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Static networks

In a static network, some machines (or processes) are connected
with each other through permanent links.

At each time unit, all machines send messages to their neighbors
and do some local deterministic computation.
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Dynamic networks

A dynamic network works in the same way, except that the links
between machines (or agents) may change with time.

Assume that, at every step, the links form a connected graph.
What can be computed by this network, and in how many steps?
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Counting anonymous agents with a Leader

We assume the dynamic network to be anonymous, i.e., all agents
start with the same internal state, except one: the Leader.
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Counting Problem: Eventually, all agents must know the total
number of agents, n. Is it possible? In how many steps at most?

Note: Knowing n allows agents to solve a large class of problems.



Counting anonymous agents with a Leader

We assume the dynamic network to be anonymous, i.e., all agents
start with the same internal state, except one: the Leader.

Output: 9

Output: 9

Output: 9 Output: 9

Output: 9

Output: 9

Output: 9Output: 9

Output: 9

Counting Problem: Eventually, all agents must know the total
number of agents, n. Is it possible? In how many steps at most?

Note: Knowing n allows agents to solve a large class of problems.



Previous work

Theorem (Michail et al., SSS 2013)

In a static anonymous network,
1. Without a Leader, counting processes is impossible.
2. With a unique Leader, counting can be done in 2n rounds.
Conjecture. Counting in a dynamic network is impossible even with a Leader.

Theorem (Di Luna et al., ICDCN 2014)

In a dynamic anonymous network with a unique Leader, counting agents
can be done in an exponential number of rounds, provided that an
upper bound on n is known.

Theorem (Di Luna–Baldoni, OPODIS 2015)

In a dynamic anonymous network with a unique Leader, counting agents
can be done in an exponential number of rounds.

Theorem (Kowalski–Mosteiro, ICALP 2018, Best Paper Award)

In a dynamic anonymous network with a unique Leader, counting agents

can be done in O(n4 log3n) rounds.
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In a dynamic anonymous network with a unique Leader, counting agents

can be done in O(n4 log3n) rounds. (Can we improve upon this?)



Memory and messages

Each agent has unlimited memory and can remember everything it
sees: its memory is its state. Also, when an agent sends a message,
it sends its current state, i.e., the entire contents of its memory.
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Special case: agents communicating with the Leader

Let us focus on the agents that interact directly with the Leader.
Assume that interactions have a multiplicity (later we will see why).
For each new interaction, the Leader adds a node to a History tree.
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History tree

How can the Leader know how many agents correspond to a node in the
History tree, i.e., its anonymity? When it sees an agent again, it looks at
the multiplicity of its previous interaction with the Leader, i.e., its degree.
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degree: 2
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The Leader’s guess for a node’s anonymity is computed by dividing the
multiplicity of the node’s parent by the node’s degree.



How guesses work

A downward path in the History tree looks like this:

0sstate:

0mmultiplicity:

0ddegree:

0gguess:

0aanonymity:

1sstate:

1mmultiplicity:

1ddegree:

1gguess:

1aanonymity:

2sstate:

2mmultiplicity:

2ddegree:

2gguess:

2aanonymity:

Each guess is computed by the Leader as: gi = bmi−1

di
c.

The anonymity ai is the number of agents that were seen by the
Leader when they were in state si (this is unknown to the leader).

Observation

1 ≤ ai+1 ≤ ai ≤ gi

The Leader’s goal is to guess the correct anonymities.
How does the Leader know when a guess is correct?



Basic lemma

When the anonymity of a node is the same as its parent’s, the
guess on this node is correct:

Lemma

If ai = ai+1, then gi+1 = ai+1.

Proof. If the agents in state si seen by the Leader do not all have
the same degree, then ai+1 < ai. Hence all degrees are the same,
and the next guess is correct: gi+1 = bmi/di+1c = ai = ai+1.

L

d=2 d=2 d=2d=2 d=2

L

d=2 d=2 d=2d=3 d=3

m=10

Unfortunately, the Leader cannot use this information directly,
because it does not know the anonymities.



Limiting lemma

However, the Leader can use the previous lemma indirectly, thanks

to the Limiting lemma:

Lemma

For any d ≥ 0, if a0 < g0 and ∀j ∈ [1..d], gj > g0 − j, then ad ≤ a0 − d.

Proof. By induction on d: the base case d = 0 is trivial. Now assume
the claim for d = k, and let us prove it for d = k+1. So, let a0 < g0 and
∀j ∈ [1..k + 1], gj > g0 − j; we have to prove that ak+1 ≤ a0 − k − 1.

We know that ak+1 ≤ ak. By the inductive hypothesis, ak ≤ a0 − k.
Since a0 < g0, we have a0− k ≤ g0− k− 1 < gk+1, and so ak+1 < gk+1.

By the previous lemma, ak+1 ≤ ak − 1 ≤ a0 − k − 1, as desired.



Detecting correct guesses

Theorem

In every downward path in the History tree with guesses g0 = k, g1, g2,
. . . , gk, the greatest index i such that gi + i is minimum corresponds to
a correct guess, i.e., gi = ai.

Proof. Otherwise we would have aj ≤ 0, with j = ai + i: impossible.

0g

ig

0a

ia

step

guesses

anonymities

ja

Limiting lemma
applies here

kg



Detecting correct guesses

Assume that all multiplicities are at most n. Thus, all guesses are
bounded by n, too.

By the previous theorem, in every downward path in the History
tree of length at least n, the leader can determine the anonymity
of at least one node.

)n(O

As soon as all the leaves in the History tree have depth at least n,
the Leader can count all agents that have interacted with it.

Of course, there may be agents that never interact with the
Leader. How can the leader count them?



Propagation of information

In a dynamic network, every news is communicated to everybody
in at most n steps (where n is the number of agents). Hence,
whenever two agents interact, the Leader will eventually know.
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This gives a termination condition for a counting algorithm: When
the Leader has a guess on n, it waits as many steps to confirm it.
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Generalized History tree

As soon as the Leader learns that some agents in state s have
interacted in a single step with agents in states s1, s2, . . . , sk, it
creates a node in the History tree, also storing the degrees.

s ss s

1s1s 2s 3s

sstate:

3s,2s,1sobserved:

degrees: 2, 1, 1

The anonymity of this node is defined as the number of agents
that, when their state was s, interacted precisely with agents in
states s1, s2, . . . , sk, with degrees d1, d2, . . . , dk, respectively.



Generalized multiplicities

On its way to the Leader, some information may be “multiplied”
by intermediate agents: this is why we introduced multiplicities.

L

S

X X X X

In the generalized algorithm, the Leader “accepts” a piece of
information only from groups of agents that it has already counted;
the anonymity of such a group becomes the multiplicity of the
node in the History tree corresponding to that piece of information.

Future work: Does the idea of the previous guessing algorithm
work for the generalized History tree, as well? How many steps
does it take for the Leader to count all agents?


