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The coastline paradox
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The English mathematician Lewis F. Richardson (1881–1953), in
his analysis of war, searched for a relation between the probability

of two countries going to war and the length of their common
border. However, in collecting data, he found considerable

disagreements in the various published border lengths.



The coastline paradox
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He then measured the length of the coast of Britain, and noticed
that the length increases as the “ruler” gets shorter

(e.g., 2300 km, 2800 km, 3500 km).
Can we take the limit as the real length? No: Richardson showed

that the coast length diverges as the ruler gets shorter!



Similar paradoxes in nature
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Many other objects in nature exhibit the same paradox:
frost crystals, broccoli, the human brain...
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Traditional calculus
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The central assumption of traditional calculus is that objects tend
to look smooth if you zoom in far enough. This idealized notion

does not capture the roughness of most real objects.



Fractal dimension
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Between 1967 and 1975, Benoit Mandelbrot synthesized centuries
of observations on undifferentiable, infinitely self-similar functions,

formulating the notion of fractal dimension. It describes how a
shape scales differently from the space in which it is embedded.



Fractal dimension
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If a disk is scaled by a factor of 2, its area goes from πr2 to 4πr2.

Its fractal dimension is log2 4 = 2.
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If a circle is scaled by 2, its length goes from 2πr to 2 · 2πr.

Its fractal dimension is log2 2 = 1.
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If a cube is scaled by a factor of 2, its volume goes from d3 to 8d3.

Its fractal dimension is log2 8 = 3.



Fractal dimension
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If a Sierpinski triangle is scaled by 2, its area is scaled by 3.

Its fractal dimension is log2 3 ≈ 1.585.

Its dimension is not an integer, hence it is a fractal!



Fractal dimension
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If a Koch snowflake is scaled by 3, its length is scaled by 4.

Its fractal dimension is log3 4 ≈ 1.262.

Its dimension is not an integer, hence it is a fractal!



Fractal dimension

Approximate fractal dimensions of real objects:

Coast of Britain: ∼ 1.25

Coast of Norway: ∼ 1.52

Outline of clouds: ∼ 1.6

Surface of oceans: ∼ 2.3

Surface of broccoli: ∼ 2.7

Surface of human brain: ∼ 2.79

Surface of human lungs: ∼ 2.97
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The Mandelbrot set

For each complex number c, define the function f c(z) = z2 + c.

Consider the iterations

f c(0),

f c(f c(0)),

f c(f c(f c(0))),

f c(f c(f c(f c(0)))),

...

fnc (0).

Definition

The complex number c is in the Mandelbrot set if and only if the
sequence of moduli |fnc (0)| is bounded.
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The Mandelbrot set

(0)cf=c
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Is c in the Mandelbrot set?
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Let us iterate f c on 0...
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Let us iterate f c on 0...
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Let us iterate f c on 0...



The Mandelbrot set

(0)cf=c

(0)c
2f

(0)c
3f

2(0))c
3f(

2(0))c
3f( c+

Drawing 3D Fractals in Real Time

Let us iterate f c on 0...



The Mandelbrot set
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The moduli |fnc (0)| are going to diverge,

hence c is not in the Mandelbrot set.



The Mandelbrot set

Is c = −1 in the Mandelbrot set?

Iterate f−1(z) = z2 − 1:

f−1(0) = −1,

f−1(f−1(0)) = 0,

f−1(f−1(f−1(0))) = −1,

f−1(f−1(f−1(f−1(0)))) = 0,

...

The moduli |fn−1(0)| are bounded,

hence −1 is in the Mandelbrot set.
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The Mandelbrot set
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The first published picture of the Mandelbrot set,
by Robert W. Brooks and Peter Matelski in 1978.



The Mandelbrot set
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Increasing the resolution, a complex shape with
infinitely self-similar features appears...



The Mandelbrot set
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Fun fact: in 1998, Mitsuhiro Shishikura proved that the fractal
dimension of the Mandelbrot set is 2, hence it is not a fractal!



Rendering of 3D objects on a 2D screen

Main rendering techniques:

1 Rasterization

2 .

