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Case study: 1-connected and 2-connected puzzles

We focus on cyclic-shift puzzles of two types:

α
β

α β

1

2

3

4

5

6

7
8

9

13
12

11

10

1
2

3
4

5

6

11

7

10

8

9

1-connected 2-connected

Our questions are:

What configurations are reachable from a given initial
configuration? (I.e., what is the configuration space?)

How can we get from an initial configuration to a goal
configuration in a small number of moves?

Note: we assume that all tokens have distinct colors (or labels).



Overview

Theory

Groups of permutations

Subgroups and Lagrange’s theorem

Symmetric and alternating groups

Conjugation

Inner and outer automorphisms

Applications

Solving 1-connected puzzles

Solving 2-connected puzzles

Special case: 2-connected puzzle with two 4-cycles



Permutations

Any sequence of moves yields a permutation of the tokens:
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To represent this permutation, we can use Cauchy’s notation:(
1 2 3 4 5 6 7 8 9 10
2 3 4 5 6 1 7 8 9 10

)
Alternatively, we can use the more compact notation:

[ 2 3 4 5 6 1 7 8 9 10 ]

meaning that the first “slot” contains token #2, etc.



Composition of permutations

Since a permutation is a bijection π : {1, . . . , n} → {1, . . . , n},
permutations can be composed like functions:

1 2 3 4 5

12 3 4 5

1 2 3 4 5

1 2 34 5

1 2 3 4 5

12 3 4 5

12 3 4 5

=π =

=

σ

πσ

We can also write it as: [ 2 3 1 4 5 ] [ 1 2 4 5 3 ] = [ 2 3 4 5 1 ].



Composition of permutations

Since the composition of functions is associative, we have:

Observation

The composition of permutations is associative: π(σρ) = (πσ)ρ.

The composition of permutations is not commutative in general:

1 2 3

12 3

1 2 3

1 2

2 3

=π =

=

3

1 2 3

12 3

1

1 2 3

1 23

1 23

=

σ

σππσ

That is, [ 2 1 3 ] [ 1 3 2 ] = [ 2 3 1 ] 6= [ 3 1 2 ] = [ 1 3 2 ] [ 2 1 3 ].



Cycle decomposition

Observation

Every permutation can be expressed as the composition of disjoint
cycles in a unique way (up to reordering).

Example:

6 7 8 91 2 3 4 5

6 7 8 91 2 3 4 5

67 89 12 34 5

In compact notation, [ 2 4 5 7 3 9 1 6 8 ] = (1 2 4 7)(3 5)(9 8 6).



Groups of permutations

The notion of group was first formulated by Galois in the 1830s.

Definition

A non-empty set G of permutations of n
objects forms a permutation group if it is
closed under composition:

π, σ ∈ G =⇒ πσ ∈ G

The number of permutations in G is called the order of G.
(Not to be confused with n, which is the degree of G.)

Observation

The set of all permutations of {1, . . . , n} forms a group called the
symmetric group Sn. Its order is |Sn| = n!



Identity and inverses

Proposition

Every group G of degree n contains:

the identity permutation e = [ 1 2 . . . n ] and

the inverse of every element: π ∈ G =⇒ π−1 ∈ G,

where π−1 is defined as the permutation such that ππ−1 = e.

Proof. If π ∈ G, then repeatedly composing π with itself
eventually reaches πk = e ∈ G, and thus πk−1 = π−1 ∈ G.

Example: If π = (1 2 3)(4 5), then k = lcm(3, 2) = 6.

π = [ 2 3 1 5 4 ]

π2 = [ 3 1 2 4 5 ]

π3 = [ 1 2 3 5 4 ]

π4 = [ 2 3 1 4 5 ]

π5 = [ 3 1 2 5 4 ] = π−1

π6 = [ 1 2 3 4 5 ] = e



Subgroups

Definition

If H and G are groups and H ⊆ G, then H is a subgroup of G.

If H is a subgroup of G, we write H ≤ G.

Theorem (Lagrange, 1771)

If H ≤ G, then the order |G| is a multiple of |H|.

Proof. G is the disjoint union of “copies” of H, called cosets.

e H 1π 1Hπ Hπ 3π2π 3Hπ2

coset coset coset coset

The number of cosets is called the index of H in G.



Generators

Consider the following 2-connected cyclic-shift puzzle:
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We have two permutations α and β, the generators:

α = (1 2 3 4 5 6) β = (5 6 7 8 9 10 11 12 13)

The set of permutations obtained by composing the generators in
all possible ways is 〈α, β〉, the group generated by α and β.

〈α, β〉 = { e, α, β, αα, αβ, βα, ββ, . . . , βααββαβββ, . . . }

=⇒ Since 〈α, β〉 is a subgroup of S13, its order is a divisor of 13!



Configuration space

We can now give a description of the configuration space.

