Three Problems in Discrete Geometry

Giovanni Viglietta

JAIST - April 19, 2018

Self-introduction: Research areas

Discrete and Computational Geometry

- Polyhedral Combinatorics
- Visibility-related problems
- Folding and Unfolding

Complexity of Games

- General techniques applied to video games
- Puzzles, board games, card games, etc.

Distributed Computing

- Motion Planning for Swarms of Robots
- Computing in Dynamic Networks
- Population Protocols

Self-introduction: Research areas

Discrete and Computational Geometry

- Polyhedral Combinatorics
- Visibility-related problems
- Folding and Unfolding

Complexity of Games

- General techniques applied to video games
- Puzzles, board games, card games, etc.

Distributed Computing

- Motion Planning for Swarms of Robots
- Computing in Dynamic Networks
- Population Protocols

The Shadows of a Cycle Cannot All Be Paths CCCG 2015

Joint work with P. Bose, J.-L. De Carufel, M. G. Dobbins, and H. Kim

A 3D maze designed in the 1980s by Oskar van Deventer. To move the rods around, one has to solve three 2D mazes.

Observation: the maze on each face must be a tree.

If there were a cycle, part of the structure would fall off.

If there were a cycle, part of the structure would fall off.

But can there be cycles in the "internal" 3D maze?

Rickard's curve

A 3D cycle whose shadows are all trees.

(Illustration by Afra Zomorodian.)

Goucher's "treefoil"

A trefoil knot whose shadows are all trees. (Illustration courtesy of Adam P. Goucher.)

• Can the shadows of a 3D cycle be all paths? (Open problem from CCCG 2007)

• Can the shadows of a 3D cycle be all paths? NO. (Open problem from CCCG 2007)

- Can the shadows of a 3D cycle be all paths? NO. (Open problem from CCCG 2007)
- Can the shadows of a 3D path be all cycles?

- Can the shadows of a 3D cycle be all paths? NO. (Open problem from CCCG 2007)
- Can the shadows of a 3D path be all cycles? **YES**.

- Can the shadows of a 3D cycle be all paths? NO. (Open problem from CCCG 2007)
- Can the shadows of a 3D path be all cycles? **YES.**
- Can the shadows of a 3D path be all convex cycles?

- Can the shadows of a 3D cycle be all paths? NO. (Open problem from CCCG 2007)
- Can the shadows of a 3D path be all cycles? **YES.**
- Can the shadows of a 3D path be all convex cycles? NO.

- Can the shadows of a 3D cycle be all paths? NO. (Open problem from CCCG 2007)
- Can the shadows of a 3D path be all cycles? **YES.**
- Can the shadows of a 3D path be all convex cycles? NO.
- What about higher dimensions?

- Can the shadows of a 3D cycle be all paths? NO. (Open problem from CCCG 2007)
- Can the shadows of a 3D path be all cycles? **YES.**
- Can the shadows of a 3D path be all convex cycles? NO.
- What about higher dimensions? Rickard's curve generalizes to any dimension.

Suppose that the shadows of a 3D cycle are all paths.

Suppose that the shadows of a 3D cycle are all paths.

Definition: a *strand* is a minimal sub-curve connecting the top and bottom faces of the bonding box.

Claim: a lateral shadow has two (internally disjoint) strands.

Suppose it has a unique strand τ .

Then, the shadow of any strand σ of the 3D cycle is τ .

Let τ' be the other lateral shadow of σ .

Let τ' be the other lateral shadow of σ .

The shadow of a point moving from a to b moves from a' to b'.

As it keeps moving, its shadow traverses τ' again, from b' to a'.

Thus a second strand σ' is found, whose shadow is again τ' .

But the shadows of σ and σ' cannot both be τ . Contradiction!

Hence a shadow has two (internally disjoint) vertical strands.

By a symmetric argument, it also has two horizontal strands.

Claim: no 2D path has two vertical and two horizontal strands.

Start with a horizontal strand.

Extend it to a vertical strand.
The shadows of a 3D cycle cannot all be paths

Extend it with a second horizontal strand.

The shadows of a 3D cycle cannot all be paths

If a second vertical strand is drawn, the curve self-intersects.

