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Case study: 1-connected and 2-connected puzzles

We focus on cyclic-shift puzzles of two types:
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1-connected 2-connected

Our questions are:

What configurations are reachable from a given initial
configuration? (I.e., what is the configuration space?)

How can we get from an initial configuration to a final
configuration in an efficient way?

Note: we assume that all tokens have distinct colors.
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Permutations

We can represent any configuration as a permutation
describing where each token is located.

Notation: [ 3 6 4 1 7 2 5 ] means that the first slot contains
token #3, the second slot contains token #6, etc.

Since a permutation is a bijection π : {1, . . . , n} → {1, . . . , n},
permutations can be composed like functions:

e.g., [ 2 3 1 4 5 ] [ 1 2 4 5 3 ] = [ 2 3 4 5 1 ].

Composition of permutations is associative: π(σρ) = (πσ)ρ.

Composition of permutations is not commutative in general:

e.g., [ 2 1 3 ] [ 1 3 2 ] = [ 2 3 1 ] 6= [ 3 1 2 ] = [ 1 3 2 ] [ 2 1 3 ].

Every permutation can be expressed as the composition of
disjoint cycles in a unique way:

e.g., [ 3 6 4 1 7 2 5 ] = (1 3 4)(2 6)(5 7).



Groups of permutations

The notion of group was first formulated by Galois in the 1830s.

A non-empty set G of permutations
of n objects is a group if:

(1) G is closed under composition:
π, σ ∈ G =⇒ πσ ∈ G,

(2) G is closed under inversion:
π ∈ G =⇒ π−1 ∈ G.

Note: G contains the identity permutation e = [ 1 2 . . . n ],
because π ∈ G =⇒ π−1 ∈ G =⇒ ππ−1 = e ∈ G.

The number of permutations in G is called the order of G
(not to be confused with n, which is the degree of G).

The set of all permutations of {1, . . . , n} forms a group called
the symmetric group Sn. Its order is |Sn| = n!.
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Subgroups

If H and G are groups with H ⊆ G, then H is a subgroup of G,
and we write H ≤ G.

Theorem (Lagrange)

If H ≤ G, then |G| is a multiple of |H|.

Proof. G is the disjoint union of “copies” of H, called cosets.

e H 1π 1Hπ Hπ 3π2π 3Hπ2

coset coset coset coset

The number of cosets is called the index of H in G.



Generators

Consider the following 2-connected cyclic-shift puzzle:
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We have two permutations and their inverses, the generators:

α = (1 2 3 4 5 6),

α−1 = (6 5 4 3 2 1),

β = (5 6 7 8 9 10 11 12 13),

β−1 = (13 12 11 10 9 8 7 6 5).

The set of permutations obtained by composing the generators in
all possible ways is 〈α, β〉, the group generated by α and β.

〈α, β〉 = { e, α, β, αβ, βα, α−1β, . . . , β−1ααββα−1βββ, . . . }
Since 〈α, β〉 is a subgroup of S13, its order is a divisor of 13!.



Configuration space

We can now give a description of the configuration space.

We know that 〈α, β〉 is a subgroup of Sn: this is the set of
permutations that can be obtained starting from the initial
permutation e = [ 1 2 . . . n ].

e 1π 3π2π

coset coset coset coset

1π〉α, β〈〉α, β〈 π〉α, β〈 2 π〉α, β〈 3

Then there are other copies of 〈α, β〉, all of the same size,
corresponding to the other cosets: each is the set of permutations
that can be obtained from some initial permutation πi /∈ 〈α, β〉.
So, the configuration space can be modeled as a graph with
n! / |〈α, β〉| isomorphic connected components (the Cayley graph).

=⇒ All we have to do is determine 〈α, β〉.



Some known facts

Let a set of of generators P be given as input, and let G = 〈P 〉.
The following problems are solvable in polynomial time (Sims, 1970):

Compute the order of G.

Decide if a given permutation π is in G.

If π ∈ G, find an expression for π in terms of the generators.

On the other hand, the minimization problem is hard:

If π ∈ G, finding the shortest sequence of generators whose
composition is π is PSPACE-complete (Jerrum, 1985).

If all the generators in P are cycles, the problem is NP-hard
(Sai-Uehara, 2020). It is not known if it is PSPACE-complete.

Moreover, under some conditions that are satisfied by cyclic-shift puzzles,

The length of a shortest generator sequence for π is upper bounded
by a quasi-polynomial function of n (Helfgott-Seress, 2013).

It is not known if there is a polynomial upper bound. If so, finding
the shortest sequence of generators would be in NP.



Even and odd permutations

For π ∈ Sn, define sgn(π) =
∏
i<j

π(i)− π(j)

i− j . (Note: sgn(π) = ±1.)

Example: sgn[ 3 1 4 2 ] = (3−1)(3−4)(3−2)(1−4)(1−2)(4−2)
(1−2)(1−3)(1−4)(2−3)(2−4)(3−4) = −1.

