Group Theory Through Permutation Puzzles

[Applied Algebra]

Giovanni Viglietta

University of Aizu - November 29, 2022

Cyclic-shift puzzles

Case study: 1-connected and 2-connected puzzles

We focus on cyclic-shift puzzles of two types:

1-connected

2-connected

Our questions are:

- What configurations are reachable from a given initial configuration? (I.e., what is the configuration space?)
- How can we get from an initial configuration to a goal configuration in a small number of moves?

Note: we assume that all tokens have distinct colors (or labels).

Overview

Theory

- Groups of permutations
- Subgroups and Lagrange's theorem
- Symmetric and alternating groups
- Conjugation
- Inner and outer automorphisms

Applications

- Solving 1-connected puzzles
- Solving 2-connected puzzles
- Special case: 2-connected puzzle with two 4-cycles

Permutations

Any sequence of moves yields a permutation of the tokens:

To represent this permutation, we can use Cauchy's notation:

$$
\left(\begin{array}{llllllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
2 & 3 & 4 & 5 & 6 & 1 & 7 & 8 & 9 & 10
\end{array}\right)
$$

Alternatively, we can use the more compact notation:

$$
\left[\begin{array}{llllllllll}
2 & 3 & 4 & 5 & 6 & 1 & 7 & 8 & 9 & 10
\end{array}\right]
$$

meaning that the first "slot" contains token \#2, etc.

Composition of permutations

Since a permutation is a bijection $\pi:\{1, \ldots, n\} \rightarrow\{1, \ldots, n\}$, permutations can be composed like functions:

We can also write it as: $\left[\begin{array}{lllll}2 & 3 & 1 & 4 & 5\end{array}\right]\left[\begin{array}{lllll}1 & 2 & 4 & 5 & 3\end{array}\right]=\left[\begin{array}{lllll}2 & 3 & 4 & 5 & 1\end{array}\right]$.

Composition of permutations

Since the composition of functions is associative, we have:

Observation

The composition of permutations is associative: $\pi(\sigma \rho)=(\pi \sigma) \rho$.
The composition of permutations is not commutative in general:

That is, $\left[\begin{array}{lll}2 & 1 & 3\end{array}\right]\left[\begin{array}{lll}1 & 3 & 2\end{array}\right]=\left[\begin{array}{lll}2 & 3 & 1\end{array}\right] \neq\left[\begin{array}{lll}3 & 1 & 2\end{array}\right]=\left[\begin{array}{lll}1 & 3 & 2\end{array}\right]\left[\begin{array}{lll}2 & 1 & 3\end{array}\right]$.

Cycle decomposition

Observation

Every permutation can be expressed as the composition of disjoint cycles in a unique way (up to reordering).

Example:

In compact notation, $[245739168]=(1247)(35)(986)$.

Groups of permutations

The notion of group was first formulated by Galois in the 1830s.

Definition

A non-empty set G of permutations of n objects forms a permutation group if it is closed under composition:

$$
\pi, \sigma \in G \Longrightarrow \pi \sigma \in G
$$

The number of permutations in G is called the order of G. (Not to be confused with n, which is the degree of G.)

Observation

The set of all permutations of $\{1, \ldots, n\}$ forms a group called the symmetric group S_{n}. Its order is $\left|S_{n}\right|=n$!

Identity and inverses

Proposition

Every group G of degree n contains:

- the identity permutation $e=\left[\begin{array}{lll}1 & 2 & \ldots\end{array}\right]$ and
- the inverse of every element: $\pi \in G \Longrightarrow \pi^{-1} \in G$, where π^{-1} is defined as the permutation such that $\pi \pi^{-1}=e$.

Proof. If $\pi \in G$, then repeatedly composing π with itself eventually reaches $\pi^{k}=e \in G$, and thus $\pi^{k-1}=\pi^{-1} \in G$.

