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Abstract

We prove that, given a polyhedron P in R3, every point in R3 that does not see any
vertex of P must see eight or more edges of P, and this bound is tight. More generally, this
remains true if P is any finite arrangement of internally disjoint polygons in R3. We also
prove that every point in R3 can see six or more edges of P (possibly only the endpoints of
some these edges) and every point in the interior of P can see a positive portion of at least
six edges of P. These bounds are also tight.
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1 Introduction

Computer vision, with applications to motion planning, robotics, and machine learning, aims
to arrange our physical environment into data structures. Three-dimensional solids are usually
discretized, often represented by polyhedral surfaces, and one would like to compute the view
from a given (possibly moving) viewpoint. While visibility problems are motivated by three-
dimensional applications, most of the algorithmic, combinatorial, and geometric results pertain
to the plane [29, 33]. Indeed, some of the most basic properties of visibility in the plane do not
easily generalize to three and higher dimensions. This paper address one such problem, related
to the minimum number of edges of a polyhedron or polygonal scene visible from a viewpoint.

Planar versus three-dimensional visibility. Suppose that s is a point in the interior of a
simple polygon P in the plane. It is easy to prove that s sees at least three vertices and at least
three edges of P , and both bounds are tight, e.g., when P is a triangle. Indeed, a simple polygon
has a triangulation, the point s lies in some triangle T (possibly on the boundary between two
triangles), and so s sees all three vertices of T , which are vertices of P . Consider the edges of P
that are at least partially visible to s, and project them orthographically onto a circle centered
at s. Each edge projects to a circular arc strictly shorter than a semicircle, and the arcs jointly
cover the entire circle; consequently, at least three edges are visible to s. Similarly, suppose L is
an arrangement of n ≥ 3 pairwise noncrossing line segments in the plane, not all in a line, and s
is a point in the convex hull of L disjoint from all segments. Then it is easy to prove that s sees
at least three segment endpoints, but possibly only two of the segments.

Analogous statements for polyhedra and for arrangements of interior-disjoint polygons in R3

are not so straightforward. There are well-known constructions [10, 28] for nonconvex polyhedra
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P and viewpoints s in R3 such that s does not see any vertex of P, even if P is contractible
or orthogonal; see Figure 4(center) for an example. It is not difficult to show that s sees at
least three edges of P: In a cross-section of P with any plane α containing s but in general
position with respect to P , the point s sees at least three vertices, which correspond to edges of
P. However, this bound is not tight: We improve it to six (Theorem 1), and further to eight
when s does not see any vertices of P (Theorem 3).

1.1 Main Results

For clarity, we define polyhedra and visibility in three-space.

� A polygon in the plane is a connected compact 2-dimensional manifold with boundary such
that its boundary is the union of finitely many line segments. A polygon in R3 is a polygon
in some affine plane in R3. A polygon is simple if it is contractible (or, equivalently if its
boundary is connected).

� A polyhedron in R3 is a connected compact 3-dimensional manifold with boundary such
that its boundary is the union of finitely many polygons (which are the facets of the
polyhedron); see Figure 1a for an example.

Given a polyhedron P , two points p, q ∈ R3 mutually see each other if the closed line segment
pq is disjoint from the interior of P, or it is disjoint from the exterior of P. Note that if p is in
the interior of P , and q in its exterior, then they are not visible to one other; however, according
to our definition, if p and q see each other, then p or q could be on the boundary of P, and the
segment pq may overlap with a facet of P or graze some edges of P.

For visibility between a point and an edge, we adopt the notion of weak visibility: A point
p ∈ R3 sees a line segment s ⊂ R3 if there exists a point q ∈ s such that p sees q. In particular,
a point p sees an edge e of P if p sees a vertex of e. We also consider a stronger notion: A point
p ∈ R3 sees a positive portion of a line segment s ⊂ R3 if there exists a subsegment s′ ⊂ s of
positive length such that p sees every point in s′. In our results, p may be any point in R3, i.e.,
it may be in the interior or exterior of P, or possibly on the boundary of P.

Theorem 1. Let P be a polyhedron in R3. Then every point p ∈ R3 sees at least six edges of P,
and this bound is tight.

The bound in Theorem 1 is attained, for example, for a tetrahedron P, which has six edges.
In this case, a point p in the exterior of P but close to the center of a face F sees positive
portions of all three edges of F , but it sees only an endpoint of the remaining three edges. If we
insist on seeing positive portions of edges, we have the following result.

Theorem 2. Let P be a polyhedron in R3. Every point in P sees positive portions of at least
six distinct edges of P; every point in the exterior of P sees positive portions of at least three
distinct edges of P. Both bounds are tight.

Our main result pertains to points that do not see any vertices of the polyhedron.

Theorem 3. Let P be a polyhedron in R3. If a point p ∈ R3 does not see any vertex of P, then
it sees positive portions of at least eight distinct edges of P. The bound is tight.

Remark. When P is an orthogonal polyhedron, i.e., when every facet is orthogonal to a
coordinate axis, then any point in P sees at least twelve edges (while any exterior point sees at
least eight edges). Indeed, take the three planes through an internal point p with normal vectors
parallel to the coordinate axes; each of these planes intersects at least four edges visible to p.
The bound is tight: It is attained, for example, in a cube; it can also be attained for points that
do not see any vertices, for example in Seidel’s polyhedron [28, Chap. 10].
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Polygonal Scenes. In our lower bound construction for Theorem 3 (in Section 5), a point p
sees eight distinct edges in six pairwise disjoint facets of a polyhedron. We extend Theorem 3 to
arrangements of polygons. A polygonal scene in R3 is a nonempty finite collection of polygons
whose relative interiors are pairwise disjoint; see Figure 4(left) for an example. In particular, the
set of facets of a polyhedron is a polygonal scene. However, we cannot use the same definition
of visibility for polygonal scenes, since interior and exterior are no longer meaningful. Given a
polygonal scene P, two points p, q ∈ R3 mutually see each other if the line segment pq does not
cross any polygon in P, i.e., there is no polygon P ∈ P such that p and q lie in distinct open
halfplanes bounded by the plane containing P and pq intersects P .

