
Drawing 3D Fractals in Real Time

An Introduction to Distance Estimators

Giovanni Viglietta
JAIST – March 19, 2019

Drawing 3D Fractals in Real Time

Outline

Fractals in nature

Fractal dimension

The Mandelbrot set

Rendering 3D objects

Distance estimators

Generalizing the complex numbers

Rendering 3D Mandelbrot-like sets

Open problems

Drawing 3D Fractals in Real Time

The coastline paradox

Drawing 3D Fractals in Real Time

The English mathematician Lewis F. Richardson (1881–1953), in
his analysis of war, searched for a relation between the probability

of two countries going to war and the length of their common
border. However, in collecting data, he found considerable

disagreements in the various published border lengths.

The coastline paradox

Drawing 3D Fractals in Real Time

He then measured the length of the coast of Britain, and noticed
that the length increases as the “ruler” gets shorter

(e.g., 2300 km, 2800 km, 3500 km).
Can we take the limit as the real length? No: Richardson showed

that the coast length diverges as the ruler gets shorter!

Similar paradoxes in nature

Drawing 3D Fractals in Real Time

Many other objects in nature exhibit the same paradox:
frost crystals, broccoli, the human brain...

Similar paradoxes in nature

Drawing 3D Fractals in Real Time

Many other objects in nature exhibit the same paradox:
frost crystals, broccoli, the human brain...

Similar paradoxes in nature

Drawing 3D Fractals in Real Time

Many other objects in nature exhibit the same paradox:
frost crystals, broccoli, the human brain...

Traditional calculus

Drawing 3D Fractals in Real Time

The central assumption of traditional calculus is that objects tend
to look smooth if you zoom in far enough. This idealized notion

does not capture the roughness of most real objects.

Fractal dimension

Drawing 3D Fractals in Real Time

Between 1967 and 1975, Benoit Mandelbrot synthesized centuries
of observations on undifferentiable, infinitely self-similar functions,

formulating the notion of fractal dimension. It describes how a
shape scales differently from the space in which it is embedded.

Fractal dimension

r r2

Drawing 3D Fractals in Real Time

If a disk is scaled by a factor of 2, its area goes from πr2 to 4πr2.

Its fractal dimension is log2 4 = 2.

Fractal dimension

r r2

Drawing 3D Fractals in Real Time

If a circle is scaled by 2, its length goes from 2πr to 2 · 2πr.

Its fractal dimension is log2 2 = 1.

Fractal dimension

d2

d

d d

d2

d2

Drawing 3D Fractals in Real Time

If a cube is scaled by a factor of 2, its volume goes from d3 to 8d3.

Its fractal dimension is log2 8 = 3.

Fractal dimension

Drawing 3D Fractals in Real Time

If a Sierpinski triangle is scaled by 2, its area is scaled by 3.

Its fractal dimension is log2 3 ≈ 1.585.

Its dimension is not an integer, hence it is a fractal!

Fractal dimension

Drawing 3D Fractals in Real Time

If a Koch snowflake is scaled by 3, its length is scaled by 4.

Its fractal dimension is log3 4 ≈ 1.262.

Its dimension is not an integer, hence it is a fractal!

Fractal dimension

Approximate fractal dimensions of real objects:

Coast of Britain: ∼ 1.25

Coast of Norway: ∼ 1.52

Outline of clouds: ∼ 1.6

Surface of oceans: ∼ 2.3

Surface of broccoli: ∼ 2.7

Surface of human brain: ∼ 2.79

Surface of human lungs: ∼ 2.97

Drawing 3D Fractals in Real Time

The Mandelbrot set

For each complex number c, define the function f c(z) = z2 + c.

Consider the iterations

f c(0),

f c(f c(0)),

f c(f c(f c(0))),

f c(f c(f c(f c(0)))),

...

fnc (0).

Definition

The complex number c is in the Mandelbrot set if and only if the
sequence of moduli |fnc (0)| is bounded.

Drawing 3D Fractals in Real Time

The Mandelbrot set

(0)cf=c

Drawing 3D Fractals in Real Time

Is c in the Mandelbrot set?

The Mandelbrot set

(0)cf=c
2c

θθ2

2ρ
ρ

Drawing 3D Fractals in Real Time

Let us iterate f c on 0...

The Mandelbrot set

(0)cf=c
2c

c+2c

Drawing 3D Fractals in Real Time

Let us iterate f c on 0...

