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Real-life bellows

Observation: All of them have elasticity or curved creases. Why?
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Definition of bellows

Wiktionary:
“A bellows is a container which is deformable in such a way as to
alter its volume, which has an outlet where one wishes to blow air.”

Problem: Is it possible to construct a “geometric bellows” in
some mathematical sense?
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Bellows in Flatland

/A triangular linkage (rigid bars and joints) cannot be a bellows./
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Bellows in Flatland

a b

c

16

4c−4b−4a−2a2c+2c2b+22b2a2=2A

/Heron’s formula gives its area as a function of the edge lengths./
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Bellows in Flatland

/However, all other closed polygonal linkages are flexible./
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Bellows in Flatland

/If the linkage has a small hole, it can “breathe” air as it flexes./
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Polyhedral model

To define a 3D model, let us generalize 2D linkages.

Instead of rigid bars, we have rigid polygons.

Instead of joints at vertices, we have hinges at edges.

Problem: Can such a polyhedron be a bellows? Can it even flex?
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Euclid’s “definition” of equal polyhedra

Euclid’s Elements, Book XI, Definition 10:

Literal translation:
Equal and similar solid figures are those contained by similar planes
equal in multitude and in magnitude.

Modern interpretation:
Two polyhedra are equal if they have the same combinatorial
structure and equal corresponding faces.

=⇒ Euclid seems to disallow the existence of flexible polyhedra!
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Simson’s critique to Euclid

Simson, 1756: Euclid’s statement cannot be a definition, but a
theorem that ought to be proved.

Also, the statement is not universally true:

Heath, 1908: To be fair, Euclid only applies his definition to
prove equality of convex polyhedra with trihedral vertices.

For these polyhedra, Euclid’s statement is obviously true, because
a trihedral vertex is rigid.
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Convex polyhedra are rigid

Cauchy’s arm lemma:

1> α

2> α 3> α

4> α

> dd

1α

2α 3α

4α

Theorem (Legendre-Cauchy, 1813)

Two convex polyhedra are equal if they have the same
combinatorial structure and equal corresponding faces.

Corollary

Convex polyhedra are rigid.

=⇒ Polyhedral bellows must be non-convex.
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Existence of flexible polyhedra

Theorem (Bricard, 1897)

There exist self-intersecting flexible octahedra.

Theorem (Gluck, 1975)

Almost all polyhedra of genus 0 are rigid.

Theorem (Connelly, 1977)

There exist (non-self-intersecting) flexible polyhedra.
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Steffen’s flexible polyhedron

Theorem (Steffen, 1979)

There is a flexible polyhedron with 9 vertices (smallest possible).
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Still no polyhedral bellows!

Observation

The (generalized) volume of all these flexible polyhedra remains
constant throughout the flexing!

In other words, althought these polyhedra are not rigid, none of
them can blow air.

Several people made the conjecture that this is not a coincidence,
and Connelly coined a name for it:

Bellows conjecture (Connelly, 1978)

The volume of a polyhedron is constant throughout any flexing.
In other words, there are no polyhedral bellows.
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Bellows theorem

Theorem (Sabitov, 1996)

Given a polyhedron (of any genus), its volume V satisfies

VN + aN−1(`)VN−1 + · · ·+ a1(`)V + a0(`) = 0,

where the coefficients ai (`) only depend on the combinatorial
structure of the polyhedron and on the lengths of its edges, `.

The volume is a root of a polynomial that remains fixed as the
polyhedron flexes, hence it can only take finitely many values.

Corollary (Bellows theorem)

The volume of a polyhedron is constant throughout any flexing.

=⇒ There are no polyhedral bellows (of any genus).
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Bellows theorem

Volume

)V(P

Any polynomial has a finite number of roots:
at most as many as its degree.
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Bellows theorem

Volume

)V(P

So, the volume of a polyhedron with assigned combinatorial
structure and edge lengths can only take finitely many values.
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Bellows theorem

Volume

)V(P

But the volume changes continuously as the polyhedron flexes,
thus it cannot jump from a root to another.
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Example: tetrahedra

There is an analogue of Heron’s formula for tetrahedra:

Theorem (Piero della Francesca, 15th century)

The volume V of a tetrahedron with edges `1, · · · , `6 satisfies

V 2 =
1

144

[
`21`

2
5(`22+`23+`24+`26−`21−`25) + `22`

2
6(`21+`23+`24+`25−`22−`26)

+`23`
2
4(`21+`

2
2+`

2
5+`

2
6−`23−`24)−`21`22`23−`22`24`25−`21`24`26−`23`25`26

]

1ℓ

2ℓ 3ℓ

4ℓ
5ℓ

6ℓ

The polynomial equation has the form P(V ) = V 2 + a0(`) = 0.
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Generalizations and extensions

Theorem (Gaifullin, 2012)

The bellows theorem generalizes to any dimension > 3.

Two polyhedra are scissors-congruent if one can be cut into finitely
many polyhedra that can be rearranged to form the other.

Strong bellows conjecture (Connelly, 1979)

Any polyhedron remains scissors-congruent throughout any flexing.

Theorem (Alexandrov-Connelly, 2009)

The strong bellows conjectures is false.

Theorem (Gaifullin-Ignashchenko, under review)

A polyhedron preserves its Dehn invariant throughout any flexing.
Hence the strong bellows conjecture is true. (cf. Sydler, 1965)
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Strong bellows conjecture (Connelly, 1979)

Any polyhedron remains scissors-congruent throughout any flexing.

Theorem (Alexandrov-Connelly, 2009)

The strong bellows conjectures is false. Wrong?

Theorem (Gaifullin-Ignashchenko, under review)
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Next seminar: proving the bellows theorem

Classi�cation of
closed surfaces

Surgery of polyhedra

Cayley-Menger
determinant

Bellows theorem

Sylvester matrix

Elimination theory

Sum of algebraic
is algebraicKronecker product

Frobenius
companion matrix

Zorn’s lemmaClassi�cation of
closed surfaces

Surgery of polyhedra

Bellows theorem

Existence of maximal ideals

Theory of places

Geometric approach Algebraic approach

Cayley-Menger
determinant

Sum of algebraic
is algebraicKronecker product

Frobenius
companion matrix
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Next seminar: prerequisites

Determinant of a square matrix:

Basic properties, e.g., det(AB) = det(A) det(B)

How to compute it, especially by Laplace expansion

Usage in linear algebra: A is invertible iff det(A) 6= 0

Geometric interpretation: scaling factor of the linear
transformation described by the matrix

Eigenvalues of a square matrix:

Definition and basic properties

Relationship with the characteristic polynomial of the matrix

Closed orientable surfaces:

Geometric intuition of genus: number of holes

Topological intuition of surgery: what happens when a
circular cut is made on a closed orientable surface
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