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Dynamic networks

In a dynamic network, some machines (or agents) are connected
with one another through links that may change over time.

Assume that, at every round, the links form a connected graph.
What can be computed by this network, and in how many rounds?
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Counting anonymous agents with a Leader

A common assumption is that the dynamic network is anonymous,
i.e., all agents start in the same state, except one: the Leader.
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The complete problem in this model is the Counting Problem:
Eventually, all agents must know the total number of agents, n.
(If agents have inputs, also compute how many agents have each input.)
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Literature on the Counting Problem

Michail et al.: Looks impossible! (SSS 2013)

Di Luna et al.: Solvable in O(eN
2

N3) rounds (ICDCN 2014)

Di Luna–Baldoni: O(nn+4) rounds (OPODIS 2015)

Kowalski–Mosteiro: O(n5 log2 n) rounds (ICALP 2018 Best Paper)

Kowalski–Mosteiro: O(n4+ε log3 n) rounds (ICALP 2019)

This work: 3n rounds

Symbols:

n: number of agents in the network (unknown)

N : upper bound on n (unknown, except in ICDCN 2014)



Statement of results

Theorem (Main result)

For the Counting Problem, we have:

Stabilizing algorithm in 2n rounds (no termination).

Terminating algorithm in 3n rounds.

Lower bound of 2n rounds (for stabilization and termination).

Local memory, local computation time, and message size are
polynomial in n. Also works if the network is a multi-graph.

Actually, the theorem holds not only for the Counting Problem, but
for all problems computable in anonymous (dynamic) networks.

These are precisely the multi-aggregate functions f :

Agent p outputs f(xp, µ),

where xp is the input of agent p,

and µ is the multi-set of all inputs.



Computability



General computation

In general, we may assume that each agent has an input and has to
compute an output depending on the entire network’s inputs.
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Agents with the same input are still indistinguishable (anonymous).



General computation

If the network is the complete graph at every round, all agents
with the same input will always have the same internal state.
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Thus, an agent’s output can only depend on its input and the
number of agents having each input.



Completeness of the Generalized Counting Problem

Thus, only the multi-aggregate functions can be computed.

Observation

If a function is computable in an anonymous dynamic network
(with a unique Leader), it must be a multi-aggregate function.

Examples: The average, maximum, minimum, sum, mode,
variance, and most statistical functions are (multi-)aggregate.

Generalized Counting Problem: Eventually, all agents must
know how many agents have each input.

Observation

If the Generalized Counting Problem is solvable in f(n) rounds,
then every multi-aggregate function is computable in f(n) rounds.



History Trees



History trees

We introduce the history tree as our main tool of investigation.
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History trees

We introduce the history tree as our main tool of investigation.
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History trees

We introduce the history tree as our main tool of investigation.
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Generalized Counting Problem revisited

Solving the Generalized Counting problem amounts to finding the
anonymities of the nodes in the first level of the history tree.
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View of a history tree

At any point in time, an agent only has a view of the history tree.
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Views as internal states and messages

An agent’s view summarizes its whole history up to some round.

Observation

Without loss of generality, we may assume that an agent’s internal
state coincides with its view of the history tree.

Observation

Without loss of generality, we may assume that an agent
broadcasts its own internal state at every round.

This is good because, at round i, the size of a view is only O(i3).

Observation

If a problem is solvable in a polynomial number of rounds, it can
be solved by using a polynomial amount of local memory and
sending messages of polynomial size.



Updating the view

An agent updates its internal state by merging its view with the
views it receives from its neighbors.
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Updating the view

An agent updates its internal state by merging its view with the
views it receives from its neighbors.
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Lower Bound on Counting



Lower bound

Theorem

The Counting Problem is not solvable in less than 2n− 3 rounds.
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Lower bound
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Stabilizing Algorithm



Computing anonymities

Suppose we know the anonymity of a node x with a single child x′.
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If the agents represented by x have observed agents whose
corresponding node y has only one child y′, then we can compute
the anonymity of y and y′, as well.



Computing anonymities

Suppose we know the anonymity of a node x with a single child x′.

′y

y

′x

xa

a
2m
1m·a

2m
1m·a

Round i+1

′x
′y

1m 2m

If the agents represented by x have observed agents whose
corresponding node y has only one child y′, then we can compute
the anonymity of y and y′, as well.



Stabilizing algorithm

If all nodes in a level have only one child, we can compute the
anonymity of all of them (because the network is connected).

L
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Since there are n agents, the tree can branch at most n− 1 times.

Thus, among the first n− 1 levels, there must be a level where no
node branches. In this level, we can compute all anonymities.



Stabilizing algorithm

If all nodes in a level have only one child, we can compute the
anonymity of all of them (because the network is connected).

L

1

Since there are n agents, the tree can branch at most n− 1 times.

Thus, among the first n− 1 levels, there must be a level where no
node branches. In this level, we can compute all anonymities.



Stabilizing algorithm

Theorem

The Generalized Counting Problem can be stably solved in 2n− 2
rounds (without explicit termination).

1−n

view

rounds

all nodes are visible

History tree

1−n
rounds

Note that, after 2n− 2 rounds, all nodes in the first n− 1 levels of
the history tree are in the views of all agents.



