Cyclic Shift Problems on Graphs
 WALCOM 2021

Kwon Kham Sai, Ryuhei Uehara, and Giovanni Viglietta
Japan Advanced Institute of Science and Technology (JAIST)

March 2, 2021

Cyclic shift puzzles

This research is inspired by a type of mechanical reconfiguration puzzles based on cyclic shift operations:

Cyclic shift puzzles

Each puzzle consists of a set of colored tokens that have to be rearranged to form a target configuration. The set of allowed moves consists of token shifts along predefined cycles.

Our goal is twofold:

- Given a cyclic shift puzzle and an initial configuration, determine which target configurations can be reached.
- Design practical algorithms to solve cyclic shift puzzles in a small number of moves.

Token Shift Problem

If a puzzle has n tokens of c possible colors, a configuration is a function mapping "positions" to colors $f:\{1, \ldots, n\} \rightarrow\{1, \ldots, c\}$. A cyclic shift puzzle is a set of cycles $\gamma_{1}, \gamma_{2}, \ldots, \gamma_{k}$ on $\{1, \ldots, n\}$.
A shift along the cycle γ_{i} (or its inverse γ_{i}^{-1}) transforms the configuration f into the configuration $\gamma_{i} \circ f\left(\right.$ or $\left.\gamma_{i}^{-1} \circ f\right)$.
The Token Shift Problem is to determine a (short) sequence of shifts to transform an initial configuration f_{0} into a target one f_{t}.

Previous work by Yamanaka et al. studied the problem of swapping tokens along edges of graphs, as an extension of classical sorting theory.

This problem can be viewed as a special case of the Token Shift Problem where all cycles have length 2 , and are given by the edges of a graph.

Tokens of distinct colors

Let us first assume that all n tokens have distinct colors.
Thus, the possible configurations of the puzzle are all the n ! permutations on n objects: $\pi:\{1, \ldots, n\} \rightarrow\{1, \ldots, n\}$, which together constitute the symmetric group S_{n}.

In this setting, the cycles $\gamma_{1}, \gamma_{2}, \ldots, \gamma_{k}$ (and their inverses) generate the subgroup $H=\left\langle\gamma_{1}, \gamma_{2}, \ldots, \gamma_{k}\right\rangle \leq S_{n}$.

In other words, H is the set of configurations that can be obtained via sequences of shifts starting from the "identity" configuration e.

By Lagrange's theorem, the configuration space consists of several disjoint copies of H : its cosets. Each is the set of all configurations that can be reached from some initial configuration π_{i}.

1-connected and 2-connected puzzles

Let us first focus on puzzles of two basic types:

1-connected

2-connected

For instance, the puzzle on the right has these generators:

- $\alpha=\left(\begin{array}{llll}1 & 2 & 3 & 4 \\ 5\end{array}\right)$,
- $\beta=\left(\begin{array}{ll}5 & 678 \\ \hline\end{array} 101112\right.$ 13),
- $\alpha^{-1}=(654321)$,
- $\beta^{-1}=(1312111098765)$.

We seek to determine the group $\langle\alpha, \beta\rangle$ and estimate its diameter.

Parity of cycles

Note: a cycle of length ℓ is the composition of $\ell-1$ transpositions.
Example: $\left(\begin{array}{llll}1 & 2 & 3 & 4\end{array}\right)=\left(\begin{array}{ll}1 & 2\end{array}\right)(23)(34)(45)$.

So, if the two cycles α and β both have odd length, they can only generate a subgroup of the alternating group A_{n} (i.e., the group of even permutations).

Conversely, if at least one between α and β has even length, then $\langle\alpha, \beta\rangle$ cannot be a subgroup of A_{n}.

Generators of S_{n} and A_{n}

The following facts are folklore, and can be proved by mimicking the Bubble Sort algorithm:

(2) $\left\langle\left(\begin{array}{lll}1 & 2 & \ldots\end{array}\right),\left(\begin{array}{lll}1 & 2 & 3\end{array}\right)\right\rangle \geq A_{n}$.*

Any permutation in the group can be generated in $O\left(n^{2}\right)$ steps.
\Longrightarrow If our α and β generate the cycles in either (1) or (2), we can conclude that they generate all of S_{n} or A_{n}.