If we interpret the facets of a polyhedron as a polygonal scene, then the edges and vertices
of polygons not coplanar with the viewpoint are always “opaque”, and so two points cannot
see each other if the line segment connecting them grazes an edge of P. Thus, our definition
of visibility for polygonal scenes is slightly more restrictive than the definition of visibility for
polyhedra (although this distinction has no effect on our theorems).

Note that if p lies in a polygon P of a polygonal scene P, then p sees some vertices in the
plane containing P . Similarly, if all polygons in P are coplanar, then every point p (on or off
that plane) sees all vertices. Thus, when we consider a point p that does not see any vertex
of (any polygon in) P, we may assume that P contains two or more polygons, and p is not
contained in any polygon in P.

Theorem 4. Let P be a polygonal scene in R3. If a point p ∈ R3 does not see any vertex of P,
then it sees positive portions of at least eight distinct edges of P. The bound is tight.

Organization. Theorems 1 and 2 are proved in Sections 2 and 3, respectively. In Section 4,
we review Spherical Occlusion Diagrams (SODs), a geometric structure introduced in [36]. By
extending the theory developed in [36], we prove some properties of SODs which constitute the
technical crux of the proof of Theorems 3 and 4. Section 6 concludes the paper with some open
problems.

1.2 Related Previous Work

To place our results in perspective, we briefly review related work on visibility problems in
combinatorial and computational geometry.

Triangulations. A triangulation [23, 25] of a polyhedron P in Rd is a subdivision of the
interior of P into simplices whose vertices are vertices of P . It is well known that every polygon in
the plane can be triangulated; as noted above, this implies that every point in P can see at least
three vertices of P . However, in dimensions d ≥ 3, there exist nonconvex polyhedra that cannot
be triangulated, the Schönehardt polyhedron being the classical example [5, 31]. In general, it is
an NP-hard problem to determine whether a given polyhedron can be triangulated [30]. For
convex polyhedra, it is NP-hard to find the minimum number of simplices in a triangulation [2, 3].

Art Gallery Problems. Typical art gallery problems ask for the minimum number of guards
that can visually cover the interior of a polygon in the plane, or polyhedron in three-space,
or some other environment in the presence of opaque obstacles. A celebrated theorem by
Chvátal [11] shows that every simple polygon with n vertices can be covered by at most ⌊n/3⌋
guards located at vertices (i.e., vertex guards). If a simple polygon is orthogonal (i.e., every
edge is parallel to a coordinate axis), ⌊n/4⌋ vertex guards suffice [20]. Finding the minimum
number of vertex guards for a given polygon is NP-complete [24], and there is an O(log logOPT)-
approximation algorithm for this problem. However, if the guards can be arbitrary points in
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the plane (i.e., point guards), then the problem is known to be ∃R-complete [1], and only an
O(logOPT)-approximation algorithm is available [7].

As noted above, covering a 3-dimensional polyhedron by vertex guards may be infeasible.
There are some initial results on the minimum number of edge guards [4, 9, 17, 35] and face
guards [18, 19, 32, 34], under the notion of weak visibility: An edge or a face f sees a point p if
some point s ∈ f sees the point p. The problem formulation for edge and face guards can be
further refined depending on whether (topologically) open or closed edges and faces are allowed.
However, none of the current bounds is known to be tight. Minimizing the number of edge or
face guards is known to be NP-hard in several variants of the problem [17, 19, 34]. The current
best bounds [9] for the minimum number of edge guards in a polyhedron P in R3 distinguish
between points visible and invisible to vertices: Theorem 3 addresses the latter scenario, albeit
it does not improve on the current bounds for the edge guard problem.

Hidden Surface Removal. The computational counterpart of our results is a classical
problem in computer vision [12]: Given an arrangement of polyhedral or polygonal objects
(a polyhedral or polygonal scene) and a light source s ∈ R3, compute the parts of the objects
that are visible to s, i.e., the visibility map of s. For a polyhedral scene in R3 with a total of
n vertices, edges, and faces, the complexity of the visibility map is O(n2) and this bound is
tight; it can be computed in O(n2) time [21, 26]. However, one can find the vertices, edges,
and faces that are (at least partially) visible to s in O(n log n) time [15] in an arrangement of
axis-aligned rectangles. In particular, the visibility counting problem asks for the number of faces
(respectively, edges or vertices) visible to s [8, 16]. There are many results on data structures
that preprocess a polyhedral scene to support a fast computation of the visibility map for a query
point s ∈ R3; there are also bounds on the number of combinatorially different visibility maps
for a given scene [13]; refer to the surveys [29, 33] for further references. Analogous problems
were also considered when the light source s is one or more line segments or triangles [14, 27],
corresponding to edge guards or face guards.

2 Proof of Theorem 1

In the brush polyhedron depicted in Figure 1a, any interior point close to the tip of a tetrahedral
“spike” sees exactly six edges. In this section, we prove that any point p ∈ R3 sees at least six
edges of any polyhedron. We remark that this also holds if p is in the exterior of the polyhedron.

