
TuringMobile: A Turing Machine of
Oblivious Mobile Robots with Limited Visibility

Overcoming Disconnected Distance Graphs in
Gathering-Like Problems

Giovanni Viglietta

School of Information Science – JAIST

WSSR – Tokyo – November 4, 2018

“Tous pour un, un pour tous!”

The Three Musketeers

TuringMobile: A Turing Machine of Oblivious Mobile Robots

Anonymous robots sensing and moving

TuringMobile: A Turing Machine of Oblivious Mobile Robots

We consider a swarm of anonymous robots in a Euclidean space.

Anonymous robots sensing and moving

TuringMobile: A Turing Machine of Oblivious Mobile Robots

Each robot can see the positions of all robots within a range...

Anonymous robots sensing and moving

TuringMobile: A Turing Machine of Oblivious Mobile Robots

Each robot can see the positions of all robots within a range...

Anonymous robots sensing and moving

TuringMobile: A Turing Machine of Oblivious Mobile Robots

Each robot can see the positions of all robots within a range...

Anonymous robots sensing and moving

TuringMobile: A Turing Machine of Oblivious Mobile Robots

Each robot can see the positions of all robots within a range...

Anonymous robots sensing and moving

TuringMobile: A Turing Machine of Oblivious Mobile Robots

...And move according to a deterministic algorithm.

Anonymous robots sensing and moving

TuringMobile: A Turing Machine of Oblivious Mobile Robots

...And move according to a deterministic algorithm.

Anonymous robots sensing and moving

TuringMobile: A Turing Machine of Oblivious Mobile Robots

Different robots are activated asynchronously.

Anonymous robots sensing and moving

TuringMobile: A Turing Machine of Oblivious Mobile Robots

Different robots are activated asynchronously.

Anonymous robots sensing and moving

TuringMobile: A Turing Machine of Oblivious Mobile Robots

Different robots are activated asynchronously.

Anonymous robots sensing and moving

TuringMobile: A Turing Machine of Oblivious Mobile Robots

Different robots are activated asynchronously.

Model definition

Robots are:

Dimensionless (robots are modeled as geometric points)

Anonymous (no unique identifiers)

Homogeneous (the same algorithm is executed by all robots)

Autonomous (no centralized control)

Silent (no explicit way of communicating)

Short-sighted (visibility of other robots limited to a range)

Disoriented (robots do not share a common reference frame)

Robots may have internal memory registers, each of which can
store a real number which can be read and updated.

TuringMobile: A Turing Machine of Oblivious Mobile Robots

Life cycle and asynchrony

Look / Compute

Move

TuringMobile: A Turing Machine of Oblivious Mobile Robots

Each robot perpetually repeats a Look/Compute/Move cycle.

Life cycle and asynchrony

Look / Compute

Move

TuringMobile: A Turing Machine of Oblivious Mobile Robots

Each robot perpetually repeats a Look/Compute/Move cycle.

Life cycle and asynchrony

Look / Compute

Move

TuringMobile: A Turing Machine of Oblivious Mobile Robots

In a Look phase, a snapshot is taken of all visible robots.

Life cycle and asynchrony

Look / Compute

Move

435
2.55

35.39
547

7.455

0.565
2.55
5.46
3458
4.79

TuringMobile: A Turing Machine of Oblivious Mobile Robots

The internal registers are updated based on the snapshot.

Life cycle and asynchrony

Look / Compute

Move

TuringMobile: A Turing Machine of Oblivious Mobile Robots

A destination is computed based on snapshot and registers.

Life cycle and asynchrony

Look / Compute

Move

TuringMobile: A Turing Machine of Oblivious Mobile Robots

The destination point is approached with unpredictable speed.

Life cycle and asynchrony

Look / Compute

Move

TuringMobile: A Turing Machine of Oblivious Mobile Robots

The destination point is approached with unpredictable speed.

Life cycle and asynchrony

Look / Compute

Move

TuringMobile: A Turing Machine of Oblivious Mobile Robots

The destination point is approached with unpredictable speed.

Life cycle and asynchrony

Look / Compute

Move

TuringMobile: A Turing Machine of Oblivious Mobile Robots

The destination point is approached with unpredictable speed.