Example: If $\pi=\left(\begin{array}{ll}1 & 2 \\ 3\end{array}\right)(45)$, then $k=\operatorname{lcm}(3,2)=6$.

$$
\begin{aligned}
\pi & =\left[\begin{array}{lllll}
2 & 3 & 1 & 5 & 4
\end{array}\right] \\
\pi^{2} & =\left[\begin{array}{lllll}
3 & 1 & 2 & 4 & 5
\end{array}\right] \\
\pi^{3} & =\left[\begin{array}{lllll}
1 & 2 & 3 & 5 & 4
\end{array}\right] \\
\pi^{4} & =\left[\begin{array}{lllll}
2 & 3 & 1 & 4 & 5
\end{array}\right] \\
\pi^{5} & =\left[\begin{array}{lllll}
3 & 1 & 2 & 5 & 4
\end{array}\right]=\pi^{-1} \\
\pi^{6} & =\left[\begin{array}{lllll}
1 & 2 & 3 & 4 & 5
\end{array}\right]=e
\end{aligned}
$$

Subgroups

Definition

If H and G are groups and $H \subseteq G$, then H is a subgroup of G.

If H is a subgroup of G, we write $H \leq G$.

$$
\begin{aligned}
& \text { Theorem (Lagrange, 1771) } \\
& \text { If } H \leq G \text {, then the order }|G| \text { is a multiple of }|H| \text {. }
\end{aligned}
$$

Proof. G is the disjoint union of "copies" of H, called cosets.

	H	- π_{1}	$H \pi_{1}$	- π_{2}	$H \pi_{2}$	- π_{3}	H_{3}

The number of cosets is called the index of H in G.

Generators

Consider the following 2-connected cyclic-shift puzzle:

We have two permutations α and β, the generators:

- $\alpha=\left(\begin{array}{llll}1 & 2 & 3 & 4\end{array} 5\right.$)
- $\beta=\left(\begin{array}{ll}5 & 678910111213\end{array}\right)$

The set of permutations obtained by composing the generators in all possible ways is $\langle\alpha, \beta\rangle$, the group generated by α and β.
$\langle\alpha, \beta\rangle=\{e, \alpha, \beta, \alpha \alpha, \alpha \beta, \beta \alpha, \beta \beta, \ldots, \beta \alpha \alpha \beta \beta \alpha \beta \beta \beta, \ldots\}$
\Longrightarrow Since $\langle\alpha, \beta\rangle$ is a subgroup of S_{13}, its order is a divisor of 13 !

Configuration space

We can now give a description of the configuration space.
We know that $\langle\alpha, \beta\rangle$ is a subgroup of S_{n} : this is the set of permutations that can be obtained starting from the initial permutation $e=\left[\begin{array}{llll}1 & 2 & \ldots & n\end{array}\right]$.

- e	$\langle\alpha, \beta\rangle$	- π_{1}	$\langle\alpha, \beta\rangle \pi_{1}$	- π_{2}	$\langle\alpha, \beta\rangle \pi_{2}$	- π_{3}	$\langle\alpha, \beta\rangle \pi_{3}$
coset							

Then there are other copies of $\langle\alpha, \beta\rangle$, all of the same size, corresponding to the other cosets: each is the set of permutations that can be obtained from some initial permutation $\pi_{i} \notin\langle\alpha, \beta\rangle$.

So, the configuration space can be modeled as a graph with $n!/|\langle\alpha, \beta\rangle|$ isomorphic connected components: the Cayley graph.
\Longrightarrow All we have to do is determine $\langle\alpha, \beta\rangle$.

Cayley graph

Example: The Cayley graph of the subgroup $G \leq S_{4}$ generated by $\alpha=\left(\begin{array}{ll}1 & 2\end{array}\right)$ and $\beta=\left(\begin{array}{ll}1 & 2\end{array}\right)$, as well as its cosets.

Sign of a permutation

Definition

For $\pi \in S_{n}$, define $\operatorname{sgn}(\pi)=\prod_{1 \leq i<j \leq n} \frac{\pi(i)-\pi(j)}{i-j} . \quad($ Note: $\operatorname{sgn}(\pi)= \pm 1$.
Example:
$\operatorname{sgn}[31442]=\frac{(3-1)(3-4)(3-2)(1-4)(1-2)(4-2)}{(1-2)(1-3)(1-4)(2-3)(2-4)(3-4)}=-1$

Lemma

Transposing any two elements of a permutation changes its sign.
Proof. Transposing a and b in π changes the sign of ($a-b$). Also, for each c between a and b in π, it changes the sign of $(a-c),(c-b)$.

