
Genetic Algorithms for Programmable Matter

Giovanni Viglietta

Joint work with Giuseppe A. Di Luna

(Work in progress...)

JAIST – April 27, 2022

Overview

Genetic Programming

Introduction to Genetic Algorithms

Abstract Syntax Trees

Programmable Matter

Physical vs. Theoretical Models

State of the Art

Additional Tasks

Genetic Programming + Programmable Matter

Primitive Set

Fitness Functions

Experimental Results

Natural Selection and Evolution in the Real World

Genetic Algorithms

Population

Individuals

0 01 1 10 0 1

1 00 0 01 1 1

0 11 0 11 1 0

0 01 0 00 1 0 0 10 0 10 1 0

1 10 1 00 1 0

1 00 1 10 0 0

1 10 1 10 1 0

0 10 0 10 1 0

1 01 1 01 1 0

0 11 0 01 0 0

1 11 0 10 1 1

Genetic Algorithms attempt to solve optimization problems by
evolving a “population” of feasible solutions.

Genetic Algorithms

Fitness

0 01 1 10 0 1

1 00 0 01 1 1

0 11 0 11 1 0

0 01 0 00 1 0

0 10 0 10 1 0

1 10 1 00 1 0

1 00 1 10 0 0

1 10 1 10 1 0

0 10 0 10 1 0

1 01 1 01 1 0

0 11 0 01 0 0

1 11 0 10 1 1

Individuals may be represented by binary strings that encode
solutions. Each individual has a “fitness value” given by the object
function that we want to minimize or maximize.

Genetic Algorithms

Fitness: 5

Fitness: 8

Fitness: 7

Fitness: 4 Fitness: 3

Fitness: 9

Fitness: 4

Fitness: 7

Fitness: 4

Fitness: 1

Fitness: 2

Fitness: 5

0 01 1 10 0 1

1 00 0 01 1 1

0 11 0 11 1 0

0 01 0 00 1 0 0 10 0 10 1 0

1 10 1 00 1 0

1 00 1 10 0 0

1 10 1 10 1 0

0 10 0 10 1 0

1 01 1 01 1 0

0 11 0 01 0 0

1 11 0 10 1 1

The population evolves based on natural selection and genetics,
where binary strings are treated as DNA sequences.
The individuals with higher fitness are more likely to reproduce and
carry their genes over to the next generation.

Genetic Algorithms

Fitness: 5

Fitness: 8

Fitness: 7

Fitness: 4

Fitness: 3

Fitness: 9

Fitness: 4

Fitness: 7

Fitness: 4

Fitness: 1

Fitness: 2

Fitness: 5

0 01 1 10 0 1

1 00 0 01 1 1

0 11 0 11 1 0

0 01 0 00 1 0

0 10 0 10 1 0

1 10 1 00 1 0

1 00 1 10 0 0

1 10 1 10 1 0

0 10 0 10 1 0

1 01 1 01 1 0

0 11 0 01 0 0

1 11 0 10 1 1

Old generation

All individuals are sorted according to their fitness.

Genetic Algorithms

Fitness: 5

Fitness: 8

Fitness: 7

Fitness: 4

Fitness: 3

Fitness: 9

Fitness: 4

Fitness: 7

Fitness: 4

Fitness: 1

Fitness: 2

Fitness: 5

0 01 1 10 0 1

1 00 0 01 1 1

0 11 0 11 1 0

0 01 0 00 1 0

0 10 0 10 1 0

1 10 1 00 1 0

1 00 1 10 0 0

1 10 1 10 1 0

0 10 0 10 1 0

1 01 1 01 1 0

0 11 0 01 0 0

1 11 0 10 1 1

Fitness: 8

Fitness: 7

Fitness: 9

1 00 0 01 1 1

0 11 0 11 1 0

1 10 1 00 1 0

Old generation New generation

(Elitism)

Carried forward

The individuals with highest fitness automatically survive.