Life cycle and asynchrony

Look / Compute

Move

TuringMobile: A Turing Machine of Oblivious Mobile Robots

The destination point is approached with unpredictable speed.

Life cycle and asynchrony

Look / Compute

Move

TuringMobile: A Turing Machine of Oblivious Mobile Robots

The robot may unpredictably stop before reaching the destination...

Life cycle and asynchrony

Look / Compute

Move

TuringMobile: A Turing Machine of Oblivious Mobile Robots

...and execute a new Look/Compute phase.

Life cycle and asynchrony

Look / Compute

Move

TuringMobile: A Turing Machine of Oblivious Mobile Robots

...and execute a new Look/Compute phase.

Life cycle and asynchrony

δ

Look / Compute

Move

TuringMobile: A Turing Machine of Oblivious Mobile Robots

At each cycle, a robot is guaranteed to move by at least δ.

Life cycle and asynchrony

Look / Compute

Move

Look / Compute

Move

TuringMobile: A Turing Machine of Oblivious Mobile Robots

Different robots execute independent cycles, asynchronously.

Gathering-like problems

TuringMobile: A Turing Machine of Oblivious Mobile Robots

Perhaps the most studied class of problems:
Design an algorithm that makes all robots reach the same “point”.

Distance graph

TuringMobile: A Turing Machine of Oblivious Mobile Robots

Distance graph: expresses which pairs of robots see each other.
Can the robots gather if their distance graph is not connected?

Related literature

H. Ando, Y. Oasa, I. Suzuki, M.Yamashita

Distributed Memoryless Point Convergence Algorithm for
Mobile Robots with Limited Visibility

IEEE Trans. Robot. Autom. 15(5):818–828, 1999

“The objective of a point convergence algorithm is to move the
robots in each connected component of the mutual visibility graph
to within a sufficiently small neighborhood of a point.”

TuringMobile: A Turing Machine of Oblivious Mobile Robots

Related literature

P. Flocchini, G. Prencipe, N. Santoro, P. Widmayer

Gathering of Asynchronous Robots with Limited Visibility

Theoretical Computer Science 337:147–168, 2005

“If the distance graph D(0) is disconnected, the gathering problem
is unsolvable. Thus, in the following we will always assume that
D(0) is connected.”

TuringMobile: A Turing Machine of Oblivious Mobile Robots

Related literature

L. Pagli, G. Prencipe, G. Viglietta

Getting Close Without Touching: Near-Gathering for
Autonomous Mobile Robots

Distributed Computing, 28(5):333–349, 2015

“If the initial distance graph I is not connected, the
Near-Gathering problem may be unsolvable.
Assumption 1: The initial strong distance graph J is connected.”

TuringMobile: A Turing Machine of Oblivious Mobile Robots

Counterexample

x

y

x

y

TuringMobile: A Turing Machine of Oblivious Mobile Robots

This is the only counterexample given in the literature:
two far-apart robots with the same orientation.

They will keep going in the same direction, and will never meet.

Counter-counterexample

TuringMobile: A Turing Machine of Oblivious Mobile Robots

But there are also positive examples.

Counter-counterexample

TuringMobile: A Turing Machine of Oblivious Mobile Robots

Even existing algorithms will make the robots gather in this case.

Yet another counter-counterexample

TuringMobile: A Turing Machine of Oblivious Mobile Robots

Consider a “module” plus an isolated robot in a strategic location.

Yet another counter-counterexample

TuringMobile: A Turing Machine of Oblivious Mobile Robots

There is an ad-hoc algorithm that makes the module move...

Yet another counter-counterexample

TuringMobile: A Turing Machine of Oblivious Mobile Robots

...In such a way as to eventually reach the isolated robot.

Yet another counter-counterexample

TuringMobile: A Turing Machine of Oblivious Mobile Robots

We cannot really say that Gathering is “impossible” in this case!

Programmable module?

?

!

!
!

!

TuringMobile: A Turing Machine of Oblivious Mobile Robots

Could there be a way to design a “module” that can steer and
explore the whole space, collecting all the isolated robots?

Programmable module?

?

!

!
!

!

TuringMobile: A Turing Machine of Oblivious Mobile Robots

More generally, what computational power can this module have?
Can it be programmable even if the robots are memoryless?

