Group Theory Applied to Cyclic-Shift Puzzles

Giovanni Viglietta

(Partially from a joint work with Kwon Kham Sai and Ryuhei Uehara)

JAIST - November 6, 2020

Cyclic-shift puzzles

Case study: 1-connected and 2-connected puzzles

We focus on cyclic-shift puzzles of two types:

1-connected

2-connected

Our questions are:

- What configurations are reachable from a given initial configuration? (I.e., what is the configuration space?)
- How can we get from an initial configuration to a final configuration in an efficient way?

Note: we assume that all tokens have distinct colors.

Overview

Theory

- Groups of permutations
- Lagrange's theorem for subgroups
- Even and odd permutations
- Conjugation
- Automorphisms

Applications

- 1-connected cyclic-shift puzzles
- 2-connected cyclic-shift puzzles
- Special case with two 4-cycles
- Generalized cyclic-shift puzzles

Permutations

- We can represent any configuration as a permutation describing where each token is located.
- Notation: [3641725] means that the first slot contains token $\# 3$, the second slot contains token $\# 6$, etc.
- Since a permutation is a bijection $\pi:\{1, \ldots, n\} \rightarrow\{1, \ldots, n\}$, permutations can be composed like functions:

$$
\text { e.g., }\left[\begin{array}{lllll}
2 & 3 & 1 & 4 & 5
\end{array}\right]\left[\begin{array}{lllll}
1 & 2 & 4 & 5 & 3
\end{array}\right]=\left[\begin{array}{lllll}
2 & 3 & 4 & 5 & 1
\end{array}\right] .
$$

- Composition of permutations is associative: $\pi(\sigma \rho)=(\pi \sigma) \rho$.
- Composition of permutations is not commutative in general:

$$
\text { e.g., }\left[\begin{array}{lll}
2 & 1 & 3
\end{array}\right]\left[\begin{array}{lll}
1 & 3 & 2
\end{array}\right]=\left[\begin{array}{lll}
2 & 3 & 1
\end{array}\right] \neq\left[\begin{array}{lll}
3 & 1 & 2
\end{array}\right]=\left[\begin{array}{lll}
1 & 3 & 2
\end{array}\right]\left[\begin{array}{lll}
2 & 1 & 3
\end{array}\right] .
$$

- Every permutation can be expressed as the composition of disjoint cycles in a unique way:
e.g., $\left[\begin{array}{lllll}3 & 6 & 4 & 1 & 2\end{array}\right]=\left(\begin{array}{lll}1 & 3 & 4\end{array}\right)(26)(57)$.

Groups of permutations

The notion of group was first formulated by Galois in the 1830s.
A non-empty set G of permutations of n objects is a group if:
(1) G is closed under composition:

$$
\pi, \sigma \in G \Longrightarrow \pi \sigma \in G
$$

(2) G is closed under inversion:

$$
\pi \in G \Longrightarrow \pi^{-1} \in G
$$

Groups of permutations

The notion of group was first formulated by Galois in the 1830s.
A non-empty set G of permutations of n objects is a group if:
(1) G is closed under composition:
$\pi, \sigma \in G \Longrightarrow \pi \sigma \in G$,
(2) G is closed under inversion:
$\pi \in G \Longrightarrow \pi^{-1} \in G$.

- Note: G contains the identity permutation $e=\left[\begin{array}{lll}1 & 2 & \ldots\end{array}\right]$, because $\pi \in G \Longrightarrow \pi^{-1} \in G \Longrightarrow \pi \pi^{-1}=e \in G$.
- The number of permutations in G is called the order of G (not to be confused with n, which is the degree of G).
- The set of all permutations of $\{1, \ldots, n\}$ forms a group called the symmetric group S_{n}. Its order is $\left|S_{n}\right|=n$!.

Subgroups

If H and G are groups with $H \subseteq G$, then H is a subgroup of G, and we write $H \leq G$.

Theorem (Lagrange)

$$
\text { If } H \leq G \text {, then }|G| \text { is a multiple of }|H| \text {. }
$$

Proof. G is the disjoint union of "copies" of H, called cosets.

- e	H	- π_{1}	$H \pi_{1}$	- π_{2}	$H \pi_{2}$	- π_{3}	$H \pi_{3}$

The number of cosets is called the index of H in G.