[^0]
Solving 1-connected puzzles

Theorem

In a 1-connected puzzle, α and β generate A_{n} if they both have odd length, and S_{n} otherwise.
Any permutation in the group can be generated in $O\left(n^{2}\right)$ steps.
Proof. $\beta^{-1} \alpha$ is an n-cycle and $\alpha \beta \alpha^{-1} \beta^{-1}$ is a 3 -cycle of consecutive elements:

So, $\langle\alpha, \beta\rangle \geq A_{n}$. If both α and β are even permutations, they cannot generate an odd permutation, and thus $\langle\alpha, \beta\rangle=A_{n}$.

Say α is odd. We can obtain any odd permutation π by generating the even permutation $\pi \alpha$ (as before), and then doing α^{-1}.

Solving 2-connected puzzles

Theorem

In a 2-connected puzzle with $\alpha=\left(\begin{array}{ll}1 & 2\end{array}\right)$, the generated group is A_{n} if β has odd length, and S_{n} if β has even length.
Any permutation in the group can be generated in $O\left(n^{2}\right)$ steps.
Proof. Conjugating α^{-1} by $\alpha^{-1} \beta$, we obtain the 3 -cycle $\alpha^{-1} \beta \alpha^{-1} \beta^{-1} \alpha=\left(\begin{array}{ll}2 & 3\end{array}\right)$ of consecutive elements of β :

So, we can generate any even permutation of $\{2,3, \ldots, n\}$.
To obtain a given permutation π, first move the correct token $\pi(1)$ in position 1 (possibly shuffling the rest), and then operate on $\{2,3, \ldots, n\}$ as before (paying attention to parity... details omitted).

Solving 2-connected puzzles

Theorem

In a 2-connected puzzle, α and β generate A_{n} if they both have odd length, and S_{n} otherwise (unless they both have length 4 , see later). Any permutation in the group can be generated in $O\left(n^{2}\right)$ steps.

Proof. Conjugating β by $\beta^{-1} \alpha$ and β^{-1} by $\beta \alpha^{-1}$, we obtain two cycles δ_{1} and δ_{2} of the same length, going in opposite directions:

Their composition $\delta_{1} \delta_{2}$ is a 3-cycle plus two transpositions.
So, $\left(\delta_{1} \delta_{2}\right)^{2}$ is the 3 -cycle $(1 a-2 a)$, where a is the length of α.

Solving 2-connected puzzles

Proof (continued).

Conjugating (1 $a-2 a$) by α, we obtain the 3-cycle (1 $2 a-1$).

Note that (12a-1) and $\alpha^{-1} \beta$ form a 2-connected puzzle with a 3 -cycle, hence we can apply the previous theorem.

Solving 2-connected puzzles

Proof (continued).

Conjugating (1 $a-2 a$) by α, we obtain the 3-cycle (1 $2 a-1$).

Note that (12a-1) and $\alpha^{-1} \beta$ form a 2-connected puzzle with a 3 -cycle, hence we can apply the previous theorem.

Only the 2-connected puzzle where α and β have length 4 is left. As it turns out, in this puzzle we cannot form any 2-cycle or 3-cycle; so, we need a radically new idea...

Outer automorphisms of S_{6}

It is well known that conjugation by an element of a group G is an automorphism. The automorphisms induced by conjugations are called inner, and form a subgroup $\operatorname{Inn}(G) \leq \operatorname{Aut}(G)$.

If $n \neq 6$, the only automorphisms of S_{n} are the inner ones.
S_{6} is an exception: the index of $\operatorname{Inn}\left(S_{6}\right)$ in $\operatorname{Aut}\left(S_{6}\right)$ is 2 ; so, there are $6!=720$ inner and 720 outer automorphisms (Hölder, 1895).

