Group Theory Through Permutation Puzzles [Applied Algebra]

Giovanni Viglietta

University of Aizu - November 29, 2022

Case study: 1-connected and 2-connected puzzles

We focus on cyclic-shift puzzles of two types:

Our questions are:

- What configurations are reachable from a given initial configuration? (I.e., what is the *configuration space*?)
- How can we get from an initial configuration to a goal configuration in a small number of moves?

Note: we assume that all tokens have distinct colors (or labels).

Overview

Theory

- Groups of permutations
- Subgroups and Lagrange's theorem
- Symmetric and alternating groups
- Conjugation
- Inner and outer automorphisms

Applications

- Solving 1-connected puzzles
- Solving 2-connected puzzles
- Special case: 2-connected puzzle with two 4-cycles

Permutations

Any sequence of moves yields a *permutation* of the tokens:

To represent this permutation, we can use *Cauchy's notation*:

(1)	2	3	4	5	6	7	8	9	10
$\backslash 2$	3	4	5	6	1	7	8	9	10/

Alternatively, we can use the more compact notation:

Composition of permutations

Since a permutation is a *bijection* π : $\{1, ..., n\} \rightarrow \{1, ..., n\}$, permutations can be composed like functions:

We can also write it as: $[2\ 3\ 1\ 4\ 5]$ $[1\ 2\ 4\ 5\ 3] = [2\ 3\ 4\ 5\ 1]$.

Composition of permutations

Since the composition of functions is associative, we have:

Observation

The composition of permutations is associative: $\pi(\sigma\rho) = (\pi\sigma)\rho$.

The composition of permutations is not commutative in general:

That is, $[2\ 1\ 3]\ [1\ 3\ 2] = [2\ 3\ 1] \neq [3\ 1\ 2] = [1\ 3\ 2]\ [2\ 1\ 3].$

Observation

Every permutation can be expressed as the composition of disjoint cycles in a unique way (up to reordering).

Example:

In compact notation, $[2\ 4\ 5\ 7\ 3\ 9\ 1\ 6\ 8] = (1\ 2\ 4\ 7)(3\ 5)(9\ 8\ 6).$

Groups of permutations

The notion of group was first formulated by Galois in the 1830s.

Definition

A non-empty set G of permutations of n objects forms a **permutation group** if it is closed under composition:

$$\pi, \sigma \in G \implies \pi \sigma \in G$$

The number of permutations in G is called the *order* of G. (Not to be confused with n, which is the *degree* of G.)

Observation

The set of all permutations of $\{1, ..., n\}$ forms a group called the symmetric group S_n . Its order is $|S_n| = n!$

Identity and inverses

Proposition

Every group G of degree n contains:

- the identity permutation $e = [1 \ 2 \ \dots \ n]$ and
- the inverse of every element: $\pi \in G \implies \pi^{-1} \in G$,

where π^{-1} is defined as the permutation such that $\pi\pi^{-1} = e$.

Proof. If $\pi \in G$, then repeatedly composing π with itself eventually reaches $\pi^k = e \in G$, and thus $\pi^{k-1} = \pi^{-1} \in G$.

Example: If $\pi = (1 \ 2 \ 3)(4 \ 5)$, then k = lcm(3, 2) = 6.

$$\pi = \begin{bmatrix} 2 & 3 & 1 & 5 & 4 \end{bmatrix}$$
$$\pi^{2} = \begin{bmatrix} 3 & 1 & 2 & 4 & 5 \end{bmatrix}$$
$$\pi^{3} = \begin{bmatrix} 1 & 2 & 3 & 5 & 4 \end{bmatrix}$$
$$\pi^{4} = \begin{bmatrix} 2 & 3 & 1 & 4 & 5 \end{bmatrix}$$
$$\pi^{5} = \begin{bmatrix} 3 & 1 & 2 & 5 & 4 \end{bmatrix} = \pi^{-1}$$
$$\pi^{6} = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \end{bmatrix} = e$$

Definition

If H and G are groups and $H \subseteq G$, then H is a **subgroup** of G.

If H is a subgroup of G, we write $H \leq G$.

Theorem (Lagrange, 1771)

If $H \leq G$, then the order |G| is a multiple of |H|.

Proof. G is the disjoint union of "copies" of H, called *cosets*.

• e	Н	• <i>π</i> ₁	$H\pi_1$	• <i>π</i> ₂	$H\pi_2$	• <i>π</i> ₃	$H\pi_3$
coset		coset		С	oset	coset	

The number of cosets is called the **index** of H in G.