Genetic Algorithms

Fitness: 5

Fitness: 8

Fitness: 7

Fitness: 4

Fitness: 3

Fitness: 9

Fitness: 4

Fitness: 7

Fitness: 4

Fitness: 1

Fitness: 2

Fitness: 5

0 01 1 10 0 1

1 00 0 01 1 1

0 11 0 11 1 0

0 01 0 00 1 0

0 10 0 10 1 0

1 10 1 00 1 0

1 00 1 10 0 0

1 10 1 10 1 0

0 10 0 10 1 0

1 01 1 01 1 0

0 11 0 01 0 0

1 11 0 10 1 1

Fitness: ?

Fitness: 8

Fitness: 7

Fitness: ?

Fitness: ?

Fitness: 9

Fitness: ?

Fitness: ?

Fitness: ?

Fitness: ?

Fitness: ?

Fitness: ?

1 00 0 01 1 1

0 11 0 11 1 0

1 10 1 00 1 0

? ?? ? ?? ? ?

? ?? ? ?? ? ?

? ?? ? ?? ? ?

? ?? ? ?? ? ?

? ?? ? ?? ? ?

? ?? ? ?? ? ?

? ?? ? ?? ? ?

? ?? ? ?? ? ?

? ?? ? ?? ? ?

Old generation New generation

Selection,
Mating,

Mutation

The other individuals die and are replaced by their children.

Genetic Algorithms

Fitness: 5

Fitness: 8

Fitness: 7

Fitness: 4

Fitness: 3

Fitness: 9

Fitness: 4

Fitness: 7

Fitness: 4

Fitness: 1

Fitness: 2

Fitness: 5

0 01 1 10 0 1

1 00 0 01 1 1

0 11 0 11 1 0

0 01 0 00 1 0

0 10 0 10 1 0

1 10 1 00 1 0

1 00 1 10 0 0

1 10 1 10 1 0

0 10 0 10 1 0

1 01 1 01 1 0

0 11 0 01 0 0

1 11 0 10 1 1

Old generation

0 01 1 10 0 1

1 00 0 01 1 1

Selection

Pairs of individuals are randomly chosen based on their fitness.

Genetic Algorithms

Fitness: 5

Fitness: 8

Fitness: 7

Fitness: 4

Fitness: 3

Fitness: 9

Fitness: 4

Fitness: 7

Fitness: 4

Fitness: 1

Fitness: 2

Fitness: 5

0 01 1 10 0 1

1 00 0 01 1 1

0 11 0 11 1 0

0 01 0 00 1 0

0 10 0 10 1 0

1 10 1 00 1 0

1 00 1 10 0 0

1 10 1 10 1 0

0 10 0 10 1 0

1 01 1 01 1 0

0 11 0 01 0 0

1 11 0 10 1 1

Old generation

0 01 1 10 0 1

1 00 0 01 1 1

0 01 0 01 1 1

1 00 1 10 0 1

Parents

Children

Crossover

The DNAs of each pair are combined to produce two children.

Genetic Algorithms

Fitness: 5

Fitness: 8

Fitness: 7

Fitness: 4

Fitness: 3

Fitness: 9

Fitness: 4

Fitness: 7

Fitness: 4

Fitness: 1

Fitness: 2

Fitness: 5

0 01 1 10 0 1

1 00 0 01 1 1

0 11 0 11 1 0

0 01 0 00 1 0

0 10 0 10 1 0

1 10 1 00 1 0

1 00 1 10 0 0

1 10 1 10 1 0

0 10 0 10 1 0

1 01 1 01 1 0

0 11 0 01 0 0

1 11 0 10 1 1

Old generation

0 01 1 10 0 1

1 00 0 01 1 1

0 01 0 01 1 0

1 00 1 11 0 1

Parents

Children

Crossover

Mutation

Some random bits may be flipped to simulate genetic mutation.