Here is an example of an outer automorphism $\psi: S_{6} \rightarrow S_{6}$ (defined on a generating set for S_{6}):

$$
\left.\begin{array}{l}
\psi\left(\left(\begin{array}{ll}
1 & 2
\end{array}\right)=\left(\begin{array}{ll}
1 & 2
\end{array}\right)\left(\begin{array}{ll}
3 & 5
\end{array}\right)\left(\begin{array}{l}
4
\end{array}\right),\right. \\
\psi\left(\left(\begin{array}{ll}
2 & 3
\end{array}\right)=\left(\begin{array}{ll}
1 & 6
\end{array}\right)\left(\begin{array}{ll}
2 & 5
\end{array}\right)\left(\begin{array}{ll}
3 & 4
\end{array}\right),\right. \\
\psi\left(\left(\begin{array}{ll}
3 & 4
\end{array}\right)=\left(\begin{array}{ll}
1 & 2
\end{array}\right)\left(\begin{array}{ll}
3 & 6
\end{array}\right)\left(\begin{array}{ll}
4 & 5
\end{array}\right),\right. \\
\psi\left(\left(\begin{array}{ll}
4 & 5
\end{array}\right)=\left(\begin{array}{ll}
1 & 6
\end{array}\right)\left(\begin{array}{ll}
2 & 4
\end{array}\right)\left(\begin{array}{ll}
3 & 5
\end{array}\right),\right. \\
\psi\left(\left(\begin{array}{ll}
5 & 6
\end{array}\right)\right.
\end{array}\right)=\left(\begin{array}{ll}
1 & 2
\end{array}\right)\left(\begin{array}{ll}
3 & 6
\end{array}\right) .
$$

Solving the last 2-connected puzzle

Theorem

In the 2-connected puzzle where α and β have length 4 (so, $n=6$), the generated group is isomorphic to S_{5} (hence it has 6 cosets).

Proof. Idea: transform $\langle\alpha, \beta\rangle$ by ψ and see what group we obtain.
Since ψ is an isomorphism, $\langle\alpha, \beta\rangle \cong\langle\psi(\alpha), \psi(\beta)\rangle$.
$\alpha=\left(\begin{array}{llll}1 & 2 & 3 & 4\end{array}\right)=\left(\begin{array}{ll}1 & 2\end{array}\right)(23)(34)$ and
$\beta=(3456)=(34)(45)(56)$, thus we have:
$\psi(\alpha)=\psi\left(\left(\begin{array}{l}1\end{array}\right)\right) \psi\left(\left(\begin{array}{l}2\end{array}\right)\right) \psi\left(\left(\begin{array}{ll}3 & 4)\end{array}\right)=\left(\begin{array}{ll}1 & 3\end{array} 24\right)\right.$,
$\psi(\beta)=\psi\left(\left(\begin{array}{ll}4 & 4)\end{array}\right) \psi((45)) \psi\left(\left(\begin{array}{l}5\end{array}\right)\right)=\left(\begin{array}{lll}1 & 5 & 2\end{array}\right)\right.$.
Note: the new generators $\psi(\alpha)$ and $\psi(\beta)$ both leave the token 6 in place, and so they cannot generate a subgroup larger than S_{5}.

Solving the last 2-connected puzzle

Proof (continued).

The 3-cycle $\psi(\alpha) \psi(\beta)=\left(\begin{array}{lll}1 & 5 & 4\end{array}\right)$ and the 4-cycle $\psi(\alpha)^{-1}$ form a 2 -connected puzzle on $\{1,2,3,4,5\}$:

By the previous theorem, we know that they generate exactly S_{5}.
Thus, $\langle\alpha, \beta\rangle$ is an isomorphic copy of S_{5}. A permutation $\pi \in S_{6}$ is in $\langle\alpha, \beta\rangle$ if and only if $\psi(\pi)$ leaves the token 6 in place.

Generalized cyclic shift puzzles

We have characterized the solvable 1-connected and 2-connected puzzles, and we have given solutions in $O\left(n^{2}\right)$ moves.

Let us extend our analysis to puzzles with more than two cycles.
Let \mathcal{C} be a set of cycles, and let $\hat{G}=(\mathcal{C}, \mathcal{E})$ be the graph where $\left\{\gamma_{1}, \gamma_{2}\right\} \in \mathcal{E}$ iff γ_{1} and γ_{2} induce a 1- or a 2-connected puzzle.
\mathcal{C} forms a proper cyclic shift puzzle if there is $\mathcal{C}^{\prime} \subseteq \mathcal{C}$ such that:

- \mathcal{C}^{\prime} contains at least two cycles.
- The induced subgraph $\hat{G}\left[\mathcal{C}^{\prime}\right]$ is connected.
- Each token is contained in at least one cycle in \mathcal{C}^{\prime}.