Generators

Consider the following 2-connected cyclic-shift puzzle:

We have two permutations α and β , the **generators**:

• $\alpha = (1 \ 2 \ 3 \ 4 \ 5 \ 6)$ • $\beta = (5 \ 6 \ 7 \ 8 \ 9 \ 10 \ 11 \ 12 \ 13)$

The set of permutations obtained by composing the generators in all possible ways is $\langle \alpha, \beta \rangle$, the group *generated* by α and β .

 $\langle \alpha, \beta \rangle = \{ e, \alpha, \beta, \alpha \alpha, \alpha \beta, \beta \alpha, \beta \beta, \dots, \beta \alpha \alpha \beta \beta \alpha \beta \beta \beta, \dots \}$ \implies Since $\langle \alpha, \beta \rangle$ is a subgroup of S_{13} , its order is a divisor of 13!

Configuration space

We can now give a description of the configuration space.

We know that $\langle \alpha, \beta \rangle$ is a subgroup of S_n : this is the set of permutations that can be obtained starting from the initial permutation $e = [1 \ 2 \ \dots \ n].$

• $e \qquad \langle \alpha, \beta \rangle$	• $\pi_1 \langle \alpha, \beta \rangle \pi_1$	• $\pi_2 \langle \alpha, \beta \rangle \pi_2$	• $\pi_3 \langle \alpha, \beta \rangle \pi_3$	
coset	coset	coset	coset	

Then there are other copies of $\langle \alpha, \beta \rangle$, all of the same size, corresponding to the other cosets: each is the set of permutations that can be obtained from some initial permutation $\pi_i \notin \langle \alpha, \beta \rangle$.

So, the configuration space can be modeled as a graph with $n! / |\langle \alpha, \beta \rangle|$ isomorphic connected components: the **Cayley graph**.

$$\implies$$
 All we have to do is determine $\langle \alpha, \beta \rangle$.

Cayley graph

Example: The Cayley graph of the subgroup $G \leq S_4$ generated by $\alpha = (1 \ 2)$ and $\beta = (1 \ 2 \ 3)$, as well as its cosets.

Sign of a permutation

Definition

For
$$\pi \in S_n$$
, define $\operatorname{sgn}(\pi) = \prod_{1 \le i < j \le n} \frac{\pi(i) - \pi(j)}{i - j}$. (Note: $\operatorname{sgn}(\pi) = \pm 1$.)

Example:

$$\operatorname{sgn}[3\ 1\ 4\ 2] = \frac{(3-1)(3-4)(3-2)(1-4)(1-2)(4-2)}{(1-2)(1-3)(1-4)(2-3)(2-4)(3-4)} = -1$$

Lemma

Transposing any two elements of a permutation changes its sign.

Proof. Transposing *a* and *b* in π changes the sign of (a - b). Also, for each *c* between *a* and *b* in π , it changes the sign of (a - c), (c - b).

Example: $(1 \ 2)[3 \ 1 \ 4 \ 2] = [3 \ 2 \ 4 \ 1];$

$$\operatorname{sgn}[3\ 2\ 4\ 1] = \frac{(3-2)(3-4)(3-1)(2-4)(2-1)(4-1)}{(1-2)(1-3)(1-4)(2-3)(2-4)(3-4)} = 1$$

Even and odd permutations

Thus, $sgn(\pi)$ corresponds to the **parity** (even or odd) of the length of any sequence of transpositions whose composition is π .

Corollary

For any $\pi, \sigma \in S_n$, we have $\operatorname{sgn}(\pi\sigma) = \operatorname{sgn}(\pi) \cdot \operatorname{sgn}(\sigma)$.

A permutation π is even if $sgn(\pi) = 1$ and odd if $sgn(\pi) = -1$.

Definition

The set of all *even* permutations of $\{1, \ldots, n\}$ forms a group called the **alternating group** $A_n \leq S_n$.

Note: The set O_n of *odd* permutations is <u>not</u> a group (in fact, $e \notin O_n$).

Proposition

 A_n and O_n are the two cosets of A_n in S_n . Thus, $|A_n| = n!/2$.

Proof. The function $\pi \mapsto (1 \ 2) \pi$ is a bijection between A_n and O_n .

Observation

A cycle of length k is the composition of k-1 transpositions.

Example: $(1 \ 2 \ 3 \ 4 \ 5) = (1 \ 2)(2 \ 3)(3 \ 4)(4 \ 5).$

So, the two cycles α and β generate a subgroup of A_n if and only if they <u>both</u> have odd length.

Can we prove that α and β generate *exactly* A_n or S_n ?