(a) A brush

p

(b) Orthographic projection of polygons onto a sphere

Figure 1: Visibility in R3

Let us fix a polyhedron P and a point p ∈ R3. For each edge e of P, we consider the set of
points in e that are not occluded by other edges: Let Ee,p be the set of points x ∈ e such that x
is visible to p and the relative interior of xp is disjoint from every closed edge of P. Note that
Ee,p is the union of finitely many pairwise disjoint line segments along e. Let VP,p be the set of
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all segments in e corresponding to Ee,p over all edges e of P. Some segments in VP,p may be
“degenerate”, i.e., they may be single points. However, if {x} ⊂ Ee,p is a degenerate segment,
then x is contained in at least two edges, consequently it is a vertex of e. In particular, every
degenerate segment in VP,p coincides with a vertex of P.

For example, if P is a regular tetrahedron and p is a point in the exterior of P near the
center of a face F , then VP,p consists of the three edges of F plus three degenerate segments
coinciding with the three vertices of F (each of these corresponds to an edge of P that is hidden
behind F , only one of its endpoints being visible to p).

Lemma 5. VP,p consists of at least six segments.

Proof. Let S be the unit sphere centered at p, and let us orthographically project all the segments
in VP,p onto S; Figure 1b shows an example of an orthographic projection. The projection of
each segment s ∈ VP,p is an arc as of a great circle of S; let A be the collection of these arcs.
Note that A is a noncrossing arrangement of arcs, some of which may be degenerate, i.e., single
points. Each nondegenerate arc of A has two endpoints, each of which lies on at least one
other arc of A. Each arc in A is the projection of a line segment, hence it is shorter than a
great semicircle; every face of the arrangement is the projection of a polygon in R3, hence it
is contained in a hemisphere. Therefore, any two arcs in A intersect in at most one point; in
other words, A does not contain any lens, intended as a pair of internally disjoint curves that
share more than one point. Figure 2a depicts (a plane drawing of) an arrangement A, where
the dashed line represents a degenerate arc, which originates from an edge of P that is hidden
behind a face, except for an endpoint.

(a) A plane drawing of A, including a degenerate
arc represented as a dashed line

(b) The arrangement A′

(c) The contact graph G of A′ (d) Another plane drawing of G; note that every
vertex has out-degree 2

Figure 2: Proving that VP,p consists of at least six segments
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Let us transform A as follows. First, we successively extend each degenerate arc in A (which,
we recall, coincides with the projection of a vertex of P onto S) along a great circle until it hits
another arc of A. Since the extended arcs each lie in some face of the initial arrangement, they
are each shorter than a semicircle, which in turn implies that no lens is created. After this step,
A is an arrangement of pairwise noncrossing nondegenerate arcs without lenses.

We further modify the arrangement A to an arrangement A′ as follows. (The arcs in A′ are
not necessarily arcs of great circles). For each endpoint v of an arc in A that does not lie in the
relative interior of any arc of A, we do the following. Let a1, a2, . . . , ak be the arcs incident to v,
taken in clockwise or counterclockwise order. By construction, v is either the projection of a
vertex of P, or the endpoint of an arc that has been extended. In both cases, we have k ≥ 3.
Now deform a1, a2, . . . , ak in a small neighborhood of v so that the endpoint of ai is re-routed
to the interior of ai+1, for all 1 ≤ i ≤ k, where indices are taken modulo k. This operation can
be done without creating crossings or lenses (since k ≥ 3).

The resulting arrangement A′ is illustrated in Figure 2b. Note that A′ is still a noncrossing
arrangement of Jordan arcs without lenses. In particular, (i) each endpoint of each arc is in the
interior of exactly one other arc, (ii) no arc has both endpoints in the interior of the same arc,
and (iii) if an arc a has an endpoint in the interior of an arc b, then b does not have an endpoint
in the interior of a.

Next we define the contact graph G of A′ as follows. Let G be a directed graph, where the
vertices correspond to the arcs in A′, and there is a directed edge (a, b) in G if and only if the arc
a ∈ A′ has an endpoint in the interior of the arc b ∈ A′ (see Figure 2c). Due to the properties
of A′, the contact graph G is a simple planar directed graph where each vertex has out-degree
exactly 2. Also, the number of vertices of G is equal to the number of segments in VP,p. In
particular, G is nonempty, because p sees at least one nondegenerate segment of an edge of P.

We will now prove that G has at least six vertices, which implies that VP,p consists of at least
six segments, as well. Note that if G has n ≥ 1 vertices, it has exactly 2n edges. Since a simple
graph on n vertices can have at most

(
n
2

)
edges, then 2n ≤ n(n− 1)/2 implies n ≥ 5. Moreover,

the only 5-vertex simple graph with 10 edges is the complete graph, which is not planar. We
conclude that n ≥ 6, as claimed.

Lemma 6. If there is an edge e of P such that Ee,p is disconnected, then p sees at least six
distinct edges of P. Furthermore, if two or more connected components of Ee,p have positive
length, then p sees positive portions of at least six distinct edges of P.

Proof. First assume that Ee,p consists of two or more segments of positive length, and let s1
and s2 be two such segments in Ee,p. Observe that p is not collinear with e, or Ee,p would
be connected. Thus, p and e determine a unique plane α. Consider the cross section P of P
corresponding to α, illustrated in Figure 3.