Lemma. Transposing two elements changes the sign of a permutation.

Example: (1 2)[ 3 1 4 2 ] = [ 3 2 4 1 ];

sgn[ 3 2 4 1 ] = (3−2)(3−4)(3−1)(2−4)(2−1)(4−1)
(1−2)(1−3)(1−4)(2−3)(2−4)(3−4) = 1.

So, sgn(π) corresponds to the parity (even or odd) of the length of any
sequence of transpositions whose composition is π.

Another consequence is that sgn(πσ) = sgn(π) · sgn(σ).

So, the even permutations (i.e., sgn(π) = 1) form a group called the
alternating group An ≤ Sn. (The odd permutations do not form a group.)

Note that f(π) = (1 2)π is a bijection between even and odd
permutations. So, the order of An is n!/2, and the sets of even and odd
permutations are the two cosets of An in Sn.
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Some known facts

Two random permutations of n objects generate either
Sn or An with probability 1− 1/n+O(n−2) (Babai, 1989).*

The permutations π such that 〈 (1 2 . . . n), π 〉 is Sn or An
have been characterized (Heath et al., 2009).

Under some conditions that apply to our cyclic-shift puzzles, if
there is a cycle of length n− 3 or less, the generated group is
Sn or An (Jones, 2014).�

*This says nothing about the special case where the generators are cycles.
�The proof is not self-contained and highly non-constructive.



Parity of cycles

Note: a cycle of length k is the composition of k−1 transpositions.

Example: (1 2 3 4 5) = (1 2)(2 3)(3 4)(4 5).
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So, the two cycles α and β generate a subgroup of An if and only
if they both have odd length.

Can we prove that α and β generate exactly An or Sn?



Generators of Sn and An

The following facts are folklore, and can be proved by mimicking

the Bubble Sort algorithm:

(1) 〈 (1 2 . . . n), (1 2) 〉 = Sn.

(2) 〈 (1 2 . . . n), (1 2 3) 〉 ≥ An.*

Any permutation in the group can be generated in Θ(n2) steps.

=⇒ If our α and β generate the cycles in either (1) or (2),

we can conclude that they generate all of Sn or An.

*Obviously, the generated group is Sn if n is even, and An if n is odd.



Solving 1-connected puzzles

Theorem

In a 1-connected puzzle, α and β generate An if they both have
odd length, and Sn otherwise.
Any permutation in the group can be generated in O(n2) steps.

Proof. β−1α is an n-cycle and αβα−1β−1 is a 3-cycle of
consecutive elements:

α β
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So, 〈α, β〉 ≥ An. If both α and β are even permutations, they
cannot generate an odd permutation, and thus 〈α, β〉 = An.

Say α is odd. We can obtain any odd permutation π by generating
the even permutation πα (as before), and then doing α−1.



Conjugation

What about 2-connected puzzles? If α = (1 2), we already know
that that the generated group is 〈 (1 2), (1 2 . . . n) 〉 = Sn.

To extend our analysis to other 2-connected puzzles, we use
conjugations: π conjugated by σ is the permutation σπσ−1.

The same operation is done in linear algebra when changing
coordinates: a linear transformation defined by a matrix A can also
be expressed as PAP−1, where P is a nonsingular matrix defining
a change of basis.

Similarly, conjugating a permutation preserves its cycle structure.

Example: (3 5 7) (1 3 4)(2 6)(5 7) (7 5 3) = (1 5 4)(2 6)(7 3).

Conjugating permutes the tokens in the cycle decomposition.

We can use conjugation in our puzzles to “move cycles around”...
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Solving 2-connected puzzles

Theorem

In a 2-connected puzzle with α = (1 2 3), the generated group is
An if β has odd length, and Sn if β has even length.
Any permutation in the group can be generated in O(n2) steps.

Proof. Conjugating α−1 by α−1β, we obtain the 3-cycle
α−1β α−1 β−1α = (2 3 4) of consecutive elements of β:
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So, we can generate any even permutation of {2, 3, . . . , n}.
To obtain a given permutation π, first move the correct token π(1)
in position 1 (possibly shuffling the rest), and then operate on
{2, 3, . . . , n} as before (paying attention to parity... details omitted).



Solving 2-connected puzzles

Theorem

In a 2-connected puzzle, α and β generate An if they both have
odd length, and Sn otherwise (unless they both have length 4, see later).
Any permutation in the group can be generated in O(n2) steps.

Proof. Conjugating β by β−1α and β−1 by βα−1, we obtain two
cycles δ1 and δ2 of the same length, going in opposite directions:
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Their composition δ1δ2 is a 3-cycle plus two transpositions.

So, (δ1δ2)
2 is the 3-cycle (1 a− 2 a), where a is the length of α.



Solving 2-connected puzzles

Proof (continued).

Conjugating (1 a− 2 a) by α, we obtain the 3-cycle (1 2 a− 1).
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Note that (1 2 a− 1) and α−1β form a 2-connected puzzle with a

3-cycle, hence we can apply the previous theorem.