Generators of S_n and A_n

The following facts are folklore, and can be proved by mimicking the *Bubble Sort* algorithm:

Lemma

- $\langle (1 \ 2 \ \dots \ n), (1 \ 2) \rangle = S_n.$
- $\langle (1 \ 2 \ \dots \ n), (1 \ 2 \ 3) \rangle \geq A_n.$

Any permutation in the group can be generated in $O(n^2)$ steps.

Therefore, if our α and β generate the cycles above, we can conclude that they generate all of S_n or A_n .

Theorem

In a 1-connected puzzle, α and β generate A_n if they both have odd length, and S_n otherwise. Any permutation in the group can be generated in $O(n^2)$ steps.

Proof. $\beta^{-1}\alpha$ is an *n*-cycle and $\alpha\beta\alpha^{-1}\beta^{-1}$ is a 3-cycle of consecutive elements:

So, $\langle \alpha, \beta \rangle \ge A_n$. If both α and β are even permutations, they cannot generate an odd permutation, and thus $\langle \alpha, \beta \rangle = A_n$.

Say α is odd. We can obtain any odd permutation π by generating the even permutation $\pi \alpha$ (as before), and then doing α^{-1} .

Trivial 2-connected puzzles

What about 2-connected puzzles? If $\alpha = (1 \ 2)$, we already know that the generated group is $\langle (1 \ 2), (1 \ 2 \ \dots \ n) \rangle = S_n$.

To solve more complex 2-connected puzzles, we use conjugations...

Definition

The permutation π , **conjugated** by σ , is the permutation $\sigma \pi \sigma^{-1}$.

The same operation is done in linear algebra when changing coordinates: a linear transformation defined by a matrix A can also be expressed as PAP^{-1} , where P is a nonsingular matrix defining a *change of basis*.

Lemma

Conjugation preserves the cycle structure of permutations.

Proof. Conjugation permutes labels in the cycle decomposition. Example: $(3 \ 5 \ 7) (1 \ 3 \ 4)(2 \ 6)(5 \ 7) (7 \ 5 \ 3) = (1 \ 5 \ 4)(2 \ 6)(7 \ 3).$

 \implies Conjugation allows us to "move cycles around" in a puzzle...

Theorem

In a 2-connected puzzle with $\alpha = (1 \ 2 \ 3)$, the generated group is A_n if β has odd length, and S_n if β has even length. Any permutation in the group can be generated in $O(n^2)$ steps.

Proof. Conjugating α^{-1} by $\alpha^{-1}\beta$, we obtain the 3-cycle $\alpha^{-1}\beta \alpha^{-1}\beta^{-1}\alpha = (2 \ 3 \ 4)$ of consecutive elements of β :

So, we can generate any even permutation of $\{2, 3, \ldots, n\}$.

To obtain a given permutation π , first move the correct token $\pi(1)$ in position 1 (possibly shuffling the rest), and then operate on $\{2, 3, \ldots, n\}$ as before (paying attention to parity... details omitted).

Theorem

In a 2-connected puzzle, α and β generate A_n if they both have odd length, and S_n otherwise (unless they both have length 4, see later). Any permutation in the group can be generated in $O(n^2)$ steps.

Proof. Conjugating β by $\beta^{-1}\alpha$ and β^{-1} by $\beta\alpha^{-1}$, we obtain two cycles δ_1 and δ_2 of the same length, going in opposite directions:

Their composition $\delta_1 \delta_2$ is a 3-cycle plus two transpositions. So, $(\delta_1 \delta_2)^2$ is the 3-cycle $(1 \ a - 2 \ a)$, where a is the length of α .

Proof (continued).

Conjugating $(1 \ a - 2 \ a)$ by α , we obtain the 3-cycle $(1 \ 2 \ a - 1)$.

Note that $(1 \ 2 \ a - 1)$ and $\alpha^{-1}\beta$ form a 2-connected puzzle with a 3-cycle, hence we can apply the previous theorem.

Proof (continued).

Conjugating $(1 \ a - 2 \ a)$ by α , we obtain the 3-cycle $(1 \ 2 \ a - 1)$.

Note that $(1 \ 2 \ a - 1)$ and $\alpha^{-1}\beta$ form a 2-connected puzzle with a 3-cycle, hence we can apply the previous theorem.

What about the 2-connected puzzle where α and β have length 4? It looks like we cannot form any 2-cycle or 3-cycle, so we need a radically new idea...

Definition

An **isomorphism** between two groups G and G' is a bijection $f: G \to G'$ such that, for all $\pi, \sigma \in G, f(\pi\sigma) = f(\pi) f(\sigma)$.