Genetic Algorithms

Fitness: 5

Fitness: 8

Fitness: 7

Fitness: 4

Fitness: 3

Fitness: 9

Fitness: 4

Fitness: 7

Fitness: 4

Fitness: 1

Fitness: 2

Fitness: 5

0 01 1 10 0 1

1 00 0 01 1 1

0 11 0 11 1 0

0 01 0 00 1 0

0 10 0 10 1 0

1 10 1 00 1 0

1 00 1 10 0 0

1 10 1 10 1 0

0 10 0 10 1 0

1 01 1 01 1 0

0 11 0 01 0 0

1 11 0 10 1 1

Fitness: 8

Fitness: 8

Fitness: 7

Fitness: 6

Fitness: 5

Fitness: 9

Fitness: 9

Fitness: 6

Fitness: 10

Fitness: 8

Fitness: 7

Fitness: 7

1 00 0 01 1 1

0 11 0 11 1 0

1 10 1 00 1 0

1 00 1 11 0 1

0 01 0 01 1 0

1 11 0 01 0 1

1 00 0 10 0 0

0 10 1 01 1 1

1 01 1 01 0 0

0 11 0 11 0 1

0 00 0 01 1 1

1 01 1 11 1 0

Old generation New generation

Selection,
Mating,

Mutation

The new individuals are born, and their fitness is computed.

Genetic Algorithms

Fitness: 5

Fitness: 8

Fitness: 7

Fitness: 4

Fitness: 3

Fitness: 9

Fitness: 4

Fitness: 7

Fitness: 4

Fitness: 1

Fitness: 2

Fitness: 5

0 01 1 10 0 1

1 00 0 01 1 1

0 11 0 11 1 0

0 01 0 00 1 0

0 10 0 10 1 0

1 10 1 00 1 0

1 00 1 10 0 0

1 10 1 10 1 0

0 10 0 10 1 0

1 01 1 01 1 0

0 11 0 01 0 0

1 11 0 10 1 1

Fitness: 8

Fitness: 8

Fitness: 7

Fitness: 6

Fitness: 5

Fitness: 9

Fitness: 9

Fitness: 6

Fitness: 10

Fitness: 8

Fitness: 7

Fitness: 7

1 00 0 01 1 1

0 11 0 11 1 0

1 10 1 00 1 0

1 00 1 11 0 1

0 01 0 01 1 0

1 11 0 01 0 1

1 00 0 10 0 0

0 10 1 01 1 1

1 01 1 01 0 0

0 11 0 11 0 1

0 00 0 01 1 1

1 01 1 11 1 0

Old generation New generation

New generations are expected to have higher fitness than the old.

Abstract Syntax Trees

condition body

else-bodyif-body

while

variable

name: b

constant

value: 0

compare

op: ≠
branch

compare

op: >
assign

bin op

op: −

assign

bin op

op: −

statement

sequence

return

variable

name: a

variable

name: a

variable

name: a

variable

name: a

variable

name: a

variable

name: b

variable

name: b

variable

name: b

variable

name: b

condition

while b ≠ 0:
 if a > b:
 a := a - b
 else:
 b := b - a
return a

Instruction

Integer

Boolean

An Abstract Syntax Tree (AST) is a representation of the logical
structure of a program. Each node has a type.

Genetic Programming

Population

Individuals

Genetic Programming is an extension of Genetic Algorithms where
individuals are ASTs. The goal of Genetic Programming is to find
a “good” program that solves a given problem.

Genetic Programming

Crossover

Parents

Children

When mating, the two parents’ ASTs are combined by switching
some randomly selected subtrees (having same-type roots).

Genetic Programming

Mutation

Mutation is done by replacing a randomly selected subtree with a
randomly generated (well-formed) AST.

Programmable Matter

By “Programmable Matter” we mean a material (consisting of
many nano-scale particles) that can change its physical properties
based on autonomous sensing or user input.

Futuristic applications include smart materials, autonomous
monitoring and repair, minimal invasive surgery, etc.