Let u be the endpoint of e such that u is closer to s1 than to s2, and let w1 and w2 be the
endpoints of s1, with w1 closer to u. Clearly, there must be a vertex v2 of P on the segment
pw2. Also, there must be a vertex v1 of P on the segment pw1, possibly with v1 = u = w1. In
both cases, there is an edge of P other than e that intersects α in vi, for i ∈ {1, 2}, which is
visible to p in the plane α. Furthermore, a small neighborhood of v1 and v2, respectively, p sees
a positive portion of two edges of P. In the special case that v1 = u = w1, the point p sees the
interior of some face F incident to u and e, and p sees a positive portion of another edge of F
incident to v1. Similarly, s2 determines two additional vertices of P , say v3 and v4, which are
visible to p and contained in some edges of P.

Now consider the line ℓ through p and parallel to e, and let ℓ+ ⊂ α denote the closed
halfplane bounded by ℓ that does not contain e. Clearly, ℓ+ does not contain vertices v1, . . . , v4,
either. Note, however, that P must have at least one vertex in ℓ+ visible to p. Indeed, let S be
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Figure 3: If p sees two sub-segments s1 and s2 of the same edge e of P , it sees at least six edges.

a circle centered at p, and project orthographically all the segments on the boundary of P that
are visible to p onto S. Since each segment projects to a circular arc shorter than a semicircle,
then S ∩ ℓ+ contains the endpoint of an arc, which is the projection of a vertex v5 of P in ℓ+.

We have determined five vertices, v1, v2, v3, v4, and v5, that correspond to distinct edges
of P of which p sees at least a positive portion. Since e is distinct from these five edges, we
conclude that p sees a positive portion of at least six edges of P.

Now suppose that s1 or s2 has zero length, i.e., it is an endpoint of the edge e. If u = w1 = w2,
then u is the endpoint of at least three edges of P: edge e and two additional edges; we may
assume that v1 and v2 correspond to two edges incident to u other than e. The same argument
holds for s2. We conclude that p sees at least six edges of P (albeit, possibly only one endpoint
of some of these edges).

Theorem 1 now follows immediately. If some Ee,p has two or more components, then Lemma 6
implies that p sees at least six distinct edges of P. Otherwise, p sees at least as many distinct
edges of P as there are segments in VP,p; thus, by Lemma 5, p sees at least six edges.

3 Proof of Theorem 2

Every point in a tetrahedron P sees positive portions of all six edges; a point in the exterior of
P but close to the center of a face F of P sees positive fractions of only three edges. This shows
that both bounds in Theorem 2 are tight.

For the lower bounds in Theorem 2, let P be a polyhedron and p a point in R3. If p /∈ P,
then consider any point q in the interior of P in general position with respect to P . Then p sees
the interior of a face of P along the ray −→pq, and it sees either another face or infinity in the
opposite direction. This means that the visibility map of p (in an orthographic projection to a
sphere S centered at p) has at least two faces, hence it consists of arcs of at least three distinct
great circles. These arcs correspond to three distinct edges of P , some positive portions of which
are visible to p.

If p is coplanar with a facet F of P, then p sees at least three vertices and positive portions
of at least three edges of F . Furthermore, each visible vertex v of F is incident to an edge ev
that is not coplanar with F and whose initial portion is visible to p. There are at least three
distinct such edges, as v sees at least three vertices of F . Altogether, v sees positive portions of
at least six edges of P.

In the remainder of this section, we may assume that p lies in the interior of P. We follow
the proof of Theorem 1 (Section 2), but without degenerate segments. Recall that for each edge
e of P, we denote by Ee,p the set of points x ∈ e such that x is visible to p and the relative
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interior of xp is disjoint from every closed edge of P, where Ee,p is the union of finitely many
pairwise disjoint line segments along e. Let WP,p be the set of all segments of positive length in
e corresponding to Ee,p over all edges e of P. Finally, let A be the collection of orthographic
projections of the segments in WP,p onto a sphere S centered at p. As noted in Section 2, A is
an arrangement of pairwise noncrossing arcs of great circles. Each arc is strictly shorter than a
semicircle, and so they cannot form lenses. Furthermore, as p lies in the interior of P , every face
of the arrangement A is strictly contained in a hemisphere of S.

It is sufficient to show that WP,p contains at least six segments, and then Lemma 6 completes
the proof. Let n = |WP,p| = |A|. We distinguish between two cases.

Case 1: There exists a facet F of P that contains three or more segments of WP,p.
Let α be a plane parallel to F and containing p. The cross section of P corresponding to α
consists of one or more polygons. If we triangulate the polygons arbitrarily, then p lies in one
of the triangles, and so p sees at least three vertices of P . These vertices correspond to three
distinct edges of P, in which p sees a positive portion, hence they each contain a segment in
WP,p. Since none of these segments is in the plane α, then WP,p contains at least six segments,
as required.

Case 2: Every facet of P contains at most two segments of WP,p. Let Q be the set
of points q ∈ S such that q is the endpoint of precisely two arcs in A but does not lie in the
relative interior of any arc in A. Each point q ∈ Q is the orthographic projection of a vertex
of P visible to p, and the two incident arcs are orthographic projections of two edges of some
facet Fv incident to v. Note that the two arcs incident to v cannot lie on the same great circle,
otherwise p would be coplanar with the facet Fv, and p would see a third edge incident to v;
hence, q would be the endpoint of three or more arcs in A.

Further note that no two points in Q are connected by an arc in A, otherwise the three arcs
incident to these points would be the projections of three segments in WP,p on the boundary of
the same facet. Since each point q ∈ Q is incident to two arcs, and each arc is incident to at
most one point in Q, we conclude that 2 |Q| ≤ n.

We modify A as follows. For each point q ∈ Q consider the two incident arcs, say a1, a2 ∈ A.
Extend one of them, say a1 along a great circle beyond q until it hits another arc. Note that a1
was originally shorter than a great semicircle; also, both a1 and its extension lie in a same face
of S, which is contained in a hemisphere. Thus, the extended arc is still shorter than a great
semicircle. We obtain a pairwise noncrossing arrangement A′ of arcs of great circles, each of
which is shorter than a semicircle. This implies that the A′ does not contain lenses.