The TuringMobile module

G. A. Di Luna, P. Flocchini, N. Santoro, and G. Viglietta

TuringMobile: A Turing Machine of Oblivious Mobile Robots
with Limited Visibility and its Applications

DISC 2018, New Orleans, USA

“Interestingly, the presence of the TuringMobile allows Gathering
to be done even if the initial visibility graph is disconnected
(this does not change the fact that there are cases in which
Gathering is impossible).”

TuringMobile: A Turing Machine of Oblivious Mobile Robots

Existence of a TuringMobile

Theorem

If 3 (m+ k) identical robots in Rm with no memory are arranged
in a specific pattern and execute a specific algorithm, they can
collectively act in the same way as a single robot with k registers.

Moreover, this single robot does not unpredictably stop before
reaching its destination point.

=⇒ A team of unreliable oblivious robots can simulate
=⇒ a single reliable robot with memory.

This is effectively a Turing machine that computes and moves
through space: the team simulating it is called “TuringMobile”.

TuringMobile: A Turing Machine of Oblivious Mobile Robots

Existence of a TuringMobile

Theorem

If 3 (m+ k) identical robots in Rm with no memory are arranged
in a specific pattern and execute a specific algorithm, they can
collectively act in the same way as a single robot with k registers.

Moreover, this single robot does not unpredictably stop before
reaching its destination point.

=⇒ A team of unreliable oblivious robots can simulate
=⇒ a single reliable robot with memory.

This is effectively a Turing machine that computes and moves
through space: the team simulating it is called “TuringMobile”.

TuringMobile: A Turing Machine of Oblivious Mobile Robots

Basic component of the TuringMobile

Commander

Robot

Reference

Robot

Number

Robot

TuringMobile: A Turing Machine of Oblivious Mobile Robots

A TuringMobile consists of several copies of a basic component.

Basic component of the TuringMobile

90° λ

d

2λ/±d2

Commander

Robot

Reference

Robot

Number

Robot

TuringMobile: A Turing Machine of Oblivious Mobile Robots

This is the position at rest of the basic component.

Basic component of the TuringMobile

90° λ

d

2λ/±d2

Commander

Robot

Reference

Robot

Number

Robot

TuringMobile: A Turing Machine of Oblivious Mobile Robots

Robots can determine their own identities based on their distances:
the Commander and the Reference robot are always closest, etc.

Basic component of the TuringMobile

90° λ

d

2λ/±d2

Commander

Robot

Reference

Robot

Number

Robot

TuringMobile: A Turing Machine of Oblivious Mobile Robots

Any real number (i.e., a “state”) can be represented by the
Number robot based on its position along a small segment.

Basic component of the TuringMobile

120°120°

1D

2D 3D

90°

C

R N

TuringMobile: A Turing Machine of Oblivious Mobile Robots

The three robots coordinate themselves to move by a fixed step
in one of three fixed directions.

Basic component of the TuringMobile

3DC

R N

TuringMobile: A Turing Machine of Oblivious Mobile Robots

When in the rest position, the Commander chooses its next
destination point based also on the state encoded by the Number.

Basic component of the TuringMobile

3DC

R N

TuringMobile: A Turing Machine of Oblivious Mobile Robots

We want all robots to move by the same vector, but it is not wise
to let them move at the same time, due to asynchrony.

Basic component of the TuringMobile

C

R N

3D

TuringMobile: A Turing Machine of Oblivious Mobile Robots

The Commander reaches the middle triangle along its path...

Basic component of the TuringMobile

3D

C

N

TuringMobile: A Turing Machine of Oblivious Mobile Robots

The Commander reaches the middle triangle along its path...

Basic component of the TuringMobile

3D

f
C

N

TuringMobile: A Turing Machine of Oblivious Mobile Robots

...And it moves to mark the next state of the machine.

Basic component of the TuringMobile

3D

f
C

N

TuringMobile: A Turing Machine of Oblivious Mobile Robots

...And it moves to mark the next state of the machine.

Basic component of the TuringMobile

3D

f

f

C

N

TuringMobile: A Turing Machine of Oblivious Mobile Robots

The Number robot sees that and moves to match the same state.