Generators

Consider the following 2-connected cyclic-shift puzzle:

We have two permutations and their inverses, the generators:

- $\alpha=\left(\begin{array}{ll}1 & 2 \\ 3 & 4 \\ 5\end{array}\right)$,
- $\beta=\left(\begin{array}{ll}5 & 67810111213) \text {, } \\ \hline\end{array}\right.$
- $\alpha^{-1}=(654321)$,
- $\beta^{-1}=(1312111098765)$.

The set of permutations obtained by composing the generators in all possible ways is $\langle\alpha, \beta\rangle$, the group generated by α and β.
$\langle\alpha, \beta\rangle=\left\{e, \alpha, \beta, \alpha \beta, \beta \alpha, \alpha^{-1} \beta, \ldots, \beta^{-1} \alpha \alpha \beta \beta \alpha^{-1} \beta \beta \beta, \ldots\right\}$
Since $\langle\alpha, \beta\rangle$ is a subgroup of S_{13}, its order is a divisor of 13 !.

Configuration space

We can now give a description of the configuration space.
We know that $\langle\alpha, \beta\rangle$ is a subgroup of S_{n} : this is the set of permutations that can be obtained starting from the initial permutation $e=\left[\begin{array}{lll}1 & 2 & \ldots\end{array}\right]$.

Then there are other copies of $\langle\alpha, \beta\rangle$, all of the same size, corresponding to the other cosets: each is the set of permutations that can be obtained from some initial permutation $\pi_{i} \notin\langle\alpha, \beta\rangle$.

So, the configuration space can be modeled as a graph with $n!/|\langle\alpha, \beta\rangle|$ isomorphic connected components (the Cayley graph).
\Longrightarrow All we have to do is determine $\langle\alpha, \beta\rangle$.

Some known facts

Let a set of of generators P be given as input, and let $G=\langle P\rangle$.
The following problems are solvable in polynomial time (Sims, 1970):

- Compute the order of G.
- Decide if a given permutation π is in G.
- If $\pi \in G$, find an expression for π in terms of the generators.

On the other hand, the minimization problem is hard:

- If $\pi \in G$, finding the shortest sequence of generators whose composition is π is PSPACE-complete (Jerrum, 1985).
- If all the generators in P are cycles, the problem is NP-hard (Sai-Uehara, 2020). It is not known if it is PSPACE-complete.

Moreover, under some conditions that are satisfied by cyclic-shift puzzles,

- The length of a shortest generator sequence for π is upper bounded by a quasi-polynomial function of n (Helfgott-Seress, 2013).
- It is not known if there is a polynomial upper bound. If so, finding the shortest sequence of generators would be in NP.

Even and odd permutations

For $\pi \in S_{n}$, define $\operatorname{sgn}(\pi)=\prod_{i<j} \frac{\pi(i)-\pi(j)}{i-j} . \quad($ Note: $\operatorname{sgn}(\pi)= \pm 1$.)
Example: $\operatorname{sgn}[3142]=\frac{(3-1)(3-4)(3-2)(1-4)(1-2)(4-2)}{(1-2)(1-3)(1-4)(2-3)(2-4)(3-4)}=-1$.

Even and odd permutations

For $\pi \in S_{n}$, define $\operatorname{sgn}(\pi)=\prod_{i<j} \frac{\pi(i)-\pi(j)}{i-j} . \quad($ Note: $\operatorname{sgn}(\pi)= \pm 1$.)
Example: $\operatorname{sgn}[3142]=\frac{(3-1)(3-4)(3-2)(1-4)(1-2)(4-2)}{(1-2)(1-3)(1-4)(2-3)(2-4)(3-4)}=-1$.
Lemma. Transposing two elements changes the sign of a permutation.
Example: (12)[3142]=[$\begin{array}{lll}3 & 2 & 4\end{array}$ 1];
$\operatorname{sgn}[3241]=\frac{(3-2)(3-4)(3-1)(2-4)(2-1)(4-1)}{(1-2)(1-3)(1-4)(2-3)(2-4)(3-4)}=1$.