Propagation of information

If the network is connected at all rounds, every news reaches every
agent in at most n− 1 rounds.
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Hence, whenever two agents interact, all agents will know it within
n− 1 rounds (and it will show in their views of the history tree).
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Terminating Algorithm



Termination needs a new technique
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Terminating algorithm: Overview

We will give a terminating algorithm for the Counting Problem.

The algorithm is as follows:

Use the Leader’s observations to make guesses on
anonymities.

In any set of n guesses, we can always identify a correct one.

Once we have identified n− 1 correct guesses, we can use
some of them to make new guesses on anonymities.

Repeat until we have the anonymity of all visible branches of
the history tree: this gives an estimate n′ on n.

Wait n′ rounds to confirm the estimate; if correct, terminate.

Theorem

The Generalized Counting Problem can be solved in 3n− 2 rounds
with explicit termination.



Guessing anonymities

Suppose we know the anonymities of a node x and its children.
If some of the agents represented by x have observed agents
represented by y, we can guess the anonymity of a child of y.
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If only one child of y has seen x, then the guess is correct.
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Suppose we know the anonymities of a node x and its children.
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Otherwise, the guess is an overestimation of the anonymity.



Guessing anonymities from the Leader

We can make one guess per round using the Leader’s observations.
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How do we know which guesses are correct?



Weight of a node

When a node v has a guess, we define its weight w(v) as the
number of nodes in the subtree hanging from v that have guesses.
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Weight of a node

A node v is heavy if its weight w(v) is at least as large as the value
of its guess g(v).
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Limiting theorem

We denote by a(v) the anonymity of a node v, by g(v) a guess on
a(v), and by w(v) the weight of v.

Theorem

If all guesses are on different rounds and w(v) > a(v), then some
descendants of v are heavy.

Proof. By well-founded induction on w(v).

Let v1, v2, . . . be the closest descendants of v that
have guesses. Of course, a(v) ≥ ∑

i a(vi).

By the inductive hypothesis, w(vi) ≤ a(vi) for all i.

w(v)−1 =
∑

iw(vi) ≤
∑

i a(vi) ≤ a(v) ≤ w(v)−1

Thus, w(vi) = a(vi) and a(v) =
∑

i a(vi).

The deepest node vd has no siblings, because all
guesses are on different rounds.

Hence g(vd) = a(vd) = w(vd), and vd is heavy.
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Criterion of correctness

Corollary

If v is heavy and no descendant of v is heavy, then g(v) = a(v).

Proof. By assumption, g(v) ≤ w(v).

By the limiting theorem, w(v) ≤ a(v).

Guesses never underestimate anonymities, and so a(v) ≤ g(v).

g(v) ≤ w(v) ≤ a(v) ≤ g(v), hence g(v) = a(v).

This corollary gives agents a criterion to determine when a guess is
necessarily correct: If v is heavy and no descendants of v are
heavy, then the guess on v is correct.

Moreover, by the limiting theorem, such a node v is found by the
time there are n guesses in total.



Criterion of correctness: Example

Any agent with this view is able to determine which guess is
necessarily correct:
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Criterion of correctness: Example
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Propagation of guesses

An island is a connected component of (a view of) the history tree
that contains no leaves and does not contain the root.
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Suppose that the nodes with necessarily correct guesses bound an
island in the history tree.



Propagation of guesses

An island is a connected component of (a view of) the history tree
that contains no leaves and does not contain the root.
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If the anonymity of the top node is the sum of the bottom ones,
then we can infer the anonymities of all the nodes in the island.
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An island is a connected component of (a view of) the history tree
that contains no leaves and does not contain the root.
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Since the network is connected at every round, we can make a new
guess from one of the nodes in the island.
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Since the network is connected at every round, we can make a new
guess from one of the nodes in the island.



Propagation of guesses

Suppose that there are n− 1 nodes with necessarily correct guesses
(other than the Leader ones). There are two cases:



Propagation of guesses

Either these nodes determine a counting cut of the history tree,
in which case we have an estimate n′ on n, given by their sum...



Propagation of guesses

...Or else, some of these nodes determine an island, which allows
us to make a new guess, and so on.
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...Or else, some of these nodes determine an island, which allows
us to make a new guess, and so on.



Dynamics of new guesses

Summarizing, there are two “buffers”:

A buffer of n− 1 overestimating guesses (yellow nodes),

A buffer of n− 2 necessarily correct guesses (blue nodes).

guesses

Buffer 1 Buffer 2

guesses
correct1−n

2−n

Leader makes

a new guess

(every round)

Node becomes

heavy

Counting cut

New island

n≤′n

When both buffers are full, the chain of guesses “snowballs” and
eventually produces a counting cut, which in turn yields an
estimate n′ ≤ n. That happens within 2n− 2 rounds.



Termination condition

Once we have a cut and an estimate n′ ≤ n, we wait n′ rounds.

If n′ < n, a new node appears in the first levels of the history tree.
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If n′=n, then no new nodes appear, and the algorithm terminates.



Further results and open problems

For the Counting problem, we have:

A terminating algorithm in 3n rounds;

A lower bound of 2n rounds.

Open problem

Can we close the gap between 2n and 3n?

We can extend our results in two directions:

For networks with ` > 0 Leaders, we have a terminating

algorithm in (`2 + `+ 1)n rounds.

For congested networks, we have a terminating algorithm in

O(n3) rounds with message size limited to O(log n).

Open problem

What if we have ` > 1 Leaders and O(log n)-size messages?