The Mandelbrot set

(0)cf=c

(0)c
2f

Drawing 3D Fractals in Real Time

Let us iterate f c on 0...

The Mandelbrot set

(0)cf=c

(0)c
2f

2(0))c
2f(

Drawing 3D Fractals in Real Time

Let us iterate f c on 0...

The Mandelbrot set

(0)cf=c

(0)c
2f

2(0))c
2f(

2(0))c
2f(c+

Drawing 3D Fractals in Real Time

Let us iterate f c on 0...

The Mandelbrot set

(0)cf=c

(0)c
2f

(0)c
3f

Drawing 3D Fractals in Real Time

Let us iterate f c on 0...

The Mandelbrot set

(0)cf=c

(0)c
2f

(0)c
3f

2(0))c
3f(

Drawing 3D Fractals in Real Time

Let us iterate f c on 0...

The Mandelbrot set

(0)cf=c

(0)c
2f

(0)c
3f

2(0))c
3f(

2(0))c
3f(c+

Drawing 3D Fractals in Real Time

Let us iterate f c on 0...

The Mandelbrot set

(0)cf=c

(0)c
2f

(0)c
3f

(0)c
4f

Drawing 3D Fractals in Real Time

The moduli |fnc (0)| are going to diverge,

hence c is not in the Mandelbrot set.

The Mandelbrot set

Is c = −1 in the Mandelbrot set?

Iterate f−1(z) = z2 − 1:

f−1(0) = −1,

f−1(f−1(0)) = 0,

f−1(f−1(f−1(0))) = −1,

f−1(f−1(f−1(f−1(0)))) = 0,

...

The moduli |fn−1(0)| are bounded,

hence −1 is in the Mandelbrot set.

Drawing 3D Fractals in Real Time

The Mandelbrot set

Drawing 3D Fractals in Real Time

The first published picture of the Mandelbrot set,
by Robert W. Brooks and Peter Matelski in 1978.

The Mandelbrot set

Drawing 3D Fractals in Real Time

Increasing the resolution, a complex shape with
infinitely self-similar features appears...

The Mandelbrot set

Drawing 3D Fractals in Real Time

Fun fact: in 1998, Mitsuhiro Shishikura proved that the fractal
dimension of the Mandelbrot set is 2, hence it is not a fractal!

Rendering of 3D objects on a 2D screen

Main rendering techniques:

1 Rasterization

2 .

3 .

Drawing 3D Fractals in Real Time

Rendering of 3D objects on a 2D screen

Drawing 3D Fractals in Real Time

A 3D scene has to be represented on a 2D screen
as seen from an observer positioned behind the screen.

Rendering of 3D objects on a 2D screen

Drawing 3D Fractals in Real Time

In the rasterization technique, the vertices of a 3D shape
are first projected onto the screen...

Rendering of 3D objects on a 2D screen

Drawing 3D Fractals in Real Time

...then, the rasterizer identifies the pixels that fall into the shape,
and colors them appropriately.

Rendering of 3D objects on a 2D screen

Drawing 3D Fractals in Real Time

Rasterization has always been the most popular technique.
Video games and real-time applications heavily rely on it.

Rendering of 3D objects on a 2D screen

Main rendering techniques:

1 Rasterization

Not suitable for drawing fractals (infinitely many vertices!)

2 —

3 .

Drawing 3D Fractals in Real Time

Rendering of 3D objects on a 2D screen

Main rendering techniques:

1 Rasterization

Not suitable for drawing fractals (infinitely many vertices!)

2 Ray tracing—

3 .

Drawing 3D Fractals in Real Time

Rendering of 3D objects on a 2D screen

Drawing 3D Fractals in Real Time

In the ray tracing technique, a ray is cast for each pixel on screen,
and the intersection with the closest object is computed.

Rendering of 3D objects on a 2D screen

Drawing 3D Fractals in Real Time

Additional rays may be cast to compute
shadows, reflections, refractions, caustics, etc.

Rendering of 3D objects on a 2D screen

Drawing 3D Fractals in Real Time

Ray tracing gives the best results, but is very slow.
This is the preferred technique for animated movies.

Rendering of 3D objects on a 2D screen

Main rendering techniques:

1 Rasterization

Not suitable for drawing fractals (infinitely many vertices!)

2 Ray tracing

Not suitable for real-time rendering (heavy computations!)

3 Ray marching

Drawing 3D Fractals in Real Time

Rendering of 3D objects on a 2D screen

Main rendering techniques:

1 Rasterization

Not suitable for drawing fractals (infinitely many vertices!)