What about the 2-connected puzzle where α and β have length 4?

It looks like we cannot form any 2-cycle or 3-cycle, so we need a
radically new idea...



Solving 2-connected puzzles
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Automorphisms

An isomorphism between two groups G and G′ is a bijection

f : G→ G′ such that f(πσ) = f(π) f(σ).

If there is such a bijection f , then G and G′ have the same
structure: they are “the same group” up to renaming their
elements, and we write G ∼= G′.

An isomorphism from G to itself is called an automorphism.

An automorphism f permutes the elements of G, so f ∈ S|G|.
Actually, the automorphisms of G form a subgroup Aut(G) ≤ S|G|.

Note that conjugation by an element π ∈ G is an automorphism:

if fπ(σ) = πσπ−1 for all σ ∈ G, then fπ ∈ Aut(G), because

fπ(σρ) = π(σρ)π−1 = (πσπ−1)(πρπ−1) = fπ(σ) fπ(ρ).

The automorphisms induced by conjugations are called inner,

and they form a subgroup Inn(G) ≤ Aut(G).
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Outer automorphisms of S6

If n 6= 6, the only automorphisms of Sn are the inner ones.

So, we have Inn(Sn) = Aut(Sn) if n 6= 6.*

S6 is an exception: the index of Inn(S6) in Aut(S6) is 2, so there

are 6! = 720 inner and 720 outer automorphisms (Hölder, 1895).

Here is an example of an outer automorphism ψ : S6 → S6

(defined on a generating set for S6):

ψ((1 2)) = (1 2)(3 5)(4 6),

ψ((2 3)) = (1 6)(2 5)(3 4),

ψ((3 4)) = (1 2)(3 6)(4 5),

ψ((4 5)) = (1 6)(2 4)(3 5),

ψ((5 6)) = (1 2)(3 4)(5 6).

*Actually, if n 6= 2 and n 6= 6, then Aut(Sn) ∼= Sn.



Solving the last 2-connected puzzle

Theorem

In the 2-connected puzzle where α and β have length 4 (so, n = 6),
the generated group is isomorphic to S5 (hence it has index 6).

Proof. Idea: transform 〈α, β〉 by ψ and see what group we obtain.

Since ψ is an isomorphism, 〈α, β〉 ∼= 〈ψ(α), ψ(β)〉.

α = (1 2 3 4) = (1 2)(2 3)(3 4) and

β = (3 4 5 6) = (3 4)(4 5)(5 6), thus we have:

ψ(α) = ψ((1 2))ψ((2 3))ψ((3 4)) = (1 3 2 4),

ψ(β) = ψ((3 4))ψ((4 5))ψ((5 6)) = (1 5 2 3).

Note: the new generators ψ(α) and ψ(β) both leave the token 6

in place, and so they cannot generate a subgroup larger than S5.



Solving the last 2-connected puzzle

Proof (continued).

The 3-cycle ψ(α)ψ(β) = (1 5 4) and the 4-cycle ψ(α)−1 form a

2-connected puzzle on {1, 2, 3, 4, 5}:
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By the previous theorem, we know that they generate exactly S5.

Thus, 〈α, β〉 is an isomorphic copy of S5. A permutation π ∈ S6 is

in 〈α, β〉 if and only if ψ(π) leaves the token 6 in place.



Generalized cyclic-shift puzzles

Let C be a set of cycles, and let Ĝ = (C, E) be the graph where

{C1, C2} ∈ E if C1 and C2 induce a 1- or a 2-connected puzzle.

C forms a proper cyclic-shift puzzle if there is C′ ⊆ C such that:

C′ contains at least two cycles.

The induced subgraph Ĝ [ C′ ] is connected.

Each token is contained in at least one cycle in C′.

Theorem

The configuration group of a proper cyclic-shift puzzle with more
than 6 tokens is An if all cycles have odd length, and Sn otherwise.
Any permutation in the group can be generated in O(n5) steps.



Open problems

(1) Improve the O(n5) upper bound in the last theorem.

(2) Extend the analysis to cyclic-shift puzzles that are not proper.

(3) What about puzzles where tokens may have the same color?

(4) Is the minimization problem PSPACE-complete for cycles?

(5) Is it NP-hard for planar graphs?

(6) Is it NP-hard for complete graphs?

(7) Is it NP-hard for graphs of small maximum degree?



Torus puzzle

The torus puzzle is a good candidate for settling open problem (7),

as its graph is 4-regular, as well as toroidal and vertex-transitive:

Since it is a proper cyclic-shift puzzle, we know how to solve it...

But solving the torus puzzle in the minimum number of moves is
NP-hard (by a reduction from 3-Partition) even if the tokens have
only two possible colors (Amano et al., 2012).

However, consecutive shifts along the same cycle count as 1 move!

Does the reduction extend to our model of cyclic-shift puzzles?
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