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Amoebots

In this model, particles occupy nodes of a triangular grid.



Amoebots

A particle can move by expanding and contracting.



Amoebots

A particle can move by expanding and contracting.



Amoebots

A particle can move by expanding and contracting.



Amoebots

A particle can move by expanding and contracting.



Amoebots

A particle can move by expanding and contracting.



Amoebots

A system of particles is given.
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At each step, any set of particles is activated by an adversary.



Shape Formation

�nal shape

The goal is to form a shape that is given as input to all particles.



Shape Formation

initial con�guration �nal con�guration

deterministic

algorithm

The shape-formation algorithm should be deterministic.



Shape Formation

initial con�guration �nal con�guration

deterministic

algorithm

The shape can be scaled up depending on the size of the system.



Shape Formation: Naive Approach

Theorem (Euro-Par 2020 / Dist. Comp., 2020)

There is a distributed algorithm for finite-state Amoebots that
allows them to form any Turing-computable shape.

The algorithm starts with a deterministic Leader Election phase.
The leader then recruits some particles to simulate a “moving
Counter Machine” that travels across the system and instructs
every particle on where to go to form the final shape.
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Particle Model

The n particles in the system:

initially form any simply connected shape

know the final shape but do not know n

have a constant amount of internal memory

are anonymous and start in the same state

can only see and communicate with adjacent particles

do not have a compass

may not agree on a clockwise direction

are activated asynchronously (actually, semi-synchronously)

execute the same deterministic algorithm

cannot occupy the same node



Unbreakable Symmetry

If the system has a center of symmetry not on a grid node...



Unbreakable Symmetry

Then this symmetry is impossible to break.



Unbreakable Symmetry

The same holds for systems with a 3-fold rotational symmetry.



Unbreakable Symmetry

If the center is not on a grid node, the symmetry is unbreakable.



Statement of Results

Observation

If the system initially has an unbreakable 2- or 3-symmetry, it
cannot form shapes that do not have the same type of symmetry.

Theorem

For all other cases, there is a universal shape-formation algorithm,
provided that the system initially forms a simply connected shape,
and the final shape and its scaled-up copies are Turing-computable
(with some bland extra assumptions).

The extra assumptions are satisfied by connected shapes, so:

Corollary

A system that initially forms a simply connected shape can form a
final shape whose scaled-up copies are Turing-computable and
connected if and only if this does not contradict the Observation.



Universal Shape-Formation Algorithm

Start with a sufficiently large simply connected system.



Universal Shape-Formation Algorithm

Phase 1: attempt to elect a leader.



Universal Shape-Formation Algorithm

Phase 2: construct a spanning forest.



Universal Shape-Formation Algorithm

Phase 3: agree on a clockwise direction.



Universal Shape-Formation Algorithm

Phase 4: form one line per leader.



Universal Shape-Formation Algorithm

Phase 5: simulate Counter Machines to compute the final shape.



Universal Shape-Formation Algorithm

Phase 6: keep computing while forming the final shape.



Universal Shape-Formation Algorithm

Phase 6: keep computing while forming the final shape.



Lattice Consumption Phase

?

All particles are initially eligible. Depending on its eligible
neighbors, a particle may decide to eliminate itself or stay eligible.



Lattice Consumption Phase

There is just one special case, where the particle has to
communicate with a neighbor to ensure that its elimination would
not disconnect the set of eligible particles.
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connected, even if activations occur asynchronously.
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Lattice Consumption Phase

When the process ends, the particles that are still eligible become
candidate leaders.
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When the process ends, the particles that are still eligible become
candidate leaders.



Lattice Consumption Phase

L L L

L L

L

The candidate leaders are all adjacent, and can be at most 3.



Spanning Forest Construction Phase

L L

L

Each candidate leader starts constructing a tree.
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L

Each candidate leader starts constructing a tree.



Spanning Forest Construction Phase

L L

L

Each node of a tree tries to extend the tree in all directions by
sending merge requests to its neighbors.



Spanning Forest Construction Phase

L L

L

?

If a node is already part of a tree, it refuses further merge requests.



Spanning Forest Construction Phase

L L

L

Otherwise, it sets a parent variable to the port number
corresponding to a neighbor that sent a request.



Spanning Forest Construction Phase

L L

L

Since the shape is connected, eventually a spanning forest is
constructed.



Spanning Forest Construction Phase

L L

L

Nodes that cannot expand anymore send a termination message to
their parents, starting from the leaves.
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L

Nodes that cannot expand anymore send a termination message to
their parents, starting from the leaves.