We further modify the arrangement A′ as in Section 2: For every point s ∈ S that is the
endpoint of three or more arcs in A′ but does not lie in the relative interior of any arc of A′, we
perturb the arrangement in a neighborhood of s so that the endpoint of each arc incident to
s is re-routed to the interior of the next arc (refer to Figure 2b). Denote by A′′ the resulting
arrangement of noncrossing arcs, and let G be its contact graph introduced in Section 2.

Recall that G is a directed planar graph where every node has outdegree two; thus, it has
n = |A| vertices and 2n edges. Since A′ does not contain lenses, G is a simple graph, and n ≥ 6
as in the proof of Lemma 5.

4 Spherical Occlusion Diagrams

To prove our next results, we study Spherical Occlusion Diagrams (SOD), introduced in [36].
SODs arise from the visibility map of a point p that does not see any vertex of a polygonal scene
P . Specifically, a visibility map generated by P with viewpoint p is the set of arcs of great circles
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Figure 4: The SOD in the right picture is generated by the arrangement of internally disjoint
rectangles in the left picture, where the viewpoint is at the center of the arrangement. The
polyhedron in the middle picture generates the same SOD.

obtained by orthographically projecting all edge sub-segments of P that are visible to p onto
the unit sphere centered at p. Figure 1b shows the orthographic projection of two rectangles
onto a sphere, and Figure 4 shows the visibility map generated by the polyhedron in the middle
picture, as well as the polygonal arrangement in the left picture, both with viewpoint p at the
center of the arrangement.

A SOD arises from an axiomatic formulation of basic properties of a visibility map from a
viewpoint p. Formally, a SOD is defined as a finite non-empty set of arcs of great circles on a
sphere satisfying the following properties, which are called diagram axioms in [36]:

(A1) Each arc is shorter than a great semicircle, and any two arcs are internally disjoint.

(A2) Each arc feeds into another arc at each endpoint.

(A3) All arcs that feed into the same arc reach it from the same side.

An arc a is said to feed into another arc a′ (equivalently, a hits a′ and a′ blocks a) if an endpoint
of a is in the relative interior of a′.

It is shown in [36] that the visibility map from any arbitrarily located viewpoint p that does
not see any vertex of P is indeed a SOD. (Incidentally, it is known that not every SOD is a
visibility map [22].) We summarize some other basic results from [36]:

Theorem 7. The following statements hold for every SOD S.

(1) No two arcs of S feed into each other.

(2) The union of all the arcs of S is a connected set.

(3) If S has n arcs, it partitions the sphere into n+ 2 spherically convex regions.

(4) The relative interior of any great semicircle intersects some arc of S.

A common structure in a SOD is the swirl, which is defined as a cycle of arcs such that
each arc feeds into the next, going always clockwise or always counterclockwise. In the SOD in
Figure 4, there are four clockwise swirls and four counterclockwise swirls. The swirl graph of
a SOD is the undirected multigraph on the set of swirls such that, for each arc shared by two
swirls, there is an edge in the swirl graph. The following theorem is proved in [36]:
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Theorem 8. The swirl graph of a SOD is a simple planar bipartite graph with nonempty partite
sets.

We will now extend Theorem 8 by proving that the swirl graph contains at least four swirls.
The spherically convex region enclosed by a swirl is called the eye of that swirl. For example,
Figure 6 shows the eye of a swirl in yellow.

Lemma 9. Given a SOD S, every hemisphere contains the eye of at least one swirl of S.

Proof. Let H be the interior of a hemisphere; by Theorem 7(4), there is an arc a0 ∈ S that
intersects H. Let us construct a “walk” within H that traverses some arcs of S as follows (refer
to Figure 5). The walk starts from a point of a0 ∩ ∂H. Note that at least one endpoint p0 of a0
is in H, otherwise a0 would not be shorter than a great semicircle, contradicting axiom A1. The
walk follows a0 to p0, and then continues in this fashion: upon reaching an endpoint pi ∈ ai ∩H
of an arc ai, proceed into the arc ai+1 which blocks ai at pi. Pick any endpoint pi+1 of ai+1

contained in H (such an endpoint exists due to axiom A1) and follow ai+1 to pi+1, and so on.

A
H

E

1a

2a

8a

7a

6a

5a
4a

3a
8p

7p

6p

5p

4p
2p

0a

0p

1p
3p

AH

Figure 5: An example of the walk within a hemisphere H constructed in Lemma 9. The walk
eventually encloses an area A (left picture). If A is on the right-hand side of the walk (i.e., if
the walk travels around A in the clockwise direction), then following the SOD starting from the
boundary of A and always turning right upon reaching the endpoint of the current arc eventually
traces out the eye E of a swirl which is entirely contained in H (right picture).

Since S has finitely many arcs, the walk eventually reaches a point that it has already visited.
As soon as this happens, the walk has enclosed a region A ⊆ H. Assume, without loss of
generality, that the walk travels around the boundary of A in the clockwise direction, as in the
left picture of Figure 5 (if it is in the other direction, a symmetric argument applies).

Let us construct a second walk as follows. Starting from any point on the boundary of A,
say on arc ai, follow the first walk until an endpoint of ai is reached. Then turn right into the
next arc of S, follow it to its endpoint, and so on. Since the second walk always turns right, it
eventually traces out the eye E of a clockwise swirl, as shown in the right picture of Figure 5.
Moreover, it is easy to see that the second walk is bound to remain within A, and therefore
E ⊆ A ⊆ H.

