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Dynamic networks

In a dynamic network, some machines (or agents) are connected
with each other through links that may change over time.

Assume that, at every round, the links form a connected graph.
What can be computed by this network, and in how many rounds?
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Counting anonymous agents with a Leader

We assume the dynamic network to be anonymous, i.e., all agents
start with the same internal state, except one: the Leader.
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Counting Problem: Eventually, all agents must know the total
number of agents, n. Is it possible? In how many rounds at most?

Note: Knowing n allows agents to solve a large class of problems.
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Previous work

Theorem (Michail et al., SSS 2013)

In a static anonymous network,
1. Without a Leader, counting processes is impossible.
2. With a unique Leader, counting can be done in 2n rounds.
Conjecture. Counting in a dynamic network is impossible even with a Leader.

Theorem (Di Luna et al., ICDCN 2014)

In a dynamic anonymous network with a unique Leader, counting agents
can be done in an exponential number of rounds, provided that an
upper bound on n is known.

Theorem (Di Luna–Baldoni, OPODIS 2015)

In a dynamic anonymous network with a unique Leader, counting agents
can be done in an exponential number of rounds.

Theorem (Kowalski–Mosteiro, ICALP 2018, Best Paper Award)

In a dynamic anonymous network with a unique Leader, counting agents

can be done in O(n4 log3n) rounds.
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Theorem (Kowalski–Mosteiro, ICALP 2018, Best Paper Award)

In a dynamic anonymous network with a unique Leader, counting agents

can be done in O(n4 log3n) rounds. (Can we improve upon this?)



Previous seminar

The Counting Problem is “complete”:

Observation (Folklore?)

If the Counting Problem is solvable in f(n) rounds, then
every (computable) function can be computed in f(n) rounds.

Theorem (Previous seminar)

The Counting Problem can be solved in 2n− 2 rounds in a
connected anonymous dynamic network with a Leader, and is not
solvable in less that 1.5n− 2 rounds.

Open Problem: Note that agents’ outputs only stabilize on the
correct result. Is there a way for all agents to know when they have
solved the problem and terminate in O(n) rounds? (Today’s talk)
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History tree

We introduced the history tree as a tool for studying dynamic networks.
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We introduced the history tree as a tool for studying dynamic networks.
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View of a history tree

At any point in time, an agent only has a view of the history tree.
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Views as internal states and messages

An agent’s view summarizes its whole history up to some round.

Observation

Without loss of generality, we may assume that an agent’s internal
state coincides with its view of the history tree.

Observation

Without loss of generality, we may assume that an agent
broadcasts its own internal state at every round.

This is good because, at round i, the size of a view is only O(i4).

Observation

If a problem is solvable in a polynomial number of rounds, it can
be solved by using a polynomial amount of local memory and
sending messages of polynomial size.



Improved lower bound

Theorem

The Counting Problem is not solvable in less than 2n− 3 rounds.
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Counting algorithm: Overview

We will give a terminating algorithm for the Counting Problem.

The algorithm is as follows:

Use the Leader’s observations to make guesses on
anonymities.

In any set of n guesses, we can always identify a correct one.

Once we have identified n correct guesses, we can use some of
them to make new guesses on anonymities.

Repeat until we have the anonymity of all visible branches of
the history tree: this gives an estimate n′ on n.

Wait n′ rounds to confirm the estimate; if correct, terminate.

The total running time is at most 3n rounds.



Guessing anonymities

Suppose we know the anonymities of a node x and its children.
If some of the agents represented by x have observed agents
represented by y, we can guess the anonymity of a child of y.
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If only one child of y has seen x, then the guess is correct.
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Otherwise, the guess is an overestimation of the anonymity.



Guessing anonymities from the Leader

We can make one guess per round using the Leader’s observations.
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How do we know which guesses are correct?



Weight of a node

When a node v has a guess, we define its weight w(v) as the
number of nodes in the subtree hanging from v that have guesses.

v

) = 5v(w



Weight of a node

A node v is heavy if its weight w(v) is at least as large as the value
of its guess g(v).
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Limiting theorem

We denote by a(v) the anonymity of a node v, by g(v) a guess on
a(v), and by w(v) the weight of v.