Spanning Forest Construction Phase

L L

L

Eventually, the termination messages reach the candidate leaders,
and the phase ends.



Handedness Agreement Phase

L L

We want two candidate leaders to agree on the same handedness.



Handedness Agreement Phase

L L

If they have a common neighbor, they send a message to it.
If the same neighbor receives both messages, it means that the
candidate leaders have opposite handedness.



Handedness Agreement Phase

L L

So, the neighbor decides which candidate leader has to change its
handedness, and sends it a message.
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L L

So, the neighbor decides which candidate leader has to change its
handedness, and sends it a message.



Handedness Agreement Phase

L L

If the candidate leaders have no common neighbor,
they try to expand to a neighboring location.



Handedness Agreement Phase

L L

If the candidate leaders have no common neighbor,
they try to expand to a neighboring location.



Handedness Agreement Phase

L

L

If one of them fails to reach it, it means that they have opposite
handedness.



Handedness Agreement Phase

L

L

So, the candidate leader that fails to expand changes its own
handedness.



Handedness Agreement Phase

L

L

If a candidate leader succeeds to expand, it then contracts and
moves back to its original location.
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Handedness Agreement Phase

L L

If a candidate leader succeeds to expand, it then contracts and
moves back to its original location.



Handedness Agreement Phase

L L

L

Eventually, all candidate leaders get the same handedness.



Handedness Agreement Phase

L L

L

By a similar protocol, the agreed-upon handedness is
communicated along the trees until all particles agree.
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L

By a similar protocol, the agreed-upon handedness is
communicated along the trees until all particles agree.



Handedness Agreement Phase

L L

L

Since several instances of the protocol are taking place across the
network, appropriate locking and unlocking strategies have to be
implemented, and the absence of deadlocks has to be proven.



Leader Election Phase

L

L

L

The candidate leaders want to compare their respective trees,
in an attempt to break symmetry.



Leader Election Phase

L

L

L

They do so by a breadth-first search, forwarding a message to a
node and waiting for it to reply with a representation of its
neighborhood.



Leader Election Phase

L

L

L

When all candidate leaders have received a reply from a node,
they compare it to see if the symmetry can be broken.



Leader Election Phase

L

L

L

If the replies are all equal, they proceed with the next node.
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L

If the replies are all equal, they proceed with the next node.



Leader Election Phase

L

L

L

3

2

2

As soon as the replies are not all equal, a unique leader is elected,
and the other candidate leaders become its children.
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L
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Leader Election Phase

L

L

L

If the last node of each tree has been reached and the replies are
still all equal, then the trees must be equal and equally oriented
(because all particles agree on the same handedness).
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If the last node of each tree has been reached and the replies are
still all equal, then the trees must be equal and equally oriented
(because all particles agree on the same handedness).



Leader Election Phase

L

L

L

In this case the initial shape has an unbrekable symmetry,
and all candidate leaders become leaders.



Basic Locomotion Protocol

This protocol allows a chain of particles, led by a pioneer,
to move around without leaving particles behind.



Basic Locomotion Protocol

The pioneer expands in some direction and then contracts.
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The pioneer expands in some direction and then contracts.



Basic Locomotion Protocol

The next particle notices the absence of its parent
and moves to the location where it used to be.
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The protocol continues until the last particle has moved.



Basic Locomotion Protocol

The last particle forwards a termination message to the pioneer.
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Basic Locomotion Protocol

The last particle forwards a termination message to the pioneer.



Basic Locomotion Protocol

When the pioneer receives the termination message,
it moves again, and the protocol repeats.



Basic Locomotion Protocol

When the pioneer receives the termination message,
it moves again, and the protocol repeats.



Straightening Phase

L

L L

Each leader wants to transform its tree into a line segment.



Straightening Phase

L

L L

A pioneer is sent forth to the designated direction.



Straightening Phase

L

L L

When a pioneer hits another particle,
it becomes its parent and then swaps states with it.



Straightening Phase

L

L L

Then each pioneer keeps pulling chains of particles with the basic
locomotion protocol, until its tree is straightened.
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Straightening Phase

L

L L

Then each pioneer keeps pulling chains of particles with the basic
locomotion protocol, until its tree is straightened.



Straightening Phase

L

L L

The lines must have the same length, and the leaders communicate
with each other to make their pioneers move at the same pace.