Note that there are cases where a hemisphere contains the eye of exactly one swirl of a SOD,
as shown in Figure 6.

Theorem 10. Every SOD has at least four swirls.
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Figure 6: A SOD where a hemisphere contains the eye of exactly one swirl (in yellow).

Proof. By Theorem 8, there are at least one clockwise swirl W1 and at least one counterclockwise
swirl W2. Consider a great circle G that intersects the interiors of the eyes of both W1 and W2.
Then G determines two hemispheres H1 and H2, none of which entirely contains the eye of W1

or W2. Hence, by Lemma 9, there must be a third swirl W3 whose eye is entirely contained in
H1, and a fourth swirl W4 whose eye is entirely contained in H2.

As a consequence we have the following corollary, which yields a weaker version of our main
result, Theorem 3:

Corollary 11. Every SOD has at least eight arcs.

Proof. Let S be a SOD; by Theorem 10, S has at least four swirls, each of which consists of at
least three arcs. Consider four arbitrary swirls, and all arcs in S that are incident to at least one
of these swirls. Recall that the swirl graph is simple and planar due to Theorem 8. A simple
planar bipartite graph on four vertices has at most four edges, hence at most four of these arcs
are incident to two of these swirls. Thus, these four swirls involve at least 4 · 3− 4 = 8 distinct
arcs. We conclude that S has at least eight arcs.

Figure 7 shows an example of a SOD with exactly eight arcs and four swirls, proving that
Theorem 10 and Corollary 11 are tight.

5 Proof of Theorems 3 and 4

We will now prove both Theorem 3 and Theorem 4.

Upper bound. Let P be a polygonal scene (possibly the facets of a polyhedron). Let p be
any point that sees no vertices of P, and let S be the SOD generated by P with viewpoint p.
We know from Corollary 11 that S consists of at least eight arcs. However, this is insufficient to
conclude that p sees at least eight distinct edges of P , because some arcs of S may be projections
of sub-segments of the same edge of P.

We will first give some definitions. Recall that a great semicircle is an arc consisting of half
of a great circle on the unit sphere. A semicircle cover C of a SOD S is a set of great semicircles
such that each arc of S is contained in the relative interior of a great semicircle in C.

Lemma 12. Every semicircle cover of a SOD consists of at least eight great semicircles.
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Figure 7: A SOD with eight arcs and four swirls

1a 2a

8a

7a

6a

5a
4a

3a
9a

Figure 8: If a great circle contains two arcs a1 and a2 that are projections of sub-segments of
a same edge of an arrangement of polygons, there must be seven additional arcs touching the
same great circle.

Proof. We say that a SOD is good if all of its semicircle covers consist of at least eight great
semicircles. We will prove that all SODs are good.

Consider the arc-addition relation S1 ≺ S2 between SODs, meaning that the SOD S2 can
be obtained by adding a single arc to the SOD S1. Since SODs have finitely many arcs, the
arc-addition relation is well-founded (i.e., it has no infinite decreasing chains); also, if S1 ≺ S2

and S1 is a good SOD, then so is S2. Thus, we will prove that all SODs are good by well-founded
induction with respect to the arc-addition relation.

Let S be a SOD. If there is an arc a ∈ S that does not block any arc of S, then removing a
yields another SOD S ′, which is good by the inductive hypothesis. Since S ′ ≺ S, we conclude
that S is good, as well.

So, assume that all arcs of S block other arcs of S. If there is no great semicircle whose
relative interior contains two arcs of S, then S is good, due to Corollary 11. We may therefore
assume that there are two arcs a1, a2 ∈ S that lie in the relative interior of a same great semicircle
C, as shown in Figure 8.

The arcs a1 and a2 must hit four distinct arcs a3, a4, a5, a6 ∈ S. Let G be the great circle
containing C. Due to Theorem 7(4), there exists an arc a7 ∈ S that intersects G outside of a1
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and a2, for otherwise the great semicircle G \ C would have no intersections with S. Also, we
may assume that a7 is not contained in G (if it is, pick any arc blocked by a7 instead). Finally,
let a8, a9 ∈ S be two arcs blocked by a1 and a2, respectively.

Note that the seven arcs a3, a4, . . . , a9 are all distinct and no great semicircle’s relative
interior completely contains more than one of them. This is because they all touch the great
circle G and none of them lies in G (recall that each arc of a SOD is shorter than a great
semicircle, due to axiom A1). Thus, seven great semicircles are required to cover these arcs, and
one additional great semicircle is required for a1 and a2. Therefore, S is good.

Corollary 13. Every point that does not see any vertex of a polygonal scene P sees positive
portions of at least eight distinct edges of polygons in P.

Proof. Let p be any point that does not see any vertex of P. Let S be the SOD generated by
P with viewpoint p; for each edge e of P that is visible to p, consider the line ℓe containing e.
The projection of ℓe onto the unit sphere centered at p is a great semicircle Ce whose relative
interior contains all the arcs of S corresponding to e. Thus, the set C of all great semicircles Ce

constructed as above for all edges e visible to p is a semicircle cover of S. Since two distinct
great semicircles Ce, Ce′ ∈ C must correspond to distinct edges e and e′, we conclude that S
contains arcs corresponding to least |C| distinct edges of P , all of which are visible to p. Due to
Lemma 12, we have |C| ≥ 8, and so p sees at least eight edges of P . To prove that p sees positive
portions of such edges, it is sufficient to observe that the arcs of a SOD have positive length,
and therefore are projections of positive portions of edges of P.

