an arrange-
ment of two-colored tokens on G such that tokens on any two adjacent vertices
have different colors. Note that, for any given G, there are exactly two different
checkerboard arrangements.

Our reduction maps the grid graph G to the 2-Colored Token Shifting Prob-
lem on the same graph G, where the initial arrangement f0 and the target
arrangement ft are the two distinct checkerboard arrangements (see Figure 5).
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Fig. 5. (a) Initial arrangement f0 and (b) target arrangement ft

Observe that f0(v) 6= ft(v) for all v ∈ V , and thus a sequence of shift
operations that transforms f0 into ft must move every token at least once. More
precisely, ft is reached if and only if every token takes part in an odd number
of shift operations. If G has a Hamiltonian cycle C, then the shift operation
along C immediately transforms f0 into ft, and hence |OPT| = 1. Conversely,
if |OPT| = 1, the single shift operation that transforms f0 into ft must involve
every vertex, and thus it must be a Hamiltonian cycle.

We have proved that, if G has a Hamiltonian cycle, then |OPT| = 1, and
that if G does not have a Hamiltonian cycle, then |OPT| ≥ 2. Thus, if we could
compute an approximation of |OPT| within a factor of 2− ε in polynomial time,
we would also be able to decide if G has a Hamiltonian cycle. Since the latter
problem is NP-hard [4], then so is the former problem. ut
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Appendix: Missing Proofs

Theorem 3. The Labeled Token Shifting Problem on a barbell graph G = (V,E)
can be solved with an optimal shift sequence in linear time, satisfying 3F − 2 ≤
|OPT| ≤ 3F + 4.

Proof. We can classify each vertex into one of three types by constructing conflict
graphs for A and B. A vertex either (1) already holds its target token, (2) belongs
to a directed cycle such as (vi, vj , . . . , vk) where vk holds token i, vi holds token j
or (3) belongs to a chain of vertices that cannot form a cycle such as vi, vj , . . . , vk
where vi holds token j, vk holds a foreign token j, and token i belongs to another
clique.

Type-1 vertices need no consideration. As for type-3 vertices, they can be
solved while exchanging foreign tokens. Since token i must reach gate vn after an
exchange at some point, we can then perform the cyclic shift (vi, vj , . . . , vk, vn).
This will move the token i to vi, token j to vj , token k to vk and lastly the
foreign token on vk to vn. This not only matches the vertices vi, vj , . . . , vk with
their tokens but also moves a foreign token to vn for the next exchange. We
now consider how to deal with the type-2 vertices. As they are isolated from
the type-3 vertices, they cannot be solved while exchanging the foreign tokens.
Hence, to avoid additional shifts, we connect the directed cycles to a chain of
type-3 tokens. We can do that by performing a shift that includes a type-2 vertex
from each directed cycle and a type-3 vertex while moving a foreign token to the
gate vertex. This way, we can handle the local tokens while exchanging foreign
tokens and |OPT| = |SF |. However, this is true only when |SF | ≥ 5.

Let us now discuss the exceptional case where the minimum shift sequence
required for exchanging foreign tokens satisfies |SF | < 5. In this case, fewer than
than two shifts are performed on one of the cliques during the exchange. When
F = 0, the problem becomes two independent token shifting problems on two
complete graphs, which may need 4 shifts in total. Thus, 3F + 2 is no longer an
upper bound.

We can conclude that the shortest shift sequence for token shifting on a
barbell graph is |OPT| = |SF | = 3F +2 in the general case without Conditions 1,
2, and excluding the exceptional case discussed above. We can now compute
optimal bounds on the minimum shift sequence from the extreme cases as follows.
For a case with F = 0, we need at most 4 shifts for solving the problem on two
complete graphs independently, and so |OPT| = 3F + 4 holds. For a case with
Conditions 1 and 2 on both sides, we have the minimum sequence of |OPT| =
3F−2. We can easily determine whether those conditions hold in linear time. ut

Theorem 4. The Labeled Token Shifting Problem on a generalized barbell graph
G = (V,E) with 2 bars can be solved with an optimal shift sequence in linear
time, satisfying F ≤ |OPT| ≤ F + 4.

Proof. As discussed before, an exchange needs two steps: moving foreign tokens
on each clique to the gate vertices and the actual exchange of tokens on gate
vertices. In a barbell graph with 2 bars, we can combine the two steps into one by
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exchanging foreign tokens and bringing the foreign tokens to the gate vertices for
the next exchange in a single shift. Since each clique now has two gate vertices,
one vertex acts as the entry gate vertex where the incoming tokens pass through
and another acts like the exit gate vertex through which the foreign tokens leave.
Between the cliques A and B, the two bars e1 and e2 act like two lanes going in
opposite directions.

Let vn and vn−1 be the gate vertices of A and vn+1 and vn+2 be the gate
vertices of B such that vn and vn+1 are connected by e1 and vn−1 and vn+2 are
connected be e2. In a single shift, we can move a foreign token b3 inside A to vn
(exit of A), b2 on vn to vn+1 (entry of B), and b1 on vn+1 to vb1 inside B. Also,
move a foreign token a3 inside B to vn+2 (exit of B), a2 on vn+2 to vn−1 (entry
of A), and a1 on vn−1 to va1

inside A (see Figure 3(b)).
Therefore, |SF | is reduced to F + 4 (F exchanging shifts, 2 pre-exchange

shifts, and 2 post-exchange shifts). The generalized barbell graphs with 2 bars
also have two exceptional conditions, corresponding to Conditions 1 and 2 in
Lemma 1.

In this case of Condition 1, we need one less shift than F + 4. If the gate
vertices va of A and vb of B are not adjacent and both vertices hold foreign
tokens, we can start exchanging tokens immediately and need 2 fewer shifts.

In the case of Condition 2, the target token of a gate vertex lies in the opposite
clique. This token can be exchanged last to save 1 shift. If both A and B satisfy
Conditions 1 and 2, then |SF | = F .

We can deal with the local tokens in a similar way as in Section 4.1, so that
no additional shift is necessary for moving local tokens when |SF | ≥ 2.

In the exceptional case where the minimum shifts required for exchanging
foreign tokens is |SF | < 2, local tokens cannot be handled by SF .

We can now work out exact bounds on the minimum shift sequence from
the extreme cases as follows. For a case with F = 0, we need at most 4 shifts
for solving the two cliques separately, and |OPT| = F + 4 holds. For a case
with Conditions 1 and 2 on both sides, we have the minimum shift sequence of
|OPT| = F . ut