Basic component of the TuringMobile

3D

f

f

C

N

TuringMobile: A Turing Machine of Oblivious Mobile Robots

The Number robot sees that and moves to match the same state.

Basic component of the TuringMobile

3D

C

N

TuringMobile: A Turing Machine of Oblivious Mobile Robots

The Commander finishes its move to the destination point.

Basic component of the TuringMobile

3DC
N

TuringMobile: A Turing Machine of Oblivious Mobile Robots

The Commander finishes its move to the destination point.

Basic component of the TuringMobile

3D

C

R N

TuringMobile: A Turing Machine of Oblivious Mobile Robots

The Number robot moves by the same vector as the Commander.

Basic component of the TuringMobile

3D

minmin

max

C

R N

TuringMobile: A Turing Machine of Oblivious Mobile Robots

(It starts moving when the distance between the Commander and
the Reference is either maximum possible or minimum possible.)

Basic component of the TuringMobile

C

R

N

TuringMobile: A Turing Machine of Oblivious Mobile Robots

Finally, the Reference robot moves by the same vector,
and the system is again in the rest position.

Basic component of the TuringMobile

90°

C

R

N

d

TuringMobile: A Turing Machine of Oblivious Mobile Robots

To determine its destination point, it computes the point at
distance d from the Commander that forms an angle of 90◦.

Basic component of the TuringMobile

90°

C

R N

TuringMobile: A Turing Machine of Oblivious Mobile Robots

To determine its destination point, it computes the point at
distance d from the Commander that forms an angle of 90◦.

Basic component: protocol correctness

Does this protocol really work as intended in spite of the
robots’ asynchrony and unreliability?

We can decompose the execution into phases:

During each phase, only one robot is supposed to move, while the
other two are supposed to wait. Does this actually happen?

If a robot r is moving as per phase i and another robot r′ sees
it (due to asynchrony), we want to prove that r′ correctly
recognizes the current phase as i, and so it waits.

If a robot moves as per phase i and is stopped before it
reaches its destination (due to unreliability), we want to prove
that it takes another snapshot and correctly resumes phase i.

This boils down to showing that no configuration is ambiguous,
i.e., it cannot be identified as belonging to two different phases.

TuringMobile: A Turing Machine of Oblivious Mobile Robots

Basic component: protocol correctness

Does this protocol really work as intended in spite of the
robots’ asynchrony and unreliability?

We can decompose the execution into phases:

During each phase, only one robot is supposed to move, while the
other two are supposed to wait. Does this actually happen?

If a robot r is moving as per phase i and another robot r′ sees
it (due to asynchrony), we want to prove that r′ correctly
recognizes the current phase as i, and so it waits.

If a robot moves as per phase i and is stopped before it
reaches its destination (due to unreliability), we want to prove
that it takes another snapshot and correctly resumes phase i.

This boils down to showing that no configuration is ambiguous,
i.e., it cannot be identified as belonging to two different phases.

TuringMobile: A Turing Machine of Oblivious Mobile Robots

Basic component: protocol correctness

Does this protocol really work as intended in spite of the
robots’ asynchrony and unreliability?

We can decompose the execution into phases:

During each phase, only one robot is supposed to move, while the
other two are supposed to wait. Does this actually happen?

If a robot r is moving as per phase i and another robot r′ sees
it (due to asynchrony), we want to prove that r′ correctly
recognizes the current phase as i, and so it waits.

If a robot moves as per phase i and is stopped before it
reaches its destination (due to unreliability), we want to prove
that it takes another snapshot and correctly resumes phase i.

This boils down to showing that no configuration is ambiguous,
i.e., it cannot be identified as belonging to two different phases.

TuringMobile: A Turing Machine of Oblivious Mobile Robots

Basic component: protocol correctness

C

R

N

TuringMobile: A Turing Machine of Oblivious Mobile Robots

Example: When the Reference robot moves, the Commander
cannot mistakenly believe that it is its turn to move.

Basic component: protocol correctness

C

N

R

TuringMobile: A Turing Machine of Oblivious Mobile Robots

Example: When the Reference robot moves, the Commander
cannot mistakenly believe that it is its turn to move.