Figure 9: Two views of a polygonal scene of six internally disjoint polygons where the central
point sees no vertices and exactly eight edges

Lower bound. We will now construct a polygonal scene P of six internally disjoint polygons
matching the upper bound in Corollary 13. The polygonal scene is depicted in Figure 9, as
seen from two different viewpoints. As it will turn out, the visibility map generated by P with
viewpoint the center of the arrangement is combinatorially equivalent to the SOD in Figure 7.

The polygons in P are as follows:

� a rectangle R1 with vertex coordinates (5,±1,±15),

� a rectangle R2 with vertex coordinates (−5,±15,±1),
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� a triangle T1 with vertex coordinates (15,−2, 35), (7, 0,−8), (−7,−8, 3),

� a triangle T2 with vertex coordinates (−15,−35,−2), (−7, 8, 0), (7,−3,−8),

� a triangle T3 with vertex coordinates (15, 2,−35), (7, 0, 8), (−7, 8,−3),

� a triangle T4 with vertex coordinates (−15, 35, 2), (−7,−8, 0), (7, 3, 8).

Let P = {R1, R2, T1, T2, T3, T4}. Observe that the involution ϕ1 : (x, y, z) 7→ (x,−y,−z)
maps P to itself, because it fixes R1 and R2 and exchanges T1 with T3 and T2 with T4.

Similarly, the isometry ϕ2 : (x, y, z) 7→ (−x,−z, y) has period 4 and maps P to itself. In
particular, ϕ2 exchanges R1 and R2 and maps Ti to Ti+1 for all 1 ≤ i ≤ 4, where addition over
the indices is taken modulo 4.

Proposition 14. The polygons in the scene P = {R1, R2, T1, T2, T3, T4} are disjoint.

Proof. The rectangles R1 and R2 are disjoint because they lie in distinct parallel planes: x = 5
and x = −5, respectively.

The intersection between T1 and the plane x = 5 is a segment whose vertices have y-coordinate
−8/7 and −52/11, respectively. Since both coordinates are smaller than −1, it follows that R1

and T1 are disjoint.
The intersection between T2 and the plane x = 5 is a segment whose vertices have y-coordinate

−10/7 and −65/11. Both y-coordinates are smaller than −1, and therefore R1 and T2 are disjoint.
The orthogonal projections of T1 and T2 on the plane y = 0 are two triangles that intersect

only at their common vertex (7, 0,−8). Since this is a vertex of T1 but not a vertex of T2, it
follows that T1 and T2 are disjoint.

Observe that all the points of T1 have a negative y-coordinate except the vertex (7, 0,−8).
On the other hand, the points of T3 have a positive y-coordinate except the vertex (7, 0, 8). Since
the two vertices are distinct, the triangles T1 and T3 are disjoint.

Due to the symmetries of P given by ϕ1 and ϕ2, all other pairs of polygons in P are disjoint,
as well.

Proposition 15. The point p = (0, 0, 0) does not see any vertices of P = {R1, R2, T1, T2, T3, T4}
and sees exactly eight of its edges.

Proof. Let αi be the plane containing Ti, for 1 ≤ i ≤ 4. We will first show that the two vertices
of R1 with negative z-coordinate are occluded by T2. Note that the ray (5t, t,−15t) hits the
vertex (5, 1,−15) of R1 for t = 1, and intersects the plane α2 with equation 7x−2y+15z+65 = 0
for t = 65/192 < 1 in the point a1 = (325/192, 65/192,−325/64). Also, the ray (5t,−t,−15t)
hits the vertex (5,−1,−15) of R1 for t = 1, and intersects α2 for t = 65/188 < 1 in the point
a2 = (325/188,−65/188,−975/188). Observe that a1 and a2 can be expressed as a convex
combination of the vertices of T2 as follows:

a1 =

(
325

192
,
65

192
,−325

64

)
=

149

8832
· (−15,−35,−2) +

519

1472
· (−7, 8, 0) +

5569

8832
· (7,−3,−8),

a2 =

(
325

188
,− 65

188
,−975

188

)
=

261

8648
· (−15,−35,−2) +

1423

4324
· (−7, 8, 0) +

5541

8648
· (7,−3,−8).

Thus, a1 and a2 are in T2, which implies that T2 occludes both vertices of R1 whose z-coordinate
is negative. Since T2 is convex, it occludes the entire edge of R1 connecting these two vertices.

By the symmetry of P given by ϕ1, the edge of R1 whose vertices have positive z-coordinate
is occluded by T4. Thus, all vertices of R1 are occluded, and p sees at most two edges of R1.
Due to the symmetry given by ϕ2, the same is true of R2.
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We will now show that R1 occludes the two vertices of T1 with positive x-coordinate. The
plane β containing R1 has equation x = 5; the ray (15t,−2t, 35t) hits the vertex (15,−2, 35)
of T1 for t = 1 and intersects β for t = 1/3 < 1 in the point b1 = (5,−2/3, 35/3). The ray
(7t, 0,−8t) hits the vertex (7, 0,−8) of T1 for t = 1 and intersects β for t = 5/7 < 1 in the
point b2 = (5, 0,−40/7). Since both b1 and b2 are in R1, the two vertices of T1 with positive
x-coordinate are occluded. The edge of T1 connecting them is also occluded, because R1 is
convex.