Counter Machines

A Counter Machine is a model of computation with:

some registers, each storing a non-negative integer

a finite program consisting of only 3 types of instructions:

increment the value stored in a register by 1

if the value stored in a register is positive, decrement it by 1

test the value of a register and branch if it is 0

Theorem (Minsky, 1967)

Any Turing machine can be simulated by a Counter Machine with
only 2 registers, the first of which initially contains the input.
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Simulating a Counter Machine with 2 Registers

L

Register 1 Register 2

4 8

A Counter Machine with 2 registers can be simulated by 4
particles: a leader, which executes the program, and 3 particles
whose distances correspond to the values stored in the 2 registers.



Simulating a Counter Machine with 2 Registers

L

Register 1 Register 2

If the leader has to increment the value of the first register,
it pulls the last two particles to the right by one step,
and then goes back to its original position.
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Simulating a Counter Machine with 2 Registers

L

Register 1 Register 2

5 8

If the leader has to increment the value of the first register,
it pulls the last two particles to the right by one step,
and then goes back to its original position.



Simulating a Counter Machine with 2 Registers

L

Register 1 Register 2

7 0

If the leader has to test if the value of the second register is 0, it
reaches the second-to-last particle and exchanges messages with it,
asking if the last particle is adjacent to it.
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Register 1 Register 2

If the leader has to test if the value of the second register is 0, it
reaches the second-to-last particle and exchanges messages with it,
asking if the last particle is adjacent to it.



Shape-Formation Phase

L

L L

If k > 1 leaders have been elected in the previous phases, it means
that the initial shape has an unbreakable k-fold symmetry.



Shape-Formation Phase

Hence, we may assume that also the shape to be formed has
the same k-fold symmetry.



Shape-Formation Phase

The plane is partitioned into k sectors, and each leader is tasked
with forming the part of the shape that falls into its sector.
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Shape-Formation Phase

L

L

L

Assume there is an algorithm that, given n, generates the points of
the shape. Let each leader simulate a Counter Machine for that
algorithm.



Shape-Formation Phase

L

The leader takes position at the beginning of the simulated
Counter Machine.



Shape-Formation Phase

L

Register 1: representation of n

By scanning the previous part of the chain, it constructs a
representation of n in the first register, which serves as the input.



Shape-Formation Phase

L

The simulated Counter Machine will generate all the points of the
shape and the sequence of moves necessary to reach them.



Shape-Formation Phase

L

Computing...

The simulated Counter Machine computes the first point of the
shape, while the rest of the chain does not move.



Shape-Formation Phase

L

Moving...

When the Counter Machine has finished, the value of the first
register indicates that the chain has to move in some direction.



Shape-Formation Phase

L

Moving...

(The movement of the whole chain is coordinated by the leader,
and takes place one particle at a time.)



Shape-Formation Phase

L

The Counter Machine computes the next movement,
and the whole chain moves as soon as the computation is finished.
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L

The Counter Machine computes the next movement,
and the whole chain moves as soon as the computation is finished.



Shape-Formation Phase

L

Sliding...

When the chain is on the same line as the first point of the shape,
it slides until the last particle of the chain coincides with the point.
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Sliding...

When the chain is on the same line as the first point of the shape,
it slides until the last particle of the chain coincides with the point.
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L

Deploying

A message is forwarded to the last particle, telling it to stay there,
and perhaps expand in some direction to cover two points.
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The protocol proceeds in the same fashion with the other points of
the shape.



Shape-Formation Phase

L

The algorithm ensures that the last 4 points of the shape are “in
the same neighborhood”.



Shape-Formation Phase

When the leader is on the first of these 4 points,
it makes the Counter Machine contract, erasing the registers.



Shape-Formation Phase

Distance bounded by a constant

Assuming that the distance of the other 3 points is bounded by a
constant, the particles can reach them using constant memory.
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Assuming that the distance of the other 3 points is bounded by a
constant, the particles can reach them using constant memory.



Dismantling the Mobile Counter Machines

Also, each mobile Counter Machine used to form the shape has to
be dismantled when it has finished computing:

Assumption

For each scaled-up copy Sn of the final shape, there exists a
configuration Cf of n particles that forms Sn (such that Cf is
unbreakably k-symmetric if Sn has to be formed from an
unbreakably k-symmetric initial configuration) and, for each
symmetric component C ′

f of Cf , there exists a ball of diameter
independent of n that contains at least four particles of C ′

f .



Results

Theorem

Under the previous Assumption, any Turing-computable shape is
formable from any simply connected initial configuration.