3 .
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Rendering of 3D objects on a 2D screen
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A 3D scene has to be represented on a 2D screen
as seen from an observer positioned behind the screen.



Rendering of 3D objects on a 2D screen
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In the rasterization technique, the vertices of a 3D shape
are first projected onto the screen...
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...then, the rasterizer identifies the pixels that fall into the shape,
and colors them appropriately.



Rendering of 3D objects on a 2D screen
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Rasterization has always been the most popular technique.
Video games and real-time applications heavily rely on it.
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Main rendering techniques:
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Not suitable for drawing fractals (infinitely many vertices!)
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Main rendering techniques:

1 Rasterization

Not suitable for drawing fractals (infinitely many vertices!)

2 Ray tracing—

3 .
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Rendering of 3D objects on a 2D screen
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In the ray tracing technique, a ray is cast for each pixel on screen,
and the intersection with the closest object is computed.



Rendering of 3D objects on a 2D screen
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Additional rays may be cast to compute
shadows, reflections, refractions, caustics, etc.



Rendering of 3D objects on a 2D screen
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Ray tracing gives the best results, but is very slow.
This is the preferred technique for animated movies.



Rendering of 3D objects on a 2D screen

Main rendering techniques:

1 Rasterization

Not suitable for drawing fractals (infinitely many vertices!)

2 Ray tracing

Not suitable for real-time rendering (heavy computations!)

3 Ray marching
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Ray marching

Drawing 3D Fractals in Real Time

Ray marching starts like ray tracing:
a ray is cast for each pixel on screen.



Ray marching
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But instead of computing the exact intersection with a shape,
it finds better and better approximations of it.



Ray marching
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Suppose we are given a distance estimator for the shape: a
function DE that tells the distance of each point from the shape.
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When our ray is at a point p, we can advance it by at least DE(p)
without penetrating the shape.
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Ray marching
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As soon as DE(p) is smaller than some threshold,
we claim that the ray has hit the shape, and we stop.



Ray marching
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Note that DE(p) does not have to be the exact distance,
but it could be a lower bound (hence the name “estimator”).
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Note that DE(p) does not have to be the exact distance,
but it could be a lower bound (hence the name “estimator”).



Ray marching
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As with ray tracing, additional rays may be cast to compute
shadows, reflections, refractions, caustics, etc.



Distance estimator of a sphere
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An exact distance estimator for a sphere of radius r

is easy to compute: DE(p) = ‖p‖ − r.



More distance estimators

Exact distance estimators for some simple shapes:

Sphere: DE(p) = ‖p‖ − r

Cylinder: DE(p) = ‖pxy‖ − r

Cone: DE(p) = (‖pxy‖, pz) · c

Torus: DE(p) = ‖(‖pxy‖ − r1, pz)‖ − r2

Plane: DE(p) = p · n+ d

Box: DE(p) = ‖max{|p| − b, 0}‖
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Combining shapes

p
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What if there is more than one shape in the scene?
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Suppose we have a distance estimator for each shape.
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The combined distance estimator is the minimum.



Combining shapes
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Similarly, the distance estimator of the intersection
is the maximum.
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Similarly, the distance estimator of the intersection
is the maximum.
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Similarly, the distance estimator of the intersection
is the maximum.



Combining shapes
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What if we want to subtract one shape from another?
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Negate the distance estimator of the shape to be subtracted,
which gives a distance estimator for its complement shape.



Combining shapes
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Then compute the maximum,
as we did for the intersection of shapes.



Combining shapes
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Infinite repetition
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We already know the distance estimator for a sphere:

DE(p) = ‖p‖ − r.



Infinite repetition
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Let us make a small modification, introducing a mod operator:

DE(p) = ‖(p mod m)−m/2‖ − r.



Infinite repetition
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Suddenly we get infinitely many spheres, at roughly the same cost!
This would be unfeasible with rasterization or ray tracing.



Scale-invariant fractals
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With similar methods, it is very easy to efficiently draw
scale-invariant fractals such as the Menger sponge.



Generalizing the Mandelbrot set

The Mandelbrot set is defined from the iterations of the function

f c(z) = z2 + c,

where z and c are complex numbers.

Is there a way to extend this notion to 3D?