Programmable Matter: Physical Models

There are physical prototypes inspired by micro-organisms such as
amoeba, which are able to move and surround objects.

Programmable Matter: Theoretical Models

Theoretical models have been developed as well, where particles
are finite-state agents on a regular grid.

Programmable Matter: Theoretical Models

A “sequential scheduler” activates one particle at every time unit.
The activated particle looks in all neighboring locations.

Programmable Matter: Theoretical Models

When the particle has looked around, it may decide to move to a
neighboring empty location and/or change its internal state.

Programmable Matter: Theoretical Models

Note that individual particles do not see the overall configuration,
and have to make decisions based on local observations only.

Programmable Matter: Theoretical Models

Note that individual particles do not see the overall configuration,
and have to make decisions based on local observations only.

Programmable Matter: Pattern Formation

Our goal as theoretical researchers is to design distributed
algorithms that allow particles to perform certain tasks by using
the least amount of resources (e.g., internal memory, sensing
range, synchronization mechanisms, etc.).

A fundamental task we have studied is “Shape Formation”, where
particles have to self-organize to form a given pattern.

Programmable Matter: State of the Art

Theorem (Euro-Par 2020 / Dist. Comp., 2020)

There is a distributed algorithm for finite-state particles that allows
them to form any Turing-computable shape.

The algorithm starts with a deterministic Leader Election phase.
The leader then recruits some particles to simulate a “moving
Turing machine” that travels across the system and instructs every
particle on where to go to form the final shape.

Programmable Matter: State of the Art

Theorem (Euro-Par 2020 / Dist. Comp., 2020)

There is a distributed algorithm for finite-state particles that allows
them to form any Turing-computable shape.

The algorithm starts with a deterministic Leader Election phase.
The leader then recruits some particles to simulate a “moving
Turing machine” that travels across the system and instructs every
particle on where to go to form the final shape.

Programmable Matter: New Approach

This approach has at least two major problems:

The algorithm is very vulnerable to crash faults: if the leader
malfunctions, the whole system fails to carry out the task.

Simulating a Turing machine introduces a bottleneck that
sequentializes the execution and fails to exploit the parallel
nature of Programmable Matter.

To cope with these problems, we are exploring a new approach
based on Genetic Programming:

We designed and developed a Programmable Matter simulator
endowed with a general-purpose Genetic Programming
framework that allows particles to autonomously discover
algorithms for any given task.

We tested this approach on several Programmable Matter
tasks by devising suitable fitness functions and running our
Genetic Programming framework on a supercomputer.

Programmable Matter: Additional Tasks

Leader Election: The particles must elect a unique leader without
moving. All particles start in the same state.

Programmable Matter: Additional Tasks

L

Leader Election: The particles must elect a unique leader without
moving. All particles start in the same state.

Programmable Matter: Additional Tasks

Line Formation: The particles must form a straight line. The
initial configuration is assumed to be connected.

Programmable Matter: Additional Tasks

Line Formation: The particles must form a straight line. The
initial configuration is assumed to be connected.

Programmable Matter: Additional Tasks

Compaction: The particles must form a configuration of minimum
diameter. The initial configuration is assumed to be connected.

Programmable Matter: Additional Tasks

Compaction: The particles must form a configuration of minimum
diameter. The initial configuration is assumed to be connected.

Programmable Matter: Additional Tasks

Scattering: The system must reach a configuration where no two
particles are adjacent and no particle is moving.

Programmable Matter: Additional Tasks

Scattering: The system must reach a configuration where no two
particles are adjacent and no particle is moving.

Programmable Matter: Additional Tasks

Coating: The particles must completely surround an object of
unknown shape. Initially, only one particle is touching the object.

Programmable Matter: Additional Tasks

Coating: The particles must completely surround an object of
unknown shape. Initially, only one particle is touching the object.