The shadows of a 3D cycle cannot all be paths

The other cases are similar...

The shadows of a 3D path can be all cycles

An orthogonal chain whose shadows are polygons.

The shadows of a 3D path can be all cycles

A 5-segment chain whose shadows are polygons. (Smallest possible!)

What does it mean to generalize Rickard's curve?

Note that the shadows of Rickard's curve are *contractible* (i.e., they deformation-retract to a point)...

Note that the shadows of Rickard's curve are *contractible* (i.e., they deformation-retract to a point)...

Note that the shadows of Rickard's curve are *contractible* (i.e., they deformation-retract to a point)...

Note that the shadows of Rickard's curve are *contractible* (i.e., they deformation-retract to a point)...

Note that the shadows of Rickard's curve are *contractible* (i.e., they deformation-retract to a point)...

Note that the shadows of Rickard's curve are *contractible* (i.e., they deformation-retract to a point)...

Note that the shadows of Rickard's curve are *contractible* (i.e., they deformation-retract to a point)...

... While Rickard's curve, being a 1-sphere, is not contractible.

Claim: there is a 2-sphere in \mathbb{R}^4 whose shadows are contractible.

Think of the 4-dimensional space as a function of time.

In each 3D frame, put a scaled copy of Rickard's curve...

...So that the union of all frames is homeomorphic to a 2-sphere.

The *t*-orthogonal shadow is the superimposition of all frames...

...Which is contractible.

...Which is contractible.

...Which is contractible.

...Which is contractible.

In the other three shadows, each *t*-orthogonal slice is a scaled copy of a shadow of Rickard's curve.

To contract it, first contract all slices simultaneously...

To contract it, first contract all slices simultaneously...

To contract it, first contract all slices simultaneously...

To contract it, first contract all slices simultaneously...

To contract it, first contract all slices simultaneously...

... Then contract the resulting segment.

... Then contract the resulting segment.

... Then contract the resulting segment.

By induction, for every d > 0, we can construct a *d*-sphere in \mathbb{R}^{d+2} with contractible shadows.

Summary

- The shadows of a cycle in \mathbb{R}^3 :
 - can be all trees
 - cannot be all paths
- The shadows of a path in \mathbb{R}^3 :
 - can be all cycles
 - cannot be all convex cycles
- The shadows of a *d*-sphere in \mathbb{R}^{d+2} :
 - can be all contractible

Problem: what if the curves cast four shadows instead of three? Can the four shadows of a cycle be trees? Can the four shadows of a path be cycles?

Algorithms for Designing Pop-Up Cards STACS 2013

Joint work with Z. Abel, E. D. Demaine, M. L. Demaine, S. Eisenstat, A. Lebiw, A. Schulz, D. L. Souvaine, and A. Winslow
Pop-up cards (or books) are 3D paper models that fold flat with one degree of freedom.

(The Jungle Book: A Pop-Up Adventure, by Matthew Reinhart)

- Pop-up cards (or books) are 3D paper models that fold flat with one degree of freedom.
- Can every possible shape be modeled as a pop-up card, and how efficiently?

(The Jungle Book: A Pop-Up Adventure, by Matthew Reinhart)

- Pop-up cards (or books) are 3D paper models that fold flat with one degree of freedom.
- Can every possible shape be modeled as a pop-up card, and how efficiently?
- We are not concerned with practical realizability (e.g., paper thickness, feature size).

(The Jungle Book: A Pop-Up Adventure, by Matthew Reinhart)

- 2D orthogonal polygon pop-ups, O(n) links.
- 2D general polygon pop-ups, $O(n^2)$ links.
- 3D orthogonal polyhedron pop-ups, $O(n^3)$ links.

2D model for pop-ups

Desired card

Cross section

2D model

- Linkages are formed by rigid bars and flexible joints.
- If bars intersect only at joints, the linkage configuration is called *non-crossing*.

Three non-crossing configurations of a 7-bar linkage.

More general joints

Everything is a joint

Flap made of joints

Sliceform made of flaps + joints

• Input: 2D polygon *P* (unfolded shape): *n* vertices in total, one distinguished vertex (the "fold").