Only very sparse shapes fail to satisfy the Assumption.
In particular, connected shapes abundantly satisfy it.

Corollary

A necessary and sufficient condition for a connected
Turing-computable shape to be formable from a simply connected
initial configuration is that, if the initial configuration is
unbreakably k-symmetric, then also the corresponding scaled-up
copy of the shape is unbreakably k-symmetric.

Open problem: can we keep the system connected if the shape to
be formed is connected?



Fractal and Curved Shapes

This protocol allows the system to form shapes that scale up
like fractals (e.g., the Sierpinski triangle), as well as curved objects,
which are better approximated as the number of particles increases.
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This protocol allows the system to form shapes that scale up
like fractals (e.g., the Sierpinski triangle), as well as curved objects,
which are better approximated as the number of particles increases.



General Computable Shapes

= 3n = 5n = 8n

More generally, the protocol only requires the existence of a
computable function that, on input n, produces a configuration of
n particles that forms a suitably scaled-up copy of the final shape.



Forming Segments and Full Triangles

= 1λ = 2λ = 3λ = 4λ

If the shape to be formed is made up of “blocks” that scale up like
segments and full triangles, the last phase can be optimized.



Forming Segments and Full Triangles
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For this special case, there is a protocol that allows to form the
shape in O(n2) total moves.
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For this special case, there is a protocol that allows to form the
shape in O(n2) total moves.



Matching Lower Bound

This example shows that O(n2) total moves are optimal.



Further Results

Theorem

A necessary and sufficient condition for a connected
Turing-computable shape to be formable from a simply connected
initial configuration is that, if the initial configuration is
unbreakably k-symmetric, then also the corresponding scaled-up
copy of the shape is unbreakably k-symmetric.

The running time depends on how fast a Turing machine can
compute the shape. However, there is a special case:

Theorem

If the shape to be formed consists only of segments and full
triangles, the system can form it in O(n2) moves (optimally)

and O(n2) rounds.

Open problem: are O(n2) rounds optimal?



Shortcomings of the Naive Approach

The previous approach has at least two major problems:

The algorithm is vulnerable to crash failures: if the leader
malfunctions, the whole system fails to carry out the task.

Simulating a Counter Machine introduces a bottleneck that
sequentializes the execution and fails to take advantage of the
parallel nature of Programmable Matter.

To cope with these problems, a different approach based on
Genetic Programming has been explored:

Designed and developed a Programmable Matter simulator
endowed with a general-purpose Genetic-Programming
framework that allows particles to autonomously discover
algorithms for any given task.

Tested this approach on several Programmable Matter tasks
by devising suitable fitness functions and running the
Genetic-Programming framework on a supercomputer.



Abstract Syntax Trees

condition body

else-bodyif-body

while

variable

name: b

constant

value: 0

compare

op: ≠
branch

compare

op: >
assign

bin op

op: − 

assign

bin op

op: − 

statement

sequence

return

variable

name: a

variable

name: a

variable

name: a

variable

name: a

variable

name: a

variable

name: b

variable

name: b

variable

name: b

variable

name: b

condition

while b ≠ 0:
    if a > b:
        a := a - b
    else:
        b := b - a
return a

Instruction

Integer

Boolean

An Abstract Syntax Tree (AST) is a representation of the logical
structure of a program. Each node has a type.



Genetic Programming

Population

Individuals

Genetic Programming is an extension of Genetic Algorithms where
individuals are ASTs. The goal of Genetic Programming is to find
a “good” program that solves a given problem.



Genetic Programming

Crossover

Parents

Children

When mating, the two parents’ ASTs are combined by exchanging
some randomly selected subtrees (having same-type roots).



Genetic Programming

Mutation

Mutation is done by replacing a randomly selected subtree with a
randomly generated (well-formed) AST.



Basic Tasks

Leader Election: The particles must elect a unique leader without
moving. All particles start in the same state.
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Leader Election: The particles must elect a unique leader without
moving. All particles start in the same state.



Basic Tasks

Line Formation: The particles must form a straight line. The
initial configuration is assumed to be connected.
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Basic Tasks

Compaction: The particles must form a configuration of minimum
diameter. The initial configuration is assumed to be connected.
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Compaction: The particles must form a configuration of minimum
diameter. The initial configuration is assumed to be connected.



Basic Tasks

Scattering: The system must reach a configuration where no two
particles are adjacent and no particle is moving.