Programmable Matter: Algorithm Model

A local algorithm is a function that takes as input a particle’s
internal state and list of neighbors, each of which may be an
empty location or a particle with a certain state. The output is the
particle’s new state and a direction of movement.

Programmable Matter: Algorithm Model

An algorithm is a function that takes as input a particle’s internal
state and list of neighbors, each of which may be an empty
location or a particle with a certain state. The output is the
particle’s new state and a direction of movement.

Primitive Set

We take these “primitives” as building blocks of our algorithms:

Basic Instructions
Concatenate [Instruction] and [Instruction]

If [Boolean] then [Instruction] else [Instruction]

Set state [Integer]

Set direction [Integer]

Integer Terminals
Get state

Get neighbor [Integer]

Integer constants

Integer Operators
Add [Integer] [Integer]

Subtract [Integer] [Integer]

Max [Integer] [Integer]

Min [Integer] [Integer]

Primitive Set

Boolean Terminals
True

False

Boolean Operators
Not [Boolean]

And [Boolean] [Boolean]

Or [Boolean] [Boolean]

Xor [Boolean] [Boolean]

Equals [Integer] [Integer]

Greater than [Integer] [Integer]

Less than [Integer] [Integer]

Counter Operations
Set counter [Integer]

Get counter

Increment counter

Decrement counter

Fitness Functions

Leader Election: Give a large penalty if there is no leader in the
system and a small penalty for having more than one leader.

Fitness Functions

L

Leader Election: Give a large penalty if there is no leader in the
system and a small penalty for having more than one leader.

Fitness Functions

Line Formation: Give a penalty for every particle that does not
have exactly two neighbors on opposite sides.

Fitness Functions

Line Formation: Give a penalty for every particle that does not
have exactly two neighbors on opposite sides.

Fitness Functions

Compaction: Give a penalty for every particle that is not
completely surrounded by other particles.

Fitness Functions

Compaction: Give a penalty for every particle that is not
completely surrounded by other particles.

Fitness Functions

Scattering: Give a large penalty for every two neighboring
particles, and a small penalty for particles that are too far apart.

Fitness Functions

Scattering: Give a large penalty for every two neighboring
particles, and a small penalty for particles that are too far apart.

Fitness Functions

Coating: Give a penalty for every point on the object’s surface
that is not occupied by a particle.

Fitness Functions

Coating: Give a penalty for every point on the object’s surface
that is not occupied by a particle.

Experimental Results

Leader Election in a rectangle

Experimental Results

Leader Election in a rectangle

Experimental Results

Leader Election in a tree

Experimental Results

Leader Election in a tree

Experimental Results

Line Formation from a rectangle in a square grid

Experimental Results

Line Formation from a rectangle in a square grid

Experimental Results

Line Formation from a box in a triangular grid

Experimental Results

Line Formation from a box in a triangular grid

Experimental Results

Line Formation from a tree

Experimental Results

Line Formation from a tree

Experimental Results

Compaction of a tree

Experimental Results

Compaction of a tree

Experimental Results

Scattering from a hexagon

Experimental Results

Scattering from a hexagon

Experimental Results

Scattering from a tree

Experimental Results

Scattering from a tree

Experimental Results

Coating of a rectangle

Experimental Results

Coating of a rectangle

Experimental Results

Coating of a hexagon

Experimental Results

Coating of a hexagon

Conclusion

Summary:

We have developed our Programmable Matter simulator and
Genetic Programming framework in Python by extending the
DEAP library.

We have evolved our programs on a pair of AMD EPYC 7502
2.5 GHz 32C/64T processors with 16x32 GB DDR4 3200
MHz RAM and a 6 TB Hard Disk.

The evolved programs can perform fundamental
Programmable Matter tasks in some basic settings, and have
also re-discovered known techniques such as Saturation.

Future work:

Design more sophisticated and meaningful primitive functions.

Perform harder tasks from more general initial configurations.

Introduce faulty particles and implement fault tolerance.

Produce humanly understandable algorithms for all tasks.