Even and odd permutations

For $\pi \in S_{n}$, define $\quad \operatorname{sgn}(\pi)=\prod_{i<j} \frac{\pi(i)-\pi(j)}{i-j} . \quad($ Note: $\operatorname{sgn}(\pi)= \pm 1$.)
Example: $\operatorname{sgn}\left[\begin{array}{lll}3 & 1 & 4\end{array} 2\right]=\frac{(3-1)(3-4)(3-2)(1-4)(1-2)(4-2)}{(1-2)(1-3)(1-4)(2-3)(2-4)(3-4)}=-1$.
Lemma. Transposing two elements changes the sign of a permutation.
Example: (1 2) [$\left.\begin{array}{llll}1 & 1 & 4 & 2\end{array}\right]=\left[\begin{array}{lll}3 & 2 & 4\end{array}\right]$;
$\operatorname{sgn}\left[\begin{array}{llll}3 & 2 & 4 & 1\end{array}\right]=\frac{(3-2)(3-4)(3-1)(2-4)(2-1)(4-1)}{(1-2)(1-3)(1-4)(2-3)(2-4)(3-4)}=1$.
So, $\operatorname{sgn}(\pi)$ corresponds to the parity (even or odd) of the length of any sequence of transpositions whose composition is π.
Another consequence is that $\operatorname{sgn}(\pi \sigma)=\operatorname{sgn}(\pi) \cdot \operatorname{sgn}(\sigma)$.
So, the even permutations (i.e., $\operatorname{sgn}(\pi)=1$) form a group called the alternating group $A_{n} \leq S_{n}$. (The odd permutations do not form a group.)
Note that $f(\pi)=\left(\begin{array}{l}12) \\ \end{array}\right.$ is a bijection between even and odd permutations. So, the order of A_{n} is $n!/ 2$, and the sets of even and odd permutations are the two cosets of A_{n} in S_{n}.

Some known facts

- Two random permutations of n objects generate either S_{n} or A_{n} with probability $1-1 / n+O\left(n^{-2}\right)$ (Babai, 1989).*
- The permutations π such that $\left\langle\left(\begin{array}{ll}1 & \ldots\end{array}\right), \pi\right\rangle$ is S_{n} or A_{n} have been characterized (Heath et al., 2009).
- Under some conditions that apply to our cyclic-shift puzzles, if there is a cycle of length $n-3$ or less, the generated group is S_{n} or A_{n} (Jones, 2014). ${ }^{\dagger}$

[^0]
Parity of cycles

Note: a cycle of length k is the composition of $k-1$ transpositions.
Example: $\left(\begin{array}{llll}1 & 2 & 3 & 4\end{array}\right)=(12)(23)(34)(45)$.

So, the two cycles α and β generate a subgroup of A_{n} if and only if they both have odd length.

Can we prove that α and β generate exactly A_{n} or S_{n} ?

Generators of S_{n} and A_{n}

The following facts are folklore, and can be proved by mimicking the Bubble Sort algorithm:

(2) $\left\langle\left(\begin{array}{lll}1 & 2 & \ldots\end{array}\right),\left(\begin{array}{lll}1 & 2 & 3\end{array}\right)\right\rangle \geq A_{n}$.

Any permutation in the group can be generated in $\Theta\left(n^{2}\right)$ steps.
\Longrightarrow If our α and β generate the cycles in either (1) or (2), we can conclude that they generate all of S_{n} or A_{n}.

[^1]
Solving 1-connected puzzles

Theorem

In a 1-connected puzzle, α and β generate A_{n} if they both have odd length, and S_{n} otherwise.
Any permutation in the group can be generated in $O\left(n^{2}\right)$ steps.
Proof. $\beta^{-1} \alpha$ is an n-cycle and $\alpha \beta \alpha^{-1} \beta^{-1}$ is a 3 -cycle of consecutive elements:

So, $\langle\alpha, \beta\rangle \geq A_{n}$. If both α and β are even permutations, they cannot generate an odd permutation, and thus $\langle\alpha, \beta\rangle=A_{n}$.

Say α is odd. We can obtain any odd permutation π by generating the even permutation $\pi \alpha$ (as before), and then doing α^{-1}.

Conjugation

What about 2-connected puzzles? If $\alpha=(12)$, we already know that that the generated group is $\left\langle\left(\begin{array}{ll}1 & 2\end{array}\right),\left(\begin{array}{ll}1 & 2\end{array} \ldots n\right)\right\rangle=S_{n}$.

Conjugation

What about 2-connected puzzles? If $\alpha=(12)$, we already know that that the generated group is $\left\langle\left(\begin{array}{ll}1 & 2\end{array}\right),\left(\begin{array}{ll}1 & 2\end{array} \ldots n\right)\right\rangle=S_{n}$.

To extend our analysis to other 2-connected puzzles, we use conjugations: π conjugated by σ is the permutation $\sigma \pi \sigma^{-1}$.