If there is such a bijection f, then G and G' have the same structure: they are "the same group" up to renaming their elements: $G \cong G'$.

Definition

An isomorphism from G to itself is called an **automorphism**.

An automorphism f permutes the elements of G, so $f \in S_{|G|}$.

Proposition

The automorphisms of G form a subgroup $\operatorname{Aut}(G) \leq S_{|G|}$.

Proof. If $f, g \in Aut(G)$, then $fg(\pi \sigma) = f(g(\pi)g(\sigma)) = fg(\pi)fg(\sigma)$. \Box

Proposition

The conjugation by an element $\pi \in G$ is an automorphism of G.

Proof. If $f_{\pi}(\sigma) = \pi \sigma \pi^{-1}$ for all $\sigma \in G$, then $f_{\pi} \in \operatorname{Aut}(G)$: $f_{\pi}(\sigma \rho) = \pi(\sigma \rho)\pi^{-1} = (\pi \sigma \pi^{-1})(\pi \rho \pi^{-1}) = f_{\pi}(\sigma) f_{\pi}(\rho).$

Definition

The automorphisms induced by conjugations are called inner.

Proposition

The inner automorphisms form a subgroup $Inn(G) \leq Aut(G)$.

Proof. If $f_{\pi}, f_{\sigma} \in \text{Inn}(G)$, then $f_{\pi}f_{\sigma}(\rho) = \pi(\sigma\rho\sigma^{-1})\pi^{-1} = f_{\pi\sigma}(\rho)$. \Box

Outer automorphisms of S_6

If $n\neq 6,$ the only automorphisms of S_n are the inner ones.

 S_6 is an exception:

Theorem (Hölder, 1895)

The index of $Inn(S_6)$ in $Aut(S_6)$ is 2. So, there are 6! = 720 inner and 720 non-inner (i.e., outer) automorphisms.

This is an example of an **outer automorphism** $\psi : S_6 \to S_6$ (defined on a generating set for S_6):

$$\psi((1\ 2)) = (1\ 2)(3\ 5)(4\ 6)$$

$$\psi((2\ 3)) = (1\ 6)(2\ 5)(3\ 4)$$

$$\psi((3\ 4)) = (1\ 2)(3\ 6)(4\ 5)$$

$$\psi((4\ 5)) = (1\ 6)(2\ 4)(3\ 5)$$

$$\psi((5\ 6)) = (1\ 2)(3\ 4)(5\ 6)$$

Theorem

In the 2-connected puzzle where α and β have length 4 (so, n = 6), the generated group is isomorphic to S_5 (hence it has index 6).

Proof. Idea: transform $\langle \alpha, \beta \rangle$ by ψ and see what group we obtain. Since ψ is an *isomorphism*, $\langle \alpha, \beta \rangle \cong \langle \psi(\alpha), \psi(\beta) \rangle$.

$$\begin{aligned} \alpha &= (1\ 2\ 3\ 4) = (1\ 2)(2\ 3)(3\ 4) \text{ and} \\ \beta &= (3\ 4\ 5\ 6) = (3\ 4)(4\ 5)(5\ 6), \text{ thus we have:} \\ \psi(\alpha) &= \psi((1\ 2))\ \psi((2\ 3))\ \psi((3\ 4)) = (1\ 3\ 2\ 4), \\ \psi(\beta) &= \psi((3\ 4))\ \psi((4\ 5))\ \psi((5\ 6)) = (1\ 5\ 2\ 3). \end{aligned}$$

Note: the new generators $\psi(\alpha)$ and $\psi(\beta)$ both <u>leave the token 6</u> in place, and so they cannot generate a subgroup larger than S_5 .

Proof (continued).

The 3-cycle $\psi(\alpha) \psi(\beta) = (1 \ 5 \ 4)$ and the 4-cycle $\psi(\alpha)^{-1}$ form a 2-connected puzzle on $\{1, 2, 3, 4, 5\}$:

By the previous theorem, we know that they generate exactly S_5 . Thus, $\langle \alpha, \beta \rangle$ is an *isomorphic copy* of S_5 . A permutation $\pi \in S_6$ is in $\langle \alpha, \beta \rangle$ if and only if $\psi(\pi)$ leaves the token 6 in place. We have obtained a complete solution to all 1-connected and 2-connected cycle-shift puzzles:

Theorem

In a 1-connected or 2-connected puzzle, α and β generate:

- A_n if both α and β have odd length;
- S_n if α or β has even length, with one exception:
- if the puzzle is 2-connected and α and β have length 4, they generate a group isomorphic to S₅ (as opposed to S₆).

Any permutation in the group can be generated in $O(n^2)$ steps.