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Self-introduction: Research areas

Discrete and Computational Geometry

Polyhedral Combinatorics

Visibility-related problems

Folding and Unfolding

Complexity of Games

General techniques applied to video games

Puzzles, board games, card games, etc.

Distributed Computing

Motion Planning for Swarms of Robots

Computing in Dynamic Networks

Population Protocols
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The Shadows of a Cycle Cannot All Be Paths

CCCG 2015

Joint work with P. Bose, J.-L. De Carufel,

M. G. Dobbins, and H. Kim
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Oskar’s maze

A 3D maze designed in the 1980s by Oskar van Deventer.
To move the rods around, one has to solve three 2D mazes.
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Oskar’s maze

/Observation: the maze on each face must be a tree./
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Oskar’s maze

/If there were a cycle, part of the structure would fall off./
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Oskar’s maze

/But can there be cycles in the “internal” 3D maze?/
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Rickard’s curve

A 3D cycle whose shadows are all trees.

(Illustration by Afra Zomorodian.)
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Goucher’s “treefoil”

A trefoil knot whose shadows are all trees.

(Illustration courtesy of Adam P. Goucher.)
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In this talk...

Can the shadows of a 3D cycle be all paths?

NO.

(Open problem from CCCG 2007)

Can the shadows of a 3D path be all cycles?

YES.

Can the shadows of a 3D path be all convex cycles?

NO.

What about higher dimensions?

Rickard’s curve generalizes to any dimension.
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The shadows of a 3D cycle cannot all be paths

/Suppose that the shadows of a 3D cycle are all paths./
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The shadows of a 3D cycle cannot all be paths

Definition: a strand is a minimal sub-curve connecting
the top and bottom faces of the bonding box.
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The shadows of a 3D cycle cannot all be paths

/Claim: a lateral shadow has two (internally disjoint) strands./
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The shadows of a 3D cycle cannot all be paths

τ

/Suppose it has a unique strand τ ./
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The shadows of a 3D cycle cannot all be paths

σ
τ

a

b

/Then, the shadow of any strand σ of the 3D cycle is τ ./
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The shadows of a 3D cycle cannot all be paths
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a
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/Let τ ′ be the other lateral shadow of σ./
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The shadows of a 3D cycle cannot all be paths

σ

a

b

τ

′b

′a

′τ

/The shadow of a point moving from a to b moves from a′ to b′./
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The shadows of a 3D cycle cannot all be paths

σ

a

b

τ

′b

′a

′τ

/As it keeps moving, its shadow traverses τ ′ again, from b′ to a′./
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The shadows of a 3D cycle cannot all be paths

σ

a

b

τ

′b

′a

′τ ′σ

/Thus a second strand σ′ is found, whose shadow is again τ ′./
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The shadows of a 3D cycle cannot all be paths

σ
τ′τ ′σ

/But the shadows of σ and σ′ cannot both be τ . Contradiction!/
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The shadows of a 3D cycle cannot all be paths

/Hence a shadow has two (internally disjoint) vertical strands./
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The shadows of a 3D cycle cannot all be paths

/By a symmetric argument, it also has two horizontal strands./
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The shadows of a 3D cycle cannot all be paths

/Claim: no 2D path has two vertical and two horizontal strands./
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The shadows of a 3D cycle cannot all be paths

/Start with a horizontal strand./
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The shadows of a 3D cycle cannot all be paths

/Extend it to a vertical strand./
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The shadows of a 3D cycle cannot all be paths

/Extend it with a second horizontal strand./
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The shadows of a 3D cycle cannot all be paths

/If a second vertical strand is drawn, the curve self-intersects./
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The shadows of a 3D cycle cannot all be paths

/The other cases are similar.../
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The shadows of a 3D path can be all cycles

/An orthogonal chain whose shadows are polygons./
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The shadows of a 3D path can be all cycles

A 5-segment chain whose shadows are polygons.
(Smallest possible!)
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Generalizing Rickard’s curve to higher dimensions

/What does it mean to generalize Rickard’s curve?/
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Generalizing Rickard’s curve to higher dimensions

/Note that the shadows of Rickard’s curve are contractible/
/(i.e., they deformation-retract to a point).../
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/Note that the shadows of Rickard’s curve are contractible/
/(i.e., they deformation-retract to a point).../
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Generalizing Rickard’s curve to higher dimensions

/...While Rickard’s curve, being a 1-sphere, is not contractible./
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Generalizing Rickard’s curve to higher dimensions