The same operation is done in linear algebra when changing coordinates: a linear transformation defined by a matrix A can also be expressed as $P A P^{-1}$, where P is a nonsingular matrix defining a change of basis.

Conjugation

What about 2-connected puzzles? If $\alpha=(12)$, we already know that that the generated group is $\left\langle\left(\begin{array}{ll}1 & 2\end{array}\right),\left(\begin{array}{ll}1 & 2\end{array} \ldots n\right)\right\rangle=S_{n}$.

To extend our analysis to other 2-connected puzzles, we use conjugations: π conjugated by σ is the permutation $\sigma \pi \sigma^{-1}$.

The same operation is done in linear algebra when changing coordinates: a linear transformation defined by a matrix A can also be expressed as $P A P^{-1}$, where P is a nonsingular matrix defining a change of basis.
Similarly, conjugating a permutation preserves its cycle structure.
Example: $(357)(134)(26)(57)(753)=(154)(26)(73)$.
Conjugating permutes the tokens in the cycle decomposition.
We can use conjugation in our puzzles to "move cycles around"...

Solving 2-connected puzzles

Theorem

In a 2-connected puzzle with $\alpha=\left(\begin{array}{ll}1 & 2\end{array}\right)$, the generated group is A_{n} if β has odd length, and S_{n} if β has even length. Any permutation in the group can be generated in $O\left(n^{2}\right)$ steps.

Proof. Conjugating α^{-1} by $\alpha^{-1} \beta$, we obtain the 3 -cycle $\alpha^{-1} \beta \alpha^{-1} \beta^{-1} \alpha=\binom{2}{3}$ of consecutive elements of β :

So, we can generate any even permutation of $\{2,3, \ldots, n\}$.
To obtain a given permutation π, first move the correct token $\pi(1)$ in position 1 (possibly shuffling the rest), and then operate on $\{2,3, \ldots, n\}$ as before (paying attention to parity... details omitted).

Solving 2-connected puzzles

Theorem

In a 2-connected puzzle, α and β generate A_{n} if they both have odd length, and S_{n} otherwise (unless they both have length 4 , see later). Any permutation in the group can be generated in $O\left(n^{2}\right)$ steps.

Proof. Conjugating β by $\beta^{-1} \alpha$ and β^{-1} by $\beta \alpha^{-1}$, we obtain two cycles δ_{1} and δ_{2} of the same length, going in opposite directions:

Their composition $\delta_{1} \delta_{2}$ is a 3-cycle plus two transpositions.
So, $\left(\delta_{1} \delta_{2}\right)^{2}$ is the 3 -cycle $(1 a-2 a)$, where a is the length of α.

Solving 2-connected puzzles

Proof (continued).

Conjugating (1 $a-2 a$) by α, we obtain the 3 -cycle (1 $2 a-1$).

Note that (12a-1) and $\alpha^{-1} \beta$ form a 2 -connected puzzle with a 3 -cycle, hence we can apply the previous theorem.

Solving 2-connected puzzles

Proof (continued).

Conjugating (1a-2a) by α, we obtain the 3-cycle (1 $2 a-1$).

Note that (12a-1) and $\alpha^{-1} \beta$ form a 2-connected puzzle with a 3 -cycle, hence we can apply the previous theorem.

What about the 2-connected puzzle where α and β have length 4? It looks like we cannot form any 2-cycle or 3-cycle, so we need a radically new idea...

Automorphisms

An isomorphism between two groups G and G^{\prime} is a bijection $f: G \rightarrow G^{\prime}$ such that $f(\pi \sigma)=f(\pi) f(\sigma)$.

If there is such a bijection f, then G and G^{\prime} have the same structure: they are "the same group" up to renaming their elements, and we write $G \cong G^{\prime}$.

An isomorphism from G to itself is called an automorphism.
An automorphism f permutes the elements of G, so $f \in S_{|G|}$.
Actually, the automorphisms of G form a subgroup $\operatorname{Aut}(G) \leq S_{|G|}$.

Automorphisms

An isomorphism between two groups G and G^{\prime} is a bijection $f: G \rightarrow G^{\prime}$ such that $f(\pi \sigma)=f(\pi) f(\sigma)$.

If there is such a bijection f, then G and G^{\prime} have the same structure: they are "the same group" up to renaming their elements, and we write $G \cong G^{\prime}$.