The term + c poses no problem (R3 is a vector space)

But how should we interpret the term z2?

We need to generalize complex multiplication to some 3D space.
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Generalizing complex multiplication
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Recall the geometric interpretation of complex multiplication:
in polar coordinates, multiply the norms and add the angles.



Generalizing complex multiplication
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We can do the same thing in spherical coordinates,
except that now we have two pairs of angles to add.



Distance estimator for the Mandelbrot set

To apply the ray marching technique to this 3D Mandelbrot set,
we still need to define a distance estimator for it.

For the 2D Mandelbrot set, an approximated distance estimator
can be defined based on the theory of electrostatic potential.

At the nth iteration of f c(0), we get the complex number
gn(c) = fnc (0). The distance estimator is:

DE(c) = lim
n→∞

|gn(c)| · ln |gn(c)|
2 · |g′n(c)|

,

where g′n(c) is the complex derivative of gn(c) with respect to c.

John C. Hart, Daniel J. Sandin, Louis H. Kauffman
Ray tracing deterministic 3-D fractals
SIGGRAPH ’89
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Distance estimator for the Mandelbrot set

How do we compute the complex derivative of gn(c) = fnc (0)?

From f c(z) = z2 + c, we have the recursion:

gn(c) = f c(gn−1(c)) = (gn−1(c))2 + c.

Deriving with respect to c, we get:

g′n(c) = 2 · gn−1(c) · g′n−1(c) + 1 = 2 · fn−1c (0) · g′n−1(c) + 1.

Can we extend the same idea to the 3D Mandelbrot set?

Problem 1: what is the potential of the 3D Mandelbrot set?

Tentative solution: use the same potential function as in 2D!

Problem 2: the complex derivative is a complex number, but for
points with three components we would get a 3x3 Jacobian matrix.

Tentative solution: use the same recursive formula as in 2D, and
take norms ‖g′n(c)‖ instead of moduli |g′n(c)|
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The Mandelbulb
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The result is not so aesthetically pleasing
and does not exhibit a lot of self-similarity.



The Mandelbulb
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But if we replace f c(z) = z2 + c with f c(z) = z8 + c,
we obtain the Mandelbulb.



Another approach

Is there another way to extend complex multiplication to 3D?

Let us add to 1 and i a third component j. If we assume the
distributive law, we only have to fill out this table:

× 1 i j

1 1 i j
i i −1 ?
j j ? ?

Unfortunately, if we also want associativity, we get

i · (i · j) = (i · i) · j = −j,
but trying to solve the equation i · ? = −j always causes j to be a
linear combination of 1 and i, making the space 2-dimensional.

There is no solution in 3D.
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Quaternions

A possible workaround is using 4 components instead of 3,
which yields the quaternions H:

× 1 i j k

1 1 i j k
i i −1 k −j
j j −k −1 i
k k j −i −1

Theorem (Frobenius, 1877)

The only finite-dimensional vector spaces on the real numbers with
associative and distributive multiplication and division are R, C, H.

Problem: how do we visualize a 4D object?
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Quaternion Mandelbrot set
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If we keep the k component at a fixed value,
we just get a solid of revolution.



Quaternion Mandelbrot set
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But if we apply the transformation py := −py at each iteration,
we obtain a more interesting shape.



Quaternion Mandelbrot-like sets
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By adding more parameters to the iteration function, we get
higher-dimensional shapes that can be “sliced” in various ways.

Alan Norton
Generation and display of geometric fractals in 3-D
SIGGRAPH ’82



Summary and open problems

We illustrated the ray marching technique with distance estimators
for real-time rendering of 3D fractals.

Advantages: good compromise between image quality and speed;
many effects that are usually expensive come almost for free with
ray marching: ambient occlusion, glow, soft shadows, etc.

Disadvantages: no dedicated hardware support; still slower than
rasterization for scenes with many objects.

Future work:

Provide theoretical foundations to these rendering heuristics.

Why does the 2D Mandelbrot potential function work in 3D?

For what other iteration functions does this approach work?

Why can we get rid of Jacobians in the distance estimators?

Design video games around these concepts: navigation and
interaction with fractal environments at various scales, etc.
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