Basic component: protocol correctness

R

C

N

TuringMobile: A Turing Machine of Oblivious Mobile Robots

Example: When the Reference robot moves, the Commander
cannot mistakenly believe that it is its turn to move.

Basic component: protocol correctness

R

C

N

TuringMobile: A Turing Machine of Oblivious Mobile Robots

Note: These geometric proofs work because we allow the robots
to move in only 3 specific directions.

TuringMobile: full construction

)α(

TuringMobile: A Turing Machine of Oblivious Mobile Robots

A single basic component can move by fixed-length steps in 3 fixed
directions and store and update an arbitrary real number.

TuringMobile: full construction

x

y
z

)x()y(

)z(

)1(reg)2(reg

TuringMobile: A Turing Machine of Oblivious Mobile Robots

To simulate a reliable robot with k registers in Rm,
we use k +m basic components.

TuringMobile: full construction

x

y
z

)x()y(

)z(

)1(reg)2(reg

L

TuringMobile: A Turing Machine of Oblivious Mobile Robots

There is an implicit total order on the basic components,
and the Commander of the first one is called Leader.

TuringMobile: full construction

x

y
z

)x()y(

)z(

)1(reg)2(reg

L

TuringMobile: A Turing Machine of Oblivious Mobile Robots

We use k basic components to store the contents of the registers.

TuringMobile: full construction

x

y
z

)x()y(

)z(

)1(reg)2(reg

L

TuringMobile: A Turing Machine of Oblivious Mobile Robots

We use m basic components to store the coordinates of the
destination point of the TuringMobile with respect to the Leader.

TuringMobile: full construction

L

)x()y(

TuringMobile: A Turing Machine of Oblivious Mobile Robots

When the TuringMobile has to move, all the components move
in order, starting from the Leader’s component.

TuringMobile: full construction

L

)x()y(

TuringMobile: A Turing Machine of Oblivious Mobile Robots

When the TuringMobile has to move, all the components move
in order, starting from the Leader’s component.

TuringMobile: full construction

L

)y(

)′x(

TuringMobile: A Turing Machine of Oblivious Mobile Robots

When the TuringMobile has to move, all the components move
in order, starting from the Leader’s component.

TuringMobile: full construction

L

)′x()′y(

TuringMobile: A Turing Machine of Oblivious Mobile Robots

When the TuringMobile has to move, all the components move
in order, starting from the Leader’s component.

TuringMobile: full construction

L

)′x()′y(

TuringMobile: A Turing Machine of Oblivious Mobile Robots

Since the components can only move by fixed-length steps, the
TuringMobile may be unable to reach its destination in one step.

TuringMobile: full construction

L

)′x()′y(

TuringMobile: A Turing Machine of Oblivious Mobile Robots

The TuringMobile gets as close as possible to its destination,
accordingly updating the values stored in the basic components.

TuringMobile: full construction

)′′x()′′y(

TuringMobile: A Turing Machine of Oblivious Mobile Robots

When the TuringMobile cannot get any closer to the destination
point, it pretends to be there and computes the next destination.

TuringMobile: full construction

)x()y(

)z(

)1(reg)2(reg

L

TuringMobile: A Turing Machine of Oblivious Mobile Robots

The first m basic components are arranged in space in such a way
as to give an m-dimensional sense of direction to the TuringMobile.

Application: exploring the plane

TuringMobile: A Turing Machine of Oblivious Mobile Robots

A single basic component can explore the entire plane,
i.e., it can see every point in the course of an infinite execution.

Application: exploring the plane

TuringMobile: A Turing Machine of Oblivious Mobile Robots

This is done by performing a spiral-like movement
in the three possible directions.

Application: exploring the plane

)n(
n

TuringMobile: A Turing Machine of Oblivious Mobile Robots

The machine’s register counts the number of steps that it has
taken, and the Commander reads it to compute its next direction.

Minimality of the basic component

TuringMobile: A Turing Machine of Oblivious Mobile Robots

We can indirectly prove that the basic component’s design is
minimal: indeed, 2 anonymous robots cannot explore the plane.

Minimality of the basic component

x

y

x

y

TuringMobile: A Turing Machine of Oblivious Mobile Robots

Suppose that their local coordinate systems are oriented
symmetrically and they are always activated synchronously.