2 Ray tracing

Not suitable for real-time rendering (heavy computations!)

3 Ray marchingRay marching

Drawing 3D Fractals in Real Time

Ray marching

Drawing 3D Fractals in Real Time

Ray marching starts like ray tracing:
a ray is cast for each pixel on screen.

Ray marching

Drawing 3D Fractals in Real Time

But instead of computing the exact intersection with a shape,
it finds better and better approximations of it.

Ray marching

p

)p(DE

Drawing 3D Fractals in Real Time

Suppose we are given a distance estimator for the shape: a
function DE that tells the distance of each point from the shape.

Ray marching

p

)p(DE

Drawing 3D Fractals in Real Time

Suppose we are given a distance estimator for the shape: a
function DE that tells the distance of each point from the shape.

Ray marching

p

)p(DE

Drawing 3D Fractals in Real Time

When our ray is at a point p, we can advance it by at least DE(p)
without penetrating the shape.

Ray marching

p

)p(DE

Drawing 3D Fractals in Real Time

When our ray is at a point p, we can advance it by at least DE(p)
without penetrating the shape.

Ray marching

p

)p(DE

Drawing 3D Fractals in Real Time

When our ray is at a point p, we can advance it by at least DE(p)
without penetrating the shape.

Ray marching

p

)p(DE

Drawing 3D Fractals in Real Time

When our ray is at a point p, we can advance it by at least DE(p)
without penetrating the shape.

Ray marching

p

)p(DE

Drawing 3D Fractals in Real Time

When our ray is at a point p, we can advance it by at least DE(p)
without penetrating the shape.

Ray marching

p

)p(DE

Drawing 3D Fractals in Real Time

As soon as DE(p) is smaller than some threshold,
we claim that the ray has hit the shape, and we stop.

Ray marching

p

)p(DE

Drawing 3D Fractals in Real Time

Note that DE(p) does not have to be the exact distance,
but it could be a lower bound (hence the name “estimator”).

Ray marching

p

)p(DE

Drawing 3D Fractals in Real Time

Note that DE(p) does not have to be the exact distance,
but it could be a lower bound (hence the name “estimator”).

Ray marching

Drawing 3D Fractals in Real Time

As with ray tracing, additional rays may be cast to compute
shadows, reflections, refractions, caustics, etc.

Distance estimator of a sphere

r

p
)p(

DE

Drawing 3D Fractals in Real Time

An exact distance estimator for a sphere of radius r

is easy to compute: DE(p) = ‖p‖ − r.

More distance estimators

Exact distance estimators for some simple shapes:

Sphere: DE(p) = ‖p‖ − r

Cylinder: DE(p) = ‖pxy‖ − r

Cone: DE(p) = (‖pxy‖, pz) · c

Torus: DE(p) = ‖(‖pxy‖ − r1, pz)‖ − r2

Plane: DE(p) = p · n+ d

Box: DE(p) = ‖max{|p| − b, 0}‖

Drawing 3D Fractals in Real Time

Combining shapes

p

Drawing 3D Fractals in Real Time

What if there is more than one shape in the scene?

Combining shapes

p

)p(1DE

)p(2DE

Drawing 3D Fractals in Real Time

Suppose we have a distance estimator for each shape.

Combining shapes

p

)p(DE

Drawing 3D Fractals in Real Time

The combined distance estimator is the minimum.

Combining shapes

p

Drawing 3D Fractals in Real Time

Similarly, the distance estimator of the intersection
is the maximum.

Combining shapes

p

)p(1DE

)p(2DE

Drawing 3D Fractals in Real Time

Similarly, the distance estimator of the intersection
is the maximum.

Combining shapes

p

)p(DE

Drawing 3D Fractals in Real Time

Similarly, the distance estimator of the intersection
is the maximum.

Combining shapes

p

Drawing 3D Fractals in Real Time

What if we want to subtract one shape from another?

Combining shapes

)p(2DE−
p

)p(1DE

Drawing 3D Fractals in Real Time

Negate the distance estimator of the shape to be subtracted,
which gives a distance estimator for its complement shape.

Combining shapes

)p(DE

p

Drawing 3D Fractals in Real Time

Then compute the maximum,
as we did for the intersection of shapes.

Combining shapes

Drawing 3D Fractals in Real Time

Combining shapes

Drawing 3D Fractals in Real Time

Infinite repetition

Drawing 3D Fractals in Real Time

We already know the distance estimator for a sphere:

DE(p) = ‖p‖ − r.