Basic Tasks

Scattering: The system must reach a configuration where no two
particles are adjacent and no particle is moving.



Basic Tasks

Coating: The particles must completely surround an object of
unknown shape. Initially, only one particle is touching the object.
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Coating: The particles must completely surround an object of
unknown shape. Initially, only one particle is touching the object.



Algorithm Model

A local algorithm is a function that takes as input a particle’s
internal state and list of neighbors, each of which may be an
empty node or a particle with a certain state. The output is the
particle’s new state and a direction of movement.
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Primitive Set

Let us take these “primitives” as building blocks of our algorithms:

Basic Instructions
Concatenate [Instruction] and [Instruction]

If [Boolean] then [Instruction] else [Instruction]

Set state [Integer]

Set direction [Integer]

Integer Terminals
Get state

Get neighbor [Integer]

Integer constants

Integer Operators
Add [Integer] [Integer]

Subtract [Integer] [Integer]

Max [Integer] [Integer]

Min [Integer] [Integer]



Primitive Set

Boolean Terminals
True

False

Boolean Operators
Not [Boolean]

And [Boolean] [Boolean]

Or [Boolean] [Boolean]

Xor [Boolean] [Boolean]

Equals [Integer] [Integer]

Greater than [Integer] [Integer]

Less than [Integer] [Integer]

Counter Operations
Set counter [Integer]

Get counter

Increment counter

Decrement counter



Fitness Functions

Leader Election: Give a large penalty if there is no leader in the
system and a small penalty for having more than one leader.



Fitness Functions

L

Leader Election: Give a large penalty if there is no leader in the
system and a small penalty for having more than one leader.



Fitness Functions

Line Formation: Give a penalty for every particle that does not
have exactly two neighbors on opposite sides.
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Line Formation: Give a penalty for every particle that does not
have exactly two neighbors on opposite sides.



Fitness Functions

Compaction: Give a penalty for every particle that is not
completely surrounded by other particles.
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Compaction: Give a penalty for every particle that is not
completely surrounded by other particles.



Fitness Functions

Scattering: Give a large penalty for every two neighboring
particles, and a small penalty for particles that are too far apart.



Fitness Functions

Scattering: Give a large penalty for every two neighboring
particles, and a small penalty for particles that are too far apart.



Fitness Functions

Coating: Give a penalty for every point on the object’s surface
that is not occupied by a particle.



Fitness Functions

Coating: Give a penalty for every point on the object’s surface
that is not occupied by a particle.



Experimental Results

Leader Election in a rectangle
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Experimental Results

Leader Election in a tree
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Leader Election in a tree



Experimental Results

Line Formation from a rectangle in a square grid
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Line Formation from a rectangle in a square grid



Experimental Results

Line Formation from a box in a triangular grid
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Line Formation from a box in a triangular grid



Experimental Results

Line Formation from a tree
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Line Formation from a tree



Experimental Results

Compaction of a tree
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Compaction of a tree



Experimental Results

Scattering from a hexagon
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Scattering from a tree
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Scattering from a tree



Experimental Results

Coating of a rectangle
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Experimental Results

Coating of a hexagon



Experimental Results

Coating of a hexagon



Conclusion

Summary:

Developed our Programmable Matter simulator and Genetic
Programming framework in Python by extending the DEAP
library.

Evolved our programs on a pair of AMD EPYC 7502 2.5 GHz
32C/64T processors with 16x32 GB DDR4 3200 MHz RAM
and a 6 TB Hard Disk.

The evolved programs can perform fundamental
Programmable Matter tasks in some basic settings, and have
also re-discovered known techniques such as Saturation.

Future work:

Design more sophisticated and meaningful primitive functions.

Perform harder tasks from more general initial configurations.

Introduce faulty particles and implement fault tolerance.

Produce humanly understandable algorithms for all tasks.



Line Reconstruction

An earlier attempt to deal with fault tolerance in a special case:

Assume that the initial configuration consists of a line of particles,
some of which are faulty and unable to move and communicate.

Theorem (FUN 2016)

The Line Reconstruction problem is solvable deterministically.

Open problem: what about Byzantine particles?
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An earlier attempt to deal with fault tolerance in a special case:

The goal is for all the non-faulty particles to “regroup” and form a
new line of contiguous particles.

Theorem (FUN 2016)

The Line Reconstruction problem is solvable deterministically.

Open problem: what about Byzantine particles?
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If the initial configuration is symmetric, it is acceptable to form
two lines instead of one.
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