Minimality of the basic component

x

y

x

y

TuringMobile: A Turing Machine of Oblivious Mobile Robots

Since they always have symmetric views,
they move in a symmetric way.

Minimality of the basic component

TuringMobile: A Turing Machine of Oblivious Mobile Robots

So, in order to explore the plane, they must lose sight of each
other. wlog, in this situation they move horizontally.

Minimality of the basic component

TuringMobile: A Turing Machine of Oblivious Mobile Robots

At some point they must stop in the yellow areas. Henceforth, they
move horizontally forever, failing to explore the plane.

Application: Near-Gathering with limited visibility

TuringMobile: A Turing Machine of Oblivious Mobile Robots

Problem: Make all robots in the plane gather in a small area
without ever colliding.

Application: Near-Gathering with limited visibility

TuringMobile: A Turing Machine of Oblivious Mobile Robots

Solution: Put a small-enough basic component of a TuringMobile
anywhere, and make it explore the plane.

Application: Near-Gathering with limited visibility

TuringMobile: A Turing Machine of Oblivious Mobile Robots

When the TuringMobile gets close enough to a robot, it waits for it
to reach a designated area near the Commander.

Application: Near-Gathering with limited visibility

1

23

TuringMobile: A Turing Machine of Oblivious Mobile Robots

The TuringMobile’s shape implicitly gives a total order to the
robots that are eligible to move to the designated area.

Application: Near-Gathering with limited visibility

1

23

TuringMobile: A Turing Machine of Oblivious Mobile Robots

So the robots can coordinate themselves by moving one at a time,
avoiding collisions and accidental formation of other TuringMobiles.

Application: Near-Gathering with limited visibility

12

3

TuringMobile: A Turing Machine of Oblivious Mobile Robots

So the robots can coordinate themselves by moving one at a time,
avoiding collisions and accidental formation of other TuringMobiles.

Application: Near-Gathering with limited visibility

TuringMobile: A Turing Machine of Oblivious Mobile Robots

When all the eligible robots have reached the designated area, the
TuringMobile resumes the exploration, and the robots follow it.

Application: Near-Gathering with limited visibility

TuringMobile: A Turing Machine of Oblivious Mobile Robots

Eventually, all robots are in a small-enough area,
and the Near-Gathering problem is solved.

Application: Pattern Formation with limited visibility

TuringMobile: A Turing Machine of Oblivious Mobile Robots

Problem: Make the robots form a given pattern,
arbitrarily rotated or scaled.

Application: Pattern Formation with limited visibility

TuringMobile: A Turing Machine of Oblivious Mobile Robots

Solution: Solve the Near-Gathering problem first,
then form the pattern.

Application: Pattern Formation with limited visibility

1 2 3 4 5 6 7 8

9 10

TuringMobile: A Turing Machine of Oblivious Mobile Robots

Again, the TuringMobile’s shape gives an implicit total order to the
robots. We make them move one by one to form the pattern.

Application: Pattern Formation with limited visibility

1 2 3 4 5 6 7 8

9 10

TuringMobile: A Turing Machine of Oblivious Mobile Robots

Again, the TuringMobile’s shape gives an implicit total order to the
robots. We make them move one by one to form the pattern.

Application: Pattern Formation with limited visibility

8

9 10

TuringMobile: A Turing Machine of Oblivious Mobile Robots

The last robots to move are the ones constituting the
TuringMobile: the others provide a reference to guide them.

Application: Pattern Formation with limited visibility

TuringMobile: A Turing Machine of Oblivious Mobile Robots

The last robots to move are the ones constituting the
TuringMobile: the others provide a reference to guide them.

Conclusion

Technique: We can simulate a reliable robot with k registers
in Rm with a team of 3 k + 3m identical unreliable robots
with no memory, arranged in a pattern called TuringMobile.

Applications:

Exploration of the Euclidean space Rm,

Near-Gathering in Rm (limited visibility, no axis agreement),
provided that a unique TuringMobile is present,

Pattern Formation in Rm (limited visibility, no axis
agreement), provided that a unique TuringMobile is present.

Open problem: Minimize the number of robots in a TuringMobile.

Conjecture: k +m+ 3 robots are sufficient.

TuringMobile: A Turing Machine of Oblivious Mobile Robots