Infinite repetition

Drawing 3D Fractals in Real Time

Let us make a small modification, introducing a mod operator:

DE(p) = ‖(p mod m)−m/2‖ − r.

Infinite repetition

Drawing 3D Fractals in Real Time

Suddenly we get infinitely many spheres, at roughly the same cost!
This would be unfeasible with rasterization or ray tracing.

Scale-invariant fractals

Drawing 3D Fractals in Real Time

With similar methods, it is very easy to efficiently draw
scale-invariant fractals such as the Menger sponge.

Generalizing the Mandelbrot set

The Mandelbrot set is defined from the iterations of the function

f c(z) = z2 + c,

where z and c are complex numbers.

Is there a way to extend this notion to 3D?

The term + c poses no problem (R3 is a vector space)

But how should we interpret the term z2?

We need to generalize complex multiplication to some 3D space.

Drawing 3D Fractals in Real Time

Generalizing complex multiplication

′θ

′ρ

′ρ·ρ

′θ+θ

ρ

θ

x

y
′c·c

′c

c

Drawing 3D Fractals in Real Time

Recall the geometric interpretation of complex multiplication:
in polar coordinates, multiply the norms and add the angles.

Generalizing complex multiplication

x
y

z

p

ϕ

θ ρ

Drawing 3D Fractals in Real Time

We can do the same thing in spherical coordinates,
except that now we have two pairs of angles to add.

Distance estimator for the Mandelbrot set

To apply the ray marching technique to this 3D Mandelbrot set,
we still need to define a distance estimator for it.

For the 2D Mandelbrot set, an approximated distance estimator
can be defined based on the theory of electrostatic potential.

At the nth iteration of f c(0), we get the complex number
gn(c) = fnc (0). The distance estimator is:

DE(c) = lim
n→∞

|gn(c)| · ln |gn(c)|
2 · |g′n(c)|

,

where g′n(c) is the complex derivative of gn(c) with respect to c.

John C. Hart, Daniel J. Sandin, Louis H. Kauffman
Ray tracing deterministic 3-D fractals
SIGGRAPH ’89

Drawing 3D Fractals in Real Time

Distance estimator for the Mandelbrot set

How do we compute the complex derivative of gn(c) = fnc (0)?

From f c(z) = z2 + c, we have the recursion:

gn(c) = f c(gn−1(c)) = (gn−1(c))2 + c.

Deriving with respect to c, we get:

g′n(c) = 2 · gn−1(c) · g′n−1(c) + 1 = 2 · fn−1c (0) · g′n−1(c) + 1.

Can we extend the same idea to the 3D Mandelbrot set?

Problem 1: what is the potential of the 3D Mandelbrot set?

Tentative solution: use the same potential function as in 2D!

Problem 2: the complex derivative is a complex number, but for
points with three components we would get a 3x3 Jacobian matrix.

Tentative solution: use the same recursive formula as in 2D, and
take norms ‖g′n(c)‖ instead of moduli |g′n(c)|

Drawing 3D Fractals in Real Time

Distance estimator for the Mandelbrot set

How do we compute the complex derivative of gn(c) = fnc (0)?

From f c(z) = z2 + c, we have the recursion:

gn(c) = f c(gn−1(c)) = (gn−1(c))2 + c.

Deriving with respect to c, we get:

g′n(c) = 2 · gn−1(c) · g′n−1(c) + 1 = 2 · fn−1c (0) · g′n−1(c) + 1.

Can we extend the same idea to the 3D Mandelbrot set?

Problem 1: what is the potential of the 3D Mandelbrot set?

Tentative solution: use the same potential function as in 2D!

Problem 2: the complex derivative is a complex number, but for
points with three components we would get a 3x3 Jacobian matrix.

Tentative solution: use the same recursive formula as in 2D, and
take norms ‖g′n(c)‖ instead of moduli |g′n(c)|

Drawing 3D Fractals in Real Time

The Mandelbulb

Drawing 3D Fractals in Real Time

The result is not so aesthetically pleasing
and does not exhibit a lot of self-similarity.

The Mandelbulb

Drawing 3D Fractals in Real Time

But if we replace f c(z) = z2 + c with f c(z) = z8 + c,
we obtain the Mandelbulb.

Another approach

Is there another way to extend complex multiplication to 3D?

Let us add to 1 and i a third component j. If we assume the
distributive law, we only have to fill out this table:

× 1 i j

1 1 i j
i i −1 ?
j j ? ?