We know that 〈α, β〉 is a subgroup of Sn: this is the set of
permutations that can be obtained starting from the initial
permutation e = [ 1 2 . . . n ].

e 1π 3π2π

coset coset coset coset

1π〉α, β〈〉α, β〈 π〉α, β〈 2 π〉α, β〈 3

Then there are other copies of 〈α, β〉, all of the same size,
corresponding to the other cosets: each is the set of permutations
that can be obtained from some initial permutation πi /∈ 〈α, β〉.
So, the configuration space can be modeled as a graph with
n! / |〈α, β〉| isomorphic connected components: the Cayley graph.

=⇒ All we have to do is determine 〈α, β〉.



Cayley graph

Example: The Cayley graph of the subgroup G ≤ S4 generated by
α = (1 2) and β = (1 2 3), as well as its cosets.
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Sign of a permutation

Definition

For π ∈ Sn, define sgn(π) =
∏

1≤i<j≤n

π(i)− π(j)
i− j . (Note: sgn(π) = ±1.)

Example:

sgn[ 3 1 4 2 ] =
(3− 1)(3− 4)(3− 2)(1− 4)(1− 2)(4− 2)

(1− 2)(1− 3)(1− 4)(2− 3)(2− 4)(3− 4)
= −1

Lemma

Transposing any two elements of a permutation changes its sign.

Proof. Transposing a and b in π changes the sign of (a− b). Also, for
each c between a and b in π, it changes the sign of (a− c), (c− b).

Example: (1 2)[ 3 1 4 2 ] = [ 3 2 4 1 ];

sgn[ 3 2 4 1 ] =
(3− 2)(3− 4)(3− 1)(2− 4)(2− 1)(4− 1)

(1− 2)(1− 3)(1− 4)(2− 3)(2− 4)(3− 4)
= 1



Even and odd permutations

Thus, sgn(π) corresponds to the parity (even or odd) of the length of
any sequence of transpositions whose composition is π.

Corollary

For any π, σ ∈ Sn, we have sgn(πσ) = sgn(π) · sgn(σ).

A permutation π is even if sgn(π) = 1 and odd if sgn(π) = −1.

Definition

The set of all even permutations of {1, . . . , n} forms a group called the
alternating group An ≤ Sn.

Note: The set On of odd permutations is not a group (in fact, e /∈ On).

Proposition

An and On are the two cosets of An in Sn. Thus, |An| = n!/2.

Proof. The function π 7→ (1 2)π is a bijection between An and On.



Parity of cycles

Observation

A cycle of length k is the composition of k − 1 transpositions.

Example: (1 2 3 4 5) = (1 2)(2 3)(3 4)(4 5).
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So, the two cycles α and β generate a subgroup of An if and only
if they both have odd length.

Can we prove that α and β generate exactly An or Sn?



Generators of Sn and An

The following facts are folklore, and can be proved by mimicking
the Bubble Sort algorithm:

Lemma

〈 (1 2 . . . n), (1 2) 〉 = Sn.

〈 (1 2 . . . n), (1 2 3) 〉 ≥ An.

Any permutation in the group can be generated in O(n2) steps.
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Therefore, if our α and β generate the cycles above, we can
conclude that they generate all of Sn or An.



Solving 1-connected puzzles

Theorem

In a 1-connected puzzle, α and β generate An if they both have
odd length, and Sn otherwise.
Any permutation in the group can be generated in O(n2) steps.

Proof. β−1α is an n-cycle and αβα−1β−1 is a 3-cycle of
consecutive elements:
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So, 〈α, β〉 ≥ An. If both α and β are even permutations, they
cannot generate an odd permutation, and thus 〈α, β〉 = An.

Say α is odd. We can obtain any odd permutation π by generating
the even permutation πα (as before), and then doing α−1.



Trivial 2-connected puzzles

What about 2-connected puzzles? If α = (1 2), we already know
that the generated group is 〈 (1 2), (1 2 . . . n) 〉 = Sn.
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To solve more complex 2-connected puzzles, we use conjugations...



Conjugation

Definition

The permutation π, conjugated by σ, is the permutation σπσ−1.

The same operation is done in linear algebra when changing coordinates:

a linear transformation defined by a matrix A can also be expressed as

PAP−1, where P is a nonsingular matrix defining a change of basis.

Lemma

Conjugation preserves the cycle structure of permutations.

Proof. Conjugation permutes labels in the cycle decomposition.

Example: (3 5 7) (1 3 4)(2 6)(5 7) (7 5 3) = (1 5 4)(2 6)(7 3).

=⇒ Conjugation allows us to “move cycles around” in a puzzle...



Solving 2-connected puzzles

Theorem

In a 2-connected puzzle with α = (1 2 3), the generated group is
An if β has odd length, and Sn if β has even length.
Any permutation in the group can be generated in O(n2) steps.

Proof. Conjugating α−1 by α−1β, we obtain the 3-cycle
α−1β α−1 β−1α = (2 3 4) of consecutive elements of β:
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So, we can generate any even permutation of {2, 3, . . . , n}.
To obtain a given permutation π, first move the correct token π(1)
in position 1 (possibly shuffling the rest), and then operate on
{2, 3, . . . , n} as before (paying attention to parity... details omitted).