Example: (1 2) [$\left.\begin{array}{llll}3 & 1 & 4 & 2\end{array}\right]=\left[\begin{array}{llll}3 & 2 & 4 & 1\end{array}\right]$;
$\operatorname{sgn}[3241]=\frac{(3-2)(3-4)(3-1)(2-4)(2-1)(4-1)}{(1-2)(1-3)(1-4)(2-3)(2-4)(3-4)}=1$

Even and odd permutations

Thus, $\operatorname{sgn}(\pi)$ corresponds to the parity (even or odd) of the length of any sequence of transpositions whose composition is π.

Corollary

For any $\pi, \sigma \in S_{n}$, we have $\operatorname{sgn}(\pi \sigma)=\operatorname{sgn}(\pi) \cdot \operatorname{sgn}(\sigma)$.
A permutation π is even if $\operatorname{sgn}(\pi)=1$ and odd if $\operatorname{sgn}(\pi)=-1$.

Definition

The set of all even permutations of $\{1, \ldots, n\}$ forms a group called the alternating group $A_{n} \leq S_{n}$.

Note: The set O_{n} of odd permutations is not a group (in fact, $e \notin O_{n}$).

Proposition

A_{n} and O_{n} are the two cosets of A_{n} in S_{n}. Thus, $\left|A_{n}\right|=n!/ 2$.
Proof. The function $\pi \mapsto(12) \pi$ is a bijection between A_{n} and O_{n}.

Parity of cycles

Observation

A cycle of length k is the composition of $k-1$ transpositions.

Example: $\left(\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right)=(12)(23)(34)(45)$.

So, the two cycles α and β generate a subgroup of A_{n} if and only if they both have odd length.

Can we prove that α and β generate exactly A_{n} or S_{n} ?

Generators of S_{n} and A_{n}

The following facts are folklore, and can be proved by mimicking the Bubble Sort algorithm:

Lemma

- $\left\langle\left(\begin{array}{lll}1 & 2 & \ldots\end{array}\right),\left(\begin{array}{ll}1 & 2\end{array}\right)\right\rangle=S_{n}$.
- $\left\langle\left(\begin{array}{lll}1 & 2 & \ldots\end{array}\right),\left(\begin{array}{lll}1 & 2 & 3\end{array}\right)\right\rangle \geq A_{n}$.

Any permutation in the group can be generated in $O\left(n^{2}\right)$ steps.

Therefore, if our α and β generate the cycles above, we can conclude that they generate all of S_{n} or A_{n}.

Solving 1-connected puzzles

Theorem

In a 1-connected puzzle, α and β generate A_{n} if they both have odd length, and S_{n} otherwise.
Any permutation in the group can be generated in $O\left(n^{2}\right)$ steps.
Proof. $\beta^{-1} \alpha$ is an n-cycle and $\alpha \beta \alpha^{-1} \beta^{-1}$ is a 3 -cycle of consecutive elements:

So, $\langle\alpha, \beta\rangle \geq A_{n}$. If both α and β are even permutations, they cannot generate an odd permutation, and thus $\langle\alpha, \beta\rangle=A_{n}$.

Say α is odd. We can obtain any odd permutation π by generating the even permutation $\pi \alpha$ (as before), and then doing α^{-1}.

Trivial 2-connected puzzles

What about 2-connected puzzles? If $\alpha=(12)$, we already know that the generated group is $\left\langle\left(\begin{array}{ll}1 & 2\end{array}\right),\left(\begin{array}{ll}1 & 2\end{array} \ldots n\right)\right\rangle=S_{n}$.

To solve more complex 2-connected puzzles, we use conjugations...

Conjugation

Definition

The permutation π, conjugated by σ, is the permutation $\sigma \pi \sigma^{-1}$.

The same operation is done in linear algebra when changing coordinates: a linear transformation defined by a matrix A can also be expressed as $P A P^{-1}$, where P is a nonsingular matrix defining a change of basis.