Unfortunately, if we also want associativity, we get

i · (i · j) = (i · i) · j = −j,
but trying to solve the equation i · ? = −j always causes j to be a
linear combination of 1 and i, making the space 2-dimensional.

There is no solution in 3D.

Drawing 3D Fractals in Real Time

Another approach

Is there another way to extend complex multiplication to 3D?

Let us add to 1 and i a third component j. If we assume the
distributive law, we only have to fill out this table:

× 1 i j

1 1 i j
i i −1 ?
j j ? ?

Unfortunately, if we also want associativity, we get

i · (i · j) = (i · i) · j = −j,
but trying to solve the equation i · ? = −j always causes j to be a
linear combination of 1 and i, making the space 2-dimensional.

There is no solution in 3D.

Drawing 3D Fractals in Real Time

Quaternions

A possible workaround is using 4 components instead of 3,
which yields the quaternions H:

× 1 i j k

1 1 i j k
i i −1 k −j
j j −k −1 i
k k j −i −1

Theorem (Frobenius, 1877)

The only finite-dimensional vector spaces on the real numbers with
associative and distributive multiplication and division are R, C, H.

Problem: how do we visualize a 4D object?

Drawing 3D Fractals in Real Time

Quaternions

A possible workaround is using 4 components instead of 3,
which yields the quaternions H:

× 1 i j k

1 1 i j k
i i −1 k −j
j j −k −1 i
k k j −i −1

Theorem (Frobenius, 1877)

The only finite-dimensional vector spaces on the real numbers with
associative and distributive multiplication and division are R, C, H.

Problem: how do we visualize a 4D object?

Drawing 3D Fractals in Real Time

Quaternion Mandelbrot set

Drawing 3D Fractals in Real Time

If we keep the k component at a fixed value,
we just get a solid of revolution.

Quaternion Mandelbrot set

Drawing 3D Fractals in Real Time

But if we apply the transformation py := −py at each iteration,
we obtain a more interesting shape.

Quaternion Mandelbrot-like sets

Drawing 3D Fractals in Real Time

By adding more parameters to the iteration function, we get
higher-dimensional shapes that can be “sliced” in various ways.

Alan Norton
Generation and display of geometric fractals in 3-D
SIGGRAPH ’82

Summary and open problems

We illustrated the ray marching technique with distance estimators
for real-time rendering of 3D fractals.

Advantages: good compromise between image quality and speed;
many effects that are usually expensive come almost for free with
ray marching: ambient occlusion, glow, soft shadows, etc.

Disadvantages: no dedicated hardware support; still slower than
rasterization for scenes with many objects.

Future work:

Provide theoretical foundations to these rendering heuristics.

Why does the 2D Mandelbrot potential function work in 3D?

For what other iteration functions does this approach work?

Why can we get rid of Jacobians in the distance estimators?

Design video games around these concepts: navigation and
interaction with fractal environments at various scales, etc.

Drawing 3D Fractals in Real Time

Summary and open problems

We illustrated the ray marching technique with distance estimators
for real-time rendering of 3D fractals.

Advantages: good compromise between image quality and speed;
many effects that are usually expensive come almost for free with
ray marching: ambient occlusion, glow, soft shadows, etc.

Disadvantages: no dedicated hardware support; still slower than
rasterization for scenes with many objects.

Future work:

Provide theoretical foundations to these rendering heuristics.

Why does the 2D Mandelbrot potential function work in 3D?

For what other iteration functions does this approach work?

Why can we get rid of Jacobians in the distance estimators?

Design video games around these concepts: navigation and
interaction with fractal environments at various scales, etc.

Drawing 3D Fractals in Real Time

Summary and open problems

We illustrated the ray marching technique with distance estimators
for real-time rendering of 3D fractals.

Advantages: good compromise between image quality and speed;
many effects that are usually expensive come almost for free with
ray marching: ambient occlusion, glow, soft shadows, etc.

Disadvantages: no dedicated hardware support; still slower than
rasterization for scenes with many objects.

Future work:

Provide theoretical foundations to these rendering heuristics.

Why does the 2D Mandelbrot potential function work in 3D?

For what other iteration functions does this approach work?

Why can we get rid of Jacobians in the distance estimators?

Design video games around these concepts: navigation and
interaction with fractal environments at various scales, etc.

Drawing 3D Fractals in Real Time

Summary and open problems

Drawing 3D Fractals in Real Time