Finally, we will show that T4 occludes the two vertices of T1 with positive z-coordinate.
The plane of T4 is α4, with equation 7x + 2y − 15z + 65 = 0. The ray (15t,−2t, 35t) hits
the vertex (15,−2, 35) of T1 for t = 1 and intersects α4 for t = 65/424 < 1 in the point
c1 = (975/424,−65/212, 2275/424). The ray (−7t,−8t, 3t) hits the vertex (−7,−8, 3) of T1 for
t = 1 and intersects α4 for t = 13/22 < 1 in the point c2 = (−91/22,−52/11, 39/22). Both c1
and c2 can be expressed as a convex combination of the vertices of T4 as follows:

c1 =

(
975

424
,− 65

212
,
2275

424

)
=

153

19504
· (−15, 35, 2) +

1577

4876
· (−7,−8, 0) +

13043

19504
· (7, 3, 8),

c2 =

(
−91

22
,−52

11
,
39

22

)
=

21

1012
· (−15, 35, 2) +

193

253
· (−7,−8, 0) +

219

1012
· (7, 3, 8).

Therefore, c1 and c2 are in T4, implying that T4 occludes both vertices of T1 whose z-coordinate
is positive. The edge of T1 connecting them is also occluded, because R1 is convex.

We conclude that all vertices and two edges of T1 are occluded, and the same is true of T2,
T3, and T4, due to ϕ2. In total, the edges visible to p are at most eight: at most two edges of
R1 and R2, respectively, and at most one edge of T1, T2, T3, and T4, respectively. Thus, by
Corollary 13, exactly eight edges of P are visible to p.

This completes the proof of Theorem 4. To prove Theorem 3, it remains to show that there
exists a polyhedron with the same visibility map as P = {R1, R2, T1, T2, T3, T4}. This is achieved
by a general procedure outlined in [36]. The following lemma shows how to augment P to a
polyhedron Q with the same visibility map.

Lemma 16. Let P be a polygonal scene in R3 that consists of pairwise disjoint polygons, and
let p ∈ R3 be a point in the convex hull of P that is disjoint from all polygons in P. Then we
can augment P to a polygonal scene P ′ such that P ′ forms the boundary of a polyhedron Q, and
p has the same visibility map with respect to P and Q.

Proof. Let S be a sphere centered at p that contains all polygons in P. Consider the visibility
map A of p (generated by P) on the sphere S. Note that A is an arrangement of noncrossing
arcs of great circles. For example, if the polygonal scene P is the one in Figure 9 and p = (0, 0, 0),
then, the visibility map A is (combinatorially equivalent to) the SOD in Figure 7.

Every face F of A corresponds to a cone C(F ) with apex p, representing visibility rays
emanating from p. The cone C(F ) either intersects a single polygon in P or does not intersect
any polygon in P (i.e., for any point q ∈ F , the ray −→pq does not hit the interior of any polygon in
P). Let F be the set of faces of A of the second type, i.e., where p does not see any polygon in
P . Since p lies in the convex hull of P , each face F ∈ F is strictly contained in some hemisphere
H(F ). For every face F ∈ F , successively create a new polygon P (F ) tangent to the sphere S
such that its orthographic projection to S is contained in the hemisphere H(F ) and is disjoint
from all other faces in F . Note that the polygonal scenes P and P ∪ {P (F ) : F ∈ F} have the
same visibility map from p.

Let S′ be a sphere centered at p that contains both P and polygons P (F ) for all F ∈ F . We
attach a “funnel” to each polygon P in P ∪ {P (F ) : F ∈ F}, on the opposite side from p, from
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the polygon P to a pairwise disjoint “holes” in the sphere S′. To complete P ′, we connect the
disjoint “holes” in S′ by a sufficiently fine mesh of S′ such that the triangles are interior-disjoint
from the funnels. Then the mesh and the funnels will bound a contractible polyhedron Q. Since
p does not see any interior points of the polygons in the funnels and the mesh, the visibility
map of Q is the same as that of P.

6 Conclusions and Open Problems

We have proved that, given a polyhedron P in R3, any point p ∈ R3 sees at least six edges of P .
Moreover, if p does not see any vertex of P, it sees at least eight of its edges. Both bounds are
tight, and the second one holds more generally for a polygonal scene P in R3. En route to these
results, we also proved that any Spherical Occlusion Diagram (SOD) has at least four swirls and
eight edges, and these bounds are tight, as well.

A possible direction for future research is extending our results to the number of visible faces
of polyhedra. Recall that, due to the Lusternik–Schnirelmann theorem, if a sphere is covered by
three closed sets, one of the sets contains two antipodal points [6, pp. 118–119]. Applying this
theorem to visibility maps, we immediately conclude that any interior point of a polyhedron sees
at least four faces (because the projection of a face onto a sphere contains no antipodal points);
a matching lower bound is trivially given by a tetrahedron. We conjecture that, if an interior
point sees no vertices of a polyhedron, then it sees at least eight of its faces. A configuration
matching this bound can be easily constructed from the arrangement in Figure 9.

Higher-dimensional generalizations of this problem can also be investigated: For example,
given a polyhedron in Rd, what is the minimum number of ℓ-faces visible to a point that does
not see any k-faces for 0 ≤ k < ℓ < d?

We believe that SODs are interesting objects in their own right, and will find more applications
in discrete and computational geometry. Some open problems related to SODs are given in [36].
Perhaps the most compelling issue is to find a simple characterization of the SODs that are not
visibility maps of polyhedra. Such SODs are known to exist (see [22]), although they appear to
be rare. An intriguing question is whether every SOD is combinatorially equivalent to a visibility
map of a polyhedron.

According to Theorem 10, any SOD has at least four swirls. Does it necessarily have two
clockwise and two counterclockwise swirls? More generally, we ask for a characterization of the
swirl graphs of SODs, as well as the swirl graphs of classes of SODs with certain properties (e.g.,
swirling SODs, uniform SODs, irreducible SODs, and more [36]).
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