Theorem

If all guesses are on different rounds and w(v) > a(v), then some
descendants of v are heavy.

Proof. By well-founded induction on w(v).

Let v1, v2, . . . be the closest descendants of v that
have guesses. Of course, a(v) ≥ ∑

i a(vi).

By the inductive hypothesis, w(vi) ≤ a(vi) for all i.

w(v)−1 =
∑

iw(vi) ≤
∑

i a(vi) ≤ a(v) ≤ w(v)−1

Thus, w(vi) = a(vi) and a(v) =
∑

i a(vi).

The deepest node vd has no siblings, because all
guesses are on different rounds.

Hence g(vd) = a(vd) = w(vd), and vd is heavy.
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Criterion of correctness

Corollary

If v is heavy and no descendant of v is heavy, then g(v) = a(v).

Proof. By assumption, g(v) ≤ w(v).

By the limiting theorem, w(v) ≤ a(v).

Guesses never underestimate anonymities, and so a(v) ≤ g(v).

g(v) ≤ w(v) ≤ a(v) ≤ g(v), hence g(v) = a(v).

This corollary gives agents an algorithm to determine when a guess
is necessarily correct: If v is heavy and no descendants of v are
heavy, then the guess on v is correct.

Moreover, by the limiting theorem, such a node v is found by the
time there are n− 1 guesses in total, i.e., by round n.



Criterion of correctness: Example

Any agent with this view is able to determine which guess is
necessarily correct:
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Propagation of guesses

An island is a connected component of (a view of) the history tree
that contains no leaves and does not contain the root.
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Suppose that the nodes with necessarily correct guesses bound an
island in the history tree.



Propagation of guesses

An island is a connected component of (a view of) the history tree
that contains no leaves and does not contain the root.
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If the anonymity of the top node is the sum of the bottom ones,
then we can infer the anonymities of all the nodes in the island.
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Since the network is connected at every round, we can make a new
guess from one of the nodes in the island.
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guess from one of the nodes in the island.



Propagation of guesses

Suppose that there are n− 1 nodes with necessarily correct guesses
(other than the Leader ones). There are two cases:



Propagation of guesses

Either these nodes determine a cut of the history tree, in which
case we have an estimate n′ on n, given by their sum...



Propagation of guesses

...Or else, some of these nodes determine an island, which allows
us to make a new guess, and so on.
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Dynamics of new guesses

Summarizing, we have two “buffers”:

A buffer of n− 1 overestimating guesses (yellow nodes),

A buffer of n− 1 necessarily correct guesses (blue nodes).

Once the first buffer is full, every new guess (yellow node) allows us
to determine a correct guess (blue node), by the limiting theorem.

Once the second buffer is full, every new correct guess (blue node)
either creates a new island or splits an island in two; in both cases,
we can make a new guess (yellow node).

Therefore, within 2n rounds, the chain of guesses “snowballs” and
generates enough guesses to determine a cut of the history tree,
which in turn yields an estimate n′ ≤ n.



Termination condition

Once we have a cut and an estimate n′ ≤ n, we wait n′ rounds.

If n′ < n, a new node appears in the first levels of the history tree.

n2

view

rounds
all nodes are visible

History tree

n
rounds

If n′=n, then no new nodes appear, and the algorithm terminates.



Conclusions

Theorem

The Counting Problem cannot be solved in less than 2n− 3 rounds
in a connected anonymous dynamic network with a Leader (with or
without termination).

Theorem

Any problem that is solvable in a connected anonymous dynamic
network with a Leader can be solved:

in 2n− 2 rounds without termination,

in 3n rounds with termination.

Additionally, internal states and messages have size O(n4).

Open Problem: Can we reduce the last 3n to 2n?

Open Problem: What if the Leader is not unique, but there are `
indistinguishable Leaders (where ` is known by all agents)?