Lemma

Conjugation preserves the cycle structure of permutations.
Proof. Conjugation permutes labels in the cycle decomposition.

Example: $(357)(134)(26)(57)(753)=(154)(26)(73)$.
\Longrightarrow Conjugation allows us to "move cycles around" in a puzzle...

Solving 2-connected puzzles

Theorem

In a 2-connected puzzle with $\alpha=\left(\begin{array}{ll}1 & 2\end{array}\right)$, the generated group is A_{n} if β has odd length, and S_{n} if β has even length. Any permutation in the group can be generated in $O\left(n^{2}\right)$ steps.

Proof. Conjugating α^{-1} by $\alpha^{-1} \beta$, we obtain the 3 -cycle $\alpha^{-1} \beta \alpha^{-1} \beta^{-1} \alpha=\binom{2}{3}$ of consecutive elements of β :

So, we can generate any even permutation of $\{2,3, \ldots, n\}$.
To obtain a given permutation π, first move the correct token $\pi(1)$ in position 1 (possibly shuffling the rest), and then operate on $\{2,3, \ldots, n\}$ as before (paying attention to parity... details omitted).

Solving 2-connected puzzles

Theorem

In a 2-connected puzzle, α and β generate A_{n} if they both have odd length, and S_{n} otherwise (unless they both have length 4 , see later). Any permutation in the group can be generated in $O\left(n^{2}\right)$ steps.

Proof. Conjugating β by $\beta^{-1} \alpha$ and β^{-1} by $\beta \alpha^{-1}$, we obtain two cycles δ_{1} and δ_{2} of the same length, going in opposite directions:

Their composition $\delta_{1} \delta_{2}$ is a 3-cycle plus two transpositions.
So, $\left(\delta_{1} \delta_{2}\right)^{2}$ is the 3 -cycle $(1 a-2 a)$, where a is the length of α.

Solving 2-connected puzzles

Proof (continued).

Conjugating (1 $a-2 a$) by α, we obtain the 3 -cycle (1 $2 a-1$).

Note that (12a-1) and $\alpha^{-1} \beta$ form a 2 -connected puzzle with a 3 -cycle, hence we can apply the previous theorem.

Solving 2-connected puzzles

Proof (continued).

Conjugating (1a-2a) by α, we obtain the 3-cycle (1 $2 a-1$).

Note that (12a-1) and $\alpha^{-1} \beta$ form a 2-connected puzzle with a 3 -cycle, hence we can apply the previous theorem.

What about the 2-connected puzzle where α and β have length 4? It looks like we cannot form any 2-cycle or 3-cycle, so we need a radically new idea...

Automorphisms

Definition

An isomorphism between two groups G and G^{\prime} is a bijection $f: G \rightarrow G^{\prime}$ such that, for all $\pi, \sigma \in G, f(\pi \sigma)=f(\pi) f(\sigma)$.

If there is such a bijection f, then G and G^{\prime} have the same structure: they are "the same group" up to renaming their elements: $G \cong G^{\prime}$.

Definition

An isomorphism from G to itself is called an automorphism.
An automorphism f permutes the elements of G, so $f \in S_{|G|}$.

Proposition

The automorphisms of G form a subgroup $\operatorname{Aut}(G) \leq S_{|G|}$.
Proof. If $f, g \in \operatorname{Aut}(G)$, then $f g(\pi \sigma)=f(g(\pi) g(\sigma))=f g(\pi) f g(\sigma) . \square$

Inner automorphisms

Proposition

The conjugation by an element $\pi \in G$ is an automorphism of G.

$$
\begin{aligned}
& \text { Proof. If } f_{\pi}(\sigma)=\pi \sigma \pi^{-1} \text { for all } \sigma \in G \text {, then } f_{\pi} \in \operatorname{Aut}(G) \text { : } \\
& f_{\pi}(\sigma \rho)=\pi(\sigma \rho) \pi^{-1}=\left(\pi \sigma \pi^{-1}\right)\left(\pi \rho \pi^{-1}\right)=f_{\pi}(\sigma) f_{\pi}(\rho)
\end{aligned}
$$

Definition

The automorphisms induced by conjugations are called inner.