Generalized cyclic shift puzzles

Theorem

The configuration group of a proper cyclic shift puzzle with more than 6 tokens is A_{n} if all cycles have odd length, and S_{n} otherwise. Any permutation in the group can be generated in $O\left(n^{5}\right)$ steps.

Proof (sketch).

Construct a ("well-behaved") walk W that visits all token locations (possibly more than once) and traverses only edges from cycles in \mathcal{C}^{\prime}.
By our previous theorems, any cycle involving 3 consecutive tokens in W can be generated in $O\left(n^{2}\right)$ shifts along cycles in \mathcal{C}^{\prime}.

Carefully composing these 3-cycles $O\left(n^{3}\right)$ times allows us to generate any even permutation (some exceptions are handled separately).

To generate an odd permutation π, shift along an even cycle γ_{i}, and then generate the even permutation $\gamma_{i}^{-1} \pi$ as above.

Cyclic shift puzzles with 2-colored tokens

Let us now consider cyclic shift puzzles where there may be multiple tokens of the same color. We will prove the following:

Theorem

Solving the Token Shift Problem in the smallest number of moves is NP-hard, even if there are tokens of only 2 colors.

The proof is by a reduction from 3-Dimensional Matching, which is a classical NP-complete problem.

3-Dimensional Matching (3DM)

Input: Sets X, Y, Z, each of size m. A set of n triplets $T \subseteq X \times Y \times Z$.
Output: YES iff there is a subset $M \subseteq T$ of size m that covers X, Y, Z.

Reduction from 3DM

Start from the bipartite graph representing a 3DM instance.

Reduction from 3DM

Extend it to a cyclic shift puzzle with black and white tokens.

Reduction from 3DM

Our instance of the Token Shift Problem asks to transform the left configuration into the right one in at most $3 n$ moves.

Reduction from 3DM

If the 3DM problem has a YES answer, we can pick the triplets in M and shift their tokens along blue cycles to cover X, Y, and Z.

Reduction from 3DM

If the 3DM problem has a YES answer, we can pick the triplets in M and shift their tokens along blue cycles to cover X, Y, and Z.

Reduction from 3DM

If the 3DM problem has a YES answer, we can pick the triplets in M and shift their tokens along blue cycles to cover X, Y, and Z.

Reduction from 3DM

If the 3DM problem has a YES answer, we can pick the triplets in M and shift their tokens along blue cycles to cover X, Y, and Z.

Reduction from 3DM

If the 3DM problem has a YES answer, we can pick the triplets in M and shift their tokens along blue cycles to cover X, Y, and Z.

Reduction from 3DM

Then, we shift the tokens from the other triplets along red cycles. The total number of moves is $3 n$.

Reduction from 3DM

Then, we shift the tokens from the other triplets along red cycles. The total number of moves is $3 n$.

Reduction from 3DM

Conversely, assume that the tokens can be rearranged in $3 n$ moves. Then, each move must get one black token out of the yellow area.

Reduction from 3DM

It follows that no black token can ever be found in u.
Otherwise, u will always contain a black token afterward.

Reduction from 3DM

For the same reason, no black token can ever be found in w. Now it is easy to prove that the 3DM instance must have a YES answer.

Summary and open problems

We have studied the Token Shift Problem in two settings:

- For a large class of puzzles with tokens of distinct colors, we characterized the reachable configurations, and we gave an algorithm to reach them in a polynomial number of shifts.
- If multiple tokens are allowed to have the same color, we showed that minimizing the number of shifts is NP-hard.

Some open problems are left for future research:

- Improve the $O\left(n^{5}\right)$ upper bound of our algorithm.
- Extend the analysis to cyclic shift puzzles that are not proper.
- Is the minimization problem PSPACE-complete?
- Is it NP-hard for planar graphs, or for graphs of small maximum degree?

[^0]: *Obviously, the generated group is S_{n} if n is even, and A_{n} if n is odd.