- Input: 2D polygon *P* (unfolded shape): *n* vertices in total, one distinguished vertex (the "fold").
- **Output:** linkage structure *L* with external boundary *P*.
 - L folds around the distinguished vertex to form a line,
 - *L* is non-crossing throughout,
 - *L* has one degree of freedom.

(Pop-up designed using algorithm by Hara and Sugihara, 2009)

- Input: 2D polygon *P* (unfolded shape): *n* vertices in total, one distinguished vertex (the "fold").
- **Output:** linkage structure *L* with external boundary *P*.
 - L folds around the distinguished vertex to form a line,
 - *L* is non-crossing throughout,
 - L has one degree of freedom.

(Pop-up designed using algorithm by Hara and Sugihara, 2009)

- Input: 2D polygon *P* (unfolded shape): *n* vertices in total, one distinguished vertex (the "fold").
- **Output:** linkage structure *L* with external boundary *P*.
 - L folds around the distinguished vertex to form a line,
 - *L* is non-crossing throughout,
 - L has one degree of freedom.

(Pop-up designed using algorithm by Hara and Sugihara, 2009)

• *P* orthogonal: every edge is either vertical or horizontal.

- Opening angle is 90° (angles 180°, 270°, and 360° are discussed later).
- **Strategy:** preserve parallelism throughout the motion (i.e., *shearing* motion).

3-step construction

• Subdivide P into horizontal stripes.

3-step construction

- Subdivide *P* into horizontal stripes.
- Model all degree-3 vertices as flaps.

3-step construction

- Subdivide P into horizontal stripes.
- Model all degree-3 vertices as flaps.
- Enforce a 1-dof motion by adding vertical bars connected by sliceforms.

- **Strategy:** combine the 90° shearing motions.
- Need to "reflect" the shear.

- The top part keeps the vertical lines parallel.
- The two kites are similar and force the left and right halves to move symmetrically.

- The top part keeps the vertical lines parallel.
- The two kites are similar and force the left and right halves to move symmetrically.

Synchronizing shears

Cut P along the x and y axes.

Reconnect the 90° solutions via reflector gadgets.

• The resulting structure has complexity O(n).

Result

• The resulting structure has complexity O(n).

• **Outward V-fold:** 1+4=2+3.

- Outward V-fold:
 - 1 + 4 = 2 + 3.

• Inward V-fold: 3-1=4-2.

- Outward V-fold:
 - 1 + 4 = 2 + 3.

• Inward V-fold: 3-1 = 4-2.

• Draw a ray from the fold to every vertex of *P*.

- Draw a ray from the fold to every vertex of *P*.
- Make outward V-folds for all edges between rays.

- Draw a ray from the fold to every vertex of *P*.
- Make outward V-folds for all edges between rays.

- Draw a ray from the fold to every vertex of *P*.
- Make outward V-folds for all edges between rays.
- Every wedge can be folded flat, but there are too many dof!
 - Want: wall segments rotate around fold.
 - Want: wedge motions be synchronized.
• For each pair of wall segment in an *internal* cell:

- For each pair of wall segment in an *internal* cell:
 - Add two parallel segments.

- For each pair of wall segment in an *internal* cell:
 - Add two parallel segments.
 - Add two parallelograms to get two outward V-folds.

- For each pair of wall segment in an *internal* cell:
 - Add two parallel segments.
 - Add two parallelograms to get two outward V-folds.
- Result: wall segments rotate around the apex, even if they are not connected to it.

- For each pair of wall segment in an *internal* cell:
 - Add two parallel segments.
 - Add two parallelograms to get two outward V-folds.
- Result: wall segments rotate around the apex, even if they are not connected to it.

- For each pair of wall segment in an *internal* cell:
 - Add two parallel segments.
 - Add two parallelograms to get two outward V-folds.
- Result: wall segments rotate around the apex, even if they are not connected to it.
- (Leaf cells are handled separately.)

• **Strategy:** link neighboring cells with with a gadget that synchronizes the independent motions of the wedges.