Solving 2-connected puzzles

Theorem

In a 2-connected puzzle, α and β generate An if they both have
odd length, and Sn otherwise (unless they both have length 4, see later).
Any permutation in the group can be generated in O(n2) steps.

Proof. Conjugating β by β−1α and β−1 by βα−1, we obtain two
cycles δ1 and δ2 of the same length, going in opposite directions:
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Their composition δ1δ2 is a 3-cycle plus two transpositions.

So, (δ1δ2)
2 is the 3-cycle (1 a− 2 a), where a is the length of α.



Solving 2-connected puzzles

Proof (continued).

Conjugating (1 a− 2 a) by α, we obtain the 3-cycle (1 2 a− 1).
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Note that (1 2 a− 1) and α−1β form a 2-connected puzzle with a

3-cycle, hence we can apply the previous theorem.

What about the 2-connected puzzle where α and β have length 4?

It looks like we cannot form any 2-cycle or 3-cycle, so we need a
radically new idea...



Solving 2-connected puzzles

Proof (continued).

Conjugating (1 a− 2 a) by α, we obtain the 3-cycle (1 2 a− 1).
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Note that (1 2 a− 1) and α−1β form a 2-connected puzzle with a

3-cycle, hence we can apply the previous theorem.

What about the 2-connected puzzle where α and β have length 4?

It looks like we cannot form any 2-cycle or 3-cycle, so we need a
radically new idea...



Automorphisms

Definition

An isomorphism between two groups G and G′ is a bijection
f : G→ G′ such that, for all π, σ ∈ G, f(πσ) = f(π) f(σ).

If there is such a bijection f , then G and G′ have the same structure:

they are “the same group” up to renaming their elements: G ∼= G′.

Definition

An isomorphism from G to itself is called an automorphism.

An automorphism f permutes the elements of G, so f ∈ S|G|.

Proposition

The automorphisms of G form a subgroup Aut(G) ≤ S|G|.

Proof. If f, g ∈ Aut(G), then fg(πσ) = f(g(π)g(σ)) = fg(π)fg(σ).



Inner automorphisms

Proposition

The conjugation by an element π ∈ G is an automorphism of G.

Proof. If fπ(σ) = πσπ−1 for all σ ∈ G, then fπ ∈ Aut(G):

fπ(σρ) = π(σρ)π−1 = (πσπ−1)(πρπ−1) = fπ(σ) fπ(ρ).

Definition

The automorphisms induced by conjugations are called inner.

Proposition

The inner automorphisms form a subgroup Inn(G) ≤ Aut(G).

Proof. If fπ, fσ ∈ Inn(G), then fπfσ(ρ) = π(σρσ−1)π−1 = fπσ(ρ).



Outer automorphisms of S6

If n 6= 6, the only automorphisms of Sn are the inner ones.

S6 is an exception:

Theorem (Hölder, 1895)

The index of Inn(S6) in Aut(S6) is 2. So, there are 6! = 720 inner
and 720 non-inner (i.e., outer) automorphisms.

This is an example of an outer automorphism ψ : S6 → S6
(defined on a generating set for S6):

ψ((1 2)) = (1 2)(3 5)(4 6)

ψ((2 3)) = (1 6)(2 5)(3 4)

ψ((3 4)) = (1 2)(3 6)(4 5)

ψ((4 5)) = (1 6)(2 4)(3 5)

ψ((5 6)) = (1 2)(3 4)(5 6)



Solving the last 2-connected puzzle

Theorem

In the 2-connected puzzle where α and β have length 4 (so, n = 6),
the generated group is isomorphic to S5 (hence it has index 6).

Proof. Idea: transform 〈α, β〉 by ψ and see what group we obtain.

Since ψ is an isomorphism, 〈α, β〉 ∼= 〈ψ(α), ψ(β)〉.

α = (1 2 3 4) = (1 2)(2 3)(3 4) and

β = (3 4 5 6) = (3 4)(4 5)(5 6), thus we have:

ψ(α) = ψ((1 2))ψ((2 3))ψ((3 4)) = (1 3 2 4),

ψ(β) = ψ((3 4))ψ((4 5))ψ((5 6)) = (1 5 2 3).

Note: the new generators ψ(α) and ψ(β) both leave the token 6

in place, and so they cannot generate a subgroup larger than S5.



Solving the last 2-connected puzzle

Proof (continued).

The 3-cycle ψ(α)ψ(β) = (1 5 4) and the 4-cycle ψ(α)−1 form a

2-connected puzzle on {1, 2, 3, 4, 5}:
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By the previous theorem, we know that they generate exactly S5.

Thus, 〈α, β〉 is an isomorphic copy of S5. A permutation π ∈ S6 is

in 〈α, β〉 if and only if ψ(π) leaves the token 6 in place.



Conclusion

We have obtained a complete solution to all 1-connected and
2-connected cycle-shift puzzles:

Theorem

In a 1-connected or 2-connected puzzle, α and β generate:

An if both α and β have odd length;

Sn if α or β has even length, with one exception:

if the puzzle is 2-connected and α and β have length 4,

they generate a group isomorphic to S5 (as opposed to S6).

Any permutation in the group can be generated in O(n2) steps.