An isomorphism from G to itself is called an automorphism.
An automorphism f permutes the elements of G, so $f \in S_{|G|}$.
Actually, the automorphisms of G form a subgroup $\operatorname{Aut}(G) \leq S_{|G|}$.
Note that conjugation by an element $\pi \in G$ is an automorphism:
if $f_{\pi}(\sigma)=\pi \sigma \pi^{-1}$ for all $\sigma \in G$, then $f_{\pi} \in \operatorname{Aut}(G)$, because $f_{\pi}(\sigma \rho)=\pi(\sigma \rho) \pi^{-1}=\left(\pi \sigma \pi^{-1}\right)\left(\pi \rho \pi^{-1}\right)=f_{\pi}(\sigma) f_{\pi}(\rho)$.

The automorphisms induced by conjugations are called inner, and they form a subgroup $\operatorname{Inn}(G) \leq \operatorname{Aut}(G)$.

Outer automorphisms of S_{6}

If $n \neq 6$, the only automorphisms of S_{n} are the inner ones.
So, we have $\operatorname{Inn}\left(S_{n}\right)=\operatorname{Aut}\left(S_{n}\right)$ if $n \neq 6$.*
S_{6} is an exception: the index of $\operatorname{Inn}\left(S_{6}\right)$ in $\operatorname{Aut}\left(S_{6}\right)$ is 2, so there are $6!=720$ inner and 720 outer automorphisms (Hölder, 1895).

Here is an example of an outer automorphism $\psi: S_{6} \rightarrow S_{6}$ (defined on a generating set for S_{6}):

$$
\left.\begin{array}{l}
\psi\left(\left(\begin{array}{ll}
1 & 2
\end{array}\right)=\left(\begin{array}{ll}
1 & 2
\end{array}\right)\left(\begin{array}{ll}
3 & 5
\end{array}\right)\left(\begin{array}{ll}
4 & 6
\end{array}\right)\right. \\
\psi\left(\left(\begin{array}{ll}
2 & 3
\end{array}\right)=\left(\begin{array}{ll}
1 & 6
\end{array}\right)\left(\begin{array}{ll}
2 & 5
\end{array}\right)\left(\begin{array}{ll}
3 & 4
\end{array}\right),\right. \\
\psi\left(\left(\begin{array}{ll}
3 & 4
\end{array}\right)=\left(\begin{array}{ll}
1 & 2
\end{array}\right)\left(\begin{array}{ll}
3 & 6
\end{array}\right)\left(\begin{array}{ll}
4 & 5
\end{array}\right)\right. \\
\psi\left(\left(\begin{array}{ll}
4 & 5
\end{array}\right)=\left(\begin{array}{ll}
1 & 6
\end{array}\right)\left(\begin{array}{ll}
2 & 4
\end{array}\right)\left(\begin{array}{ll}
3 & 5
\end{array}\right),\right. \\
\psi\left(\left(\begin{array}{ll}
5 & 6
\end{array}\right)\right. \\
1
\end{array}\right)\left(\begin{array}{ll}
3 & 4
\end{array}\right)\left(\begin{array}{ll}
5 & 6
\end{array}\right) .
$$

${ }^{*}$ Actually, if $n \neq 2$ and $n \neq 6$, then $\operatorname{Aut}\left(S_{n}\right) \cong S_{n}$.

Solving the last 2-connected puzzle

Theorem

In the 2-connected puzzle where α and β have length 4 (so, $n=6$), the generated group is isomorphic to S_{5} (hence it has index 6).

Proof. Idea: transform $\langle\alpha, \beta\rangle$ by ψ and see what group we obtain.
Since ψ is an isomorphism, $\langle\alpha, \beta\rangle \cong\langle\psi(\alpha), \psi(\beta)\rangle$.
$\alpha=\left(\begin{array}{llll}1 & 2 & 3 & 4\end{array}\right)=\left(\begin{array}{ll}1 & 2\end{array}\right)(23)(34)$ and
$\beta=(3456)=(34)(45)(56)$, thus we have:
$\psi(\alpha)=\psi((12)) \psi((23)) \psi\left(\left(\begin{array}{ll}3 & 4)\end{array}\right)=\left(\begin{array}{ll}1 & 3\end{array} 24\right)\right.$,
$\psi(\beta)=\psi\left(\left(\begin{array}{ll}4 & 4\end{array}\right) \psi((45)) \psi\left(\left(\begin{array}{l}5\end{array}\right)\right)=\left(\begin{array}{ll}1 & 5 \\ 2\end{array}\right)\right.$.
Note: the new generators $\psi(\alpha)$ and $\psi(\beta)$ both leave the token 6 in place, and so they cannot generate a subgroup larger than S_{5}.