/Claim: there is a 2-sphere in R4 whose shadows are contractible./
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Generalizing Rickard’s curve to higher dimensions

t

/Think of the 4-dimensional space as a function of time./
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Generalizing Rickard’s curve to higher dimensions

t

/In each 3D frame, put a scaled copy of Rickard’s curve.../
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Generalizing Rickard’s curve to higher dimensions

t

t

=∼

=∼

t

/...So that the union of all frames is homeomorphic to a 2-sphere./
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Generalizing Rickard’s curve to higher dimensions

/The t-orthogonal shadow is the superimposition of all frames.../

Three Problems in Discrete Geometry



Generalizing Rickard’s curve to higher dimensions

/...Which is contractible./
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Generalizing Rickard’s curve to higher dimensions

/...Which is contractible./
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Generalizing Rickard’s curve to higher dimensions

t

/In the other three shadows, each t-orthogonal slice is/
/a scaled copy of a shadow of Rickard’s curve./
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Generalizing Rickard’s curve to higher dimensions

t

/To contract it, first contract all slices simultaneously.../
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Generalizing Rickard’s curve to higher dimensions

t

/To contract it, first contract all slices simultaneously.../
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Generalizing Rickard’s curve to higher dimensions

t

/...Then contract the resulting segment./

Three Problems in Discrete Geometry



Generalizing Rickard’s curve to higher dimensions

t

/...Then contract the resulting segment./
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Generalizing Rickard’s curve to higher dimensions

t

/...Then contract the resulting segment./
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Generalizing Rickard’s curve to higher dimensions

t

/By induction, for every d > 0, we can construct/
/a d-sphere in Rd+2 with contractible shadows./
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Summary

The shadows of a cycle in R3:

can be all trees

cannot be all paths

The shadows of a path in R3:

can be all cycles

cannot be all convex cycles

The shadows of a d-sphere in Rd+2:

can be all contractible
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Open problem

/Problem: what if the curves cast four shadows instead of three?

Can the four shadows of a cycle be trees?

Can the four shadows of a path be cycles?/
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Algorithms for Designing Pop-Up Cards

STACS 2013

Joint work with Z. Abel, E. D. Demaine,

M. L. Demaine, S. Eisenstat, A. Lebiw,

A. Schulz, D. L. Souvaine, and A. Winslow
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Pop-up cards

Pop-up cards (or books) are 3D
paper models that fold flat with
one degree of freedom.

Can every possible shape be
modeled as a pop-up card,
and how efficiently?

We are not concerned with
practical realizability (e.g.,
paper thickness, feature size).

(The Jungle Book: A Pop-Up Adventure, by Matthew Reinhart)

Three Problems in Discrete Geometry



Pop-up cards

Pop-up cards (or books) are 3D
paper models that fold flat with
one degree of freedom.

Can every possible shape be
modeled as a pop-up card,
and how efficiently?

We are not concerned with
practical realizability (e.g.,
paper thickness, feature size).

(The Jungle Book: A Pop-Up Adventure, by Matthew Reinhart)

Three Problems in Discrete Geometry



Pop-up cards

Pop-up cards (or books) are 3D
paper models that fold flat with
one degree of freedom.

Can every possible shape be
modeled as a pop-up card,
and how efficiently?

We are not concerned with
practical realizability (e.g.,
paper thickness, feature size).

(The Jungle Book: A Pop-Up Adventure, by Matthew Reinhart)

Three Problems in Discrete Geometry



Outline

2D orthogonal polygon pop-ups, O(n) links.

2D general polygon pop-ups, O(n2) links.

3D orthogonal polyhedron pop-ups, O(n3) links.
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2D model for pop-ups

Desired card Cross section 2D model
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Linkages

Linkages are formed by rigid bars and flexible joints.

If bars intersect only at joints, the linkage configuration
is called non-crossing.

Three non-crossing configurations of a 7-bar linkage.
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More general joints

Common joint: • Flap: ◦ Sliceform: ×
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Everything is a joint

ε

Flap made of joints Sliceform made of flaps + joints
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Problem formulation

Input: 2D polygon P (unfolded shape):
n vertices in total, one distinguished vertex (the “fold”).

Output: linkage structure L with external boundary P.
L folds around the distinguished vertex to form a line,
L is non-crossing throughout,
L has one degree of freedom.

(Pop-up designed using algorithm by Hara and Sugihara, 2009)
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Orthogonal polygons

P orthogonal: every edge is
either vertical or horizontal.

Opening angle is 90◦ (angles 180◦, 270◦, and 360◦ are
discussed later).