Proposition

The inner automorphisms form a subgroup $\operatorname{Inn}(G) \leq \operatorname{Aut}(G)$.
Proof. If $f_{\pi}, f_{\sigma} \in \operatorname{Inn}(G)$, then $f_{\pi} f_{\sigma}(\rho)=\pi\left(\sigma \rho \sigma^{-1}\right) \pi^{-1}=f_{\pi \sigma}(\rho)$.

Outer automorphisms of S_{6}

If $n \neq 6$, the only automorphisms of S_{n} are the inner ones.
S_{6} is an exception:

Theorem (Hölder, 1895)

The index of $\operatorname{Inn}\left(S_{6}\right)$ in $\operatorname{Aut}\left(S_{6}\right)$ is 2. So, there are $6!=720$ inner and 720 non-inner (i.e., outer) automorphisms.

This is an example of an outer automorphism $\psi: S_{6} \rightarrow S_{6}$ (defined on a generating set for S_{6}):

$$
\begin{aligned}
& \psi((12))=\left(\begin{array}{ll}
1 & 2)(35)(46)
\end{array}\right. \\
& \psi((23))=(16)(25)(34) \\
& \psi((34))=\left(\begin{array}{ll}
1 & 2)(36)(45)
\end{array}\right. \\
& \psi((45))=(16)(24)(35) \\
& \psi\left(\left(\begin{array}{ll}
5 & 6
\end{array}\right)\right)=\left(\begin{array}{ll}
1 & 2
\end{array}\right)\left(\begin{array}{ll}
3 & 4
\end{array}\right)(56)
\end{aligned}
$$

Solving the last 2-connected puzzle

Theorem

In the 2-connected puzzle where α and β have length 4 (so, $n=6$), the generated group is isomorphic to S_{5} (hence it has index 6).

Proof. Idea: transform $\langle\alpha, \beta\rangle$ by ψ and see what group we obtain.
Since ψ is an isomorphism, $\langle\alpha, \beta\rangle \cong\langle\psi(\alpha), \psi(\beta)\rangle$.
$\alpha=\left(\begin{array}{llll}1 & 2 & 3 & 4\end{array}\right)=\left(\begin{array}{ll}1 & 2\end{array}\right)(23)(34)$ and
$\beta=(3456)=(34)(45)(56)$, thus we have:
$\psi(\alpha)=\psi((12)) \psi((23)) \psi\left(\left(\begin{array}{ll}3 & 4)\end{array}\right)=\left(\begin{array}{ll}1 & 3\end{array} 24\right)\right.$,
$\psi(\beta)=\psi\left(\left(\begin{array}{ll}4 & 4\end{array}\right) \psi((45)) \psi\left(\left(\begin{array}{l}5\end{array}\right)\right)=\left(\begin{array}{ll}1 & 5 \\ 2\end{array}\right)\right.$.
Note: the new generators $\psi(\alpha)$ and $\psi(\beta)$ both leave the token 6 in place, and so they cannot generate a subgroup larger than S_{5}.

Solving the last 2-connected puzzle

Proof (continued).

The 3-cycle $\psi(\alpha) \psi(\beta)=\left(\begin{array}{lll}1 & 5 & 4\end{array}\right)$ and the 4-cycle $\psi(\alpha)^{-1}$ form a 2 -connected puzzle on $\{1,2,3,4,5\}$:

By the previous theorem, we know that they generate exactly S_{5}.
Thus, $\langle\alpha, \beta\rangle$ is an isomorphic copy of S_{5}. A permutation $\pi \in S_{6}$ is in $\langle\alpha, \beta\rangle$ if and only if $\psi(\pi)$ leaves the token 6 in place.

Conclusion

We have obtained a complete solution to all 1-connected and 2-connected cycle-shift puzzles:

Theorem

In a 1-connected or 2-connected puzzle, α and β generate:

- A_{n} if both α and β have odd length;
- S_{n} if α or β has even length, with one exception:
- if the puzzle is 2-connected and α and β have length 4, they generate a group isomorphic to S_{5} (as opposed to S_{6}).
Any permutation in the group can be generated in $O\left(n^{2}\right)$ steps.