Synchronizing wedges

• **Strategy:** link neighboring cells with with a gadget that synchronizes the independent motions of the wedges.

• Basic sync gadget: inward V-fold + outward V-fold. • **Strategy:** link neighboring cells with with a gadget that synchronizes the independent motions of the wedges.

• Basic sync gadget: inward V-fold + outward V-fold.

• The basic sync gadget has a 1-dof motion that makes all the cells in the same wedge fold at the same speed.

Fitting the sync gadget

Folding leaf cells

• For cells with only one wall, use two sync gadgets and no rotation gadget.

- **Input:** orthogonal polyhedron *P*, one distinguished edge.
- **Output:** set of *hinged rigid sheets of paper* that folds from *P* to a flat state with a 1-dof motion.

- **Input:** orthogonal polyhedron *P*, one distinguished edge.
- **Output:** set of *hinged rigid sheets of paper* that folds from *P* to a flat state with a 1-dof motion.
- **Bellows theorem:** every flexible polyhedron has the same volume in all configurations.
 - We must cut the boundary.

Cutting into slices

- Use the 3D grid induced by the vertices of *P*.
- Create slices perpendicular to the crease.
 - Each slice is a 2D linkage problem.

Pinwheel construction

• For each cross section, construct a *pinwheel-pattern* linkage, enforcing a 1-dof shearing motion.

Pinwheel construction

• For each cross section, construct a *pinwheel-pattern* linkage, enforcing a 1-dof shearing motion.

• Extrude each cross section to get a 3D model for a slice of *P*.

Putting slices together

- Fuse paper in adjacent slices.
 - But we still have holes on the sides...

- Add two hinged sheets of paper to close each hole.
- Just the left and bottom sides are hinged to the rest of the structure.

- Add two hinged sheets of paper to close each hole.
- Just the left and bottom sides are hinged to the rest of the structure.

- Add two hinged sheets of paper to close each hole.
- Just the left and bottom sides are hinged to the rest of the structure.

- Add two hinged sheets of paper to close each hole.
- Just the left and bottom sides are hinged to the rest of the structure.

- Add two hinged sheets of paper to close each hole.
- Just the left and bottom sides are hinged to the rest of the structure.

- Add two hinged sheets of paper to close each hole.
- Just the left and bottom sides are hinged to the rest of the structure.

• The resulting structure has complexity $O(n^3)$.

• The resulting structure has complexity $O(n^3)$.

• The resulting structure has complexity $O(n^3)$.

• The resulting structure has complexity $O(n^3)$.

• The resulting structure has complexity $O(n^3)$.

• The resulting structure has complexity $O(n^3)$.

• The resulting structure has complexity $O(n^3)$.

• The resulting structure has complexity $O(n^3)$.

• The resulting structure has complexity $O(n^3)$.

• The resulting structure has complexity $O(n^3)$.

• The resulting structure has complexity $O(n^3)$.

• The resulting structure has complexity $O(n^3)$.

• The resulting structure has complexity $O(n^3)$.

• The resulting structure has complexity $O(n^3)$.

• The resulting structure has complexity $O(n^3)$.

• The resulting structure has complexity $O(n^3)$.

• The resulting structure has complexity $O(n^3)$.

• The resulting structure has complexity $O(n^3)$.

- O(n) solution for orthogonal polygons.
- $O(n^2)$ solution for general polygons.
- $O(n^3)$ solution for orthogonal polyhedra.

• **Open:** Can every polyhedron be a pop-up?

Wrapping a Cube with Rectangular Paper Work in progress...

Joint work with E. Bardelli and M. Mamino

The optimal solution wastes 1/4 of the paper (Beebee et al., 2001) and is unique (Pan, 2014).

Wrapping a cube with a rectangle

With a long-enough strip, we can be as efficient as we want (Cole et al., 2013).
Avoiding overlaps

What if we want to avoid overlaps in the wrapping paper? This corresponds to unfolding a cube into a rectangular region. How small can this region be?

There are two particularly efficient unfoldings.

They both waste only 1/6 of the paper.

No other unfoldings that waste $\leq 1/6$ of the paper are known.

Is 1/6 optimal? Are there any other optimal unfoldings?