Solving the last 2-connected puzzle

Proof (continued).

The 3-cycle $\psi(\alpha) \psi(\beta)=\left(\begin{array}{lll}1 & 5 & 4\end{array}\right)$ and the 4-cycle $\psi(\alpha)^{-1}$ form a 2 -connected puzzle on $\{1,2,3,4,5\}$:

By the previous theorem, we know that they generate exactly S_{5}.
Thus, $\langle\alpha, \beta\rangle$ is an isomorphic copy of S_{5}. A permutation $\pi \in S_{6}$ is in $\langle\alpha, \beta\rangle$ if and only if $\psi(\pi)$ leaves the token 6 in place.

Generalized cyclic-shift puzzles

Let \mathcal{C} be a set of cycles, and let $\hat{G}=(\mathcal{C}, \mathcal{E})$ be the graph where $\left\{C_{1}, C_{2}\right\} \in \mathcal{E}$ if C_{1} and C_{2} induce a 1- or a 2-connected puzzle. \mathcal{C} forms a proper cyclic-shift puzzle if there is $\mathcal{C}^{\prime} \subseteq \mathcal{C}$ such that:

- \mathcal{C}^{\prime} contains at least two cycles.
- The induced subgraph $\hat{G}\left[\mathcal{C}^{\prime}\right]$ is connected.
- Each token is contained in at least one cycle in \mathcal{C}^{\prime}.

Theorem

The configuration group of a proper cyclic-shift puzzle with more than 6 tokens is A_{n} if all cycles have odd length, and S_{n} otherwise. Any permutation in the group can be generated in $O\left(n^{5}\right)$ steps.

Open problems

(1) Improve the $O\left(n^{5}\right)$ upper bound in the last theorem.
(2) Extend the analysis to cyclic-shift puzzles that are not proper.
(3) What about puzzles where tokens may have the same color?
(4) Is the minimization problem PSPACE-complete for cycles?
(5) Is it NP-hard for planar graphs?
(6) Is it NP-hard for complete graphs?
(7) Is it NP-hard for graphs of small maximum degree?

Torus puzzle

The torus puzzle is a good candidate for settling open problem (7), as its graph is 4 -regular, as well as toroidal and vertex-transitive:

Since it is a proper cyclic-shift puzzle, we know how to solve it... But solving the torus puzzle in the minimum number of moves is NP-hard (by a reduction from 3-Partition) even if the tokens have only two possible colors (Amano et al., 2012). However, consecutive shifts along the same cycle count as 1 move! Does the reduction extend to our model of cyclic-shift puzzles?

References

目 K．Amano，Y．Kojima，T．Kurabayashi，K．Kurihara， M．Nakamura，A．Omi，T．Tanaka，and K．Yamazaki How to solve the torus puzzle Algorithms 5（1）：18－29， 2012

圕 L．Babai
The probability of generating the symmetric group Journal of Combinatorial Theory（Series A），52：148－153， 1989

R．D．Heath，I．M．Isaacs，J．Kiltinen，and J．Sklar
Symmetric and alternating groups generated by a full cycle and another element
The American Mathematical Monthly，116（5）：447－451， 2009
圊 H．A．Helfgott and A．Seress
On the diameter of permutation groups
Annals of Mathematics，179（2）：611－658， 2014

References

國 M．R．Jerrum
The complexity of finding minimum－length generator sequences
Theoretical Computer Science，36：265－289， 1985
R G．A．Jones
Primitive permutation groups containing a cycle
Bulletin of the Australian Mathematical Society，
89（1）：159－165， 2014
圊 J．J．Rotman
An introduction to the theory of groups
Springer－Verlag，4th edition， 1995
围 K．K．Sai，R．Uehara，and G．Viglietta
Cyclic shift problems on graphs
arXiv：2009．10981， 2020
國 C．Sims
Computational problems in abstract algebra
Ed．John Leech，Pergamon Press， 1970

[^0]: *This says nothing about the special case where the generators are cycles.
 ${ }^{\dagger}$ The proof is not self-contained and highly non-constructive.

[^1]: * Obviously, the generated group is S_{n} if n is even, and A_{n} if n is odd.