Strategy: preserve parallelism throughout the motion
(i.e., shearing motion).
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3-step construction

Subdivide P into horizontal stripes.

Model all degree-3 vertices as flaps.

Enforce a 1-dof motion by adding vertical bars
connected by sliceforms.
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Larger opening angle

Strategy: combine the 90◦

shearing motions.

Need to “reflect” the shear.
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Reflector gadget

The top part keeps the vertical
lines parallel.

The two kites are similar and
force the left and right halves
to move symmetrically.

4

1

2

2 2

4

1
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Reflector gadget

The top part keeps the vertical
lines parallel.

The two kites are similar and
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to move symmetrically.

Three Problems in Discrete Geometry



Synchronizing shears

Cut P along the x and y axes. Reconnect the 90◦ solutions
via reflector gadgets.
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Result

The resulting structure has complexity O(n).
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General polygons: V-folds

Outward V-fold:
1 + 4 = 2 + 3.

4

3
2

1

Inward V-fold:
3 − 1 = 4 − 2.
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General polygons: V-folds

Outward V-fold:
1 + 4 = 2 + 3.

Inward V-fold:
3 − 1 = 4 − 2.
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Nested V-folds

Lemma

The closing motion of nested outward (resp. inward) V-folds
intersects only in the end configuration.
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Cell decomposition

Draw a ray from the fold to every vertex of P.

Make outward V-folds for all edges between rays.

Every wedge can be folded flat, but there are too many dof!

Want: wall segments rotate around fold.
Want: wedge motions be synchronized.
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Restricting to rotations

For each pair of wall segment
in an internal cell:

Add two parallel segments.
Add two parallelograms to get
two outward V-folds.

Result: wall segments rotate around
the apex, even if they are not
connected to it.

(Leaf cells are handled separately.)
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Synchronizing wedges

Strategy: link neighboring cells with with a gadget that
synchronizes the independent motions of the wedges.

Basic sync gadget:
inward V-fold + outward V-fold.

The basic sync gadget has a 1-dof motion that makes all
the cells in the same wedge fold at the same speed.
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Fitting the sync gadget
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Folding leaf cells

For cells with only one wall, use two sync gadgets
and no rotation gadget.
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Result

The resulting structure has complexity O(n2).
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Result

The resulting structure has complexity O(n2).
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3D (orthogonal) model for pop-ups

Input: orthogonal polyhedron P, one distinguished edge.

Output: set of hinged rigid sheets of paper that folds
from P to a flat state with a 1-dof motion.

Bellows theorem: every flexible polyhedron
has the same volume in all configurations.

We must cut the boundary.
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Cutting into slices

Use the 3D grid induced by the vertices of P.

Create slices perpendicular to the crease.

Each slice is a 2D linkage problem.
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Pinwheel construction

For each cross section,
construct a pinwheel-pattern
linkage, enforcing a 1-dof
shearing motion.

Extrude each cross section to
get a 3D model for a slice of P.
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Putting slices together

Fuse paper in adjacent slices.
But we still have holes on the sides...

Three Problems in Discrete Geometry



Closing holes

Add two hinged sheets of paper
to close each hole.

Just the left and bottom sides
are hinged to the rest of the
structure.
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Result

The resulting structure has complexity O(n3).
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Summary

O(n) solution for orthogonal polygons.

O(n2) solution for general polygons.

O(n3) solution for orthogonal polyhedra.

Open: Can every polyhedron be a pop-up?
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Wrapping a Cube with Rectangular Paper

Work in progress...

Joint work with E. Bardelli and M. Mamino
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Wrapping a cube with a square

//The optimal solution wastes 1/4 of the paper (Beebee et al., 2001)

and is unique (Pan, 2014).
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Wrapping a cube with a rectangle

//
With a long-enough strip, we can be as efficient as we want

(Cole et al., 2013).
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Avoiding overlaps

//What if we want to avoid overlaps in the wrapping paper?

This corresponds to unfolding a cube into a rectangular region.

How small can this region be?
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Unfolding a cube into a rectangle

/ /
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Unfolding a cube into a rectangle

/There are two particularly efficient unfoldings./

Three Problems in Discrete Geometry



Unfolding a cube into a rectangle

/They both waste only 1/6 of the paper./
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Unfolding a cube into a rectangle

slope = 3 slope = 2

/No other unfoldings that waste ≤ 1/6 of the paper are known./
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Unfolding a cube into a rectangle

slope = 3 slope = 2

/Is 1/6 optimal? Are there any other optimal unfoldings?/
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