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Monohedral Polyhedra

A polyhedron whose faces are all congruent is said monohedral.

Open Problem (CCCG 2022)

Do all monohedral polyhedra have an even number of faces?

Example: The Platonic solids have 4, 6, 8, 12, 20 faces.

Theorem (Grünbaum, 1960)

All convex monohedral polyhedra have an even number of faces.



Definition of Polyhedron

A polyhedron is a bounded solid figure satisfying these conditions:

Its boundary consists of finitely many polygons called faces.

The intersection of two faces is either empty or a common
edge or a common vertex (faces are internally disjoint).

Each edge is shared by exactly two faces.

The faces meeting at each vertex form a single circuit.

v

The last two conditions can be equivalently summarized as:

The surface of a polyhedron is a 2-manifold.



Definition of Polyhedron

Examples: A convex polyhedron and a non-convex polyhedron:

The following are not considered polyhedra:



Simply Connected Polyhedra

A polyhedron is simply connected if its surface can be continuously
deformed to become a sphere.

All convex polyhedra are simply connected.

Simply connected polyhedra have no holes or handles.

The following polyhedra are not simply connected:

In this seminar, we will focus on simply connected polyhedra.



Faces with Holes

Even if a polyhedron is simply connected, its faces may have holes:



Euler’s Formula

Theorem (Euler, 1758)

For any simply connected polyhedron with f faces, e edges, v
vertices, and a total of h face holes, we have f + v − e− h = 2.

Proof.

Triangulate all faces by adding new edges between existing vertices.



Euler’s Formula

Theorem (Euler, 1758)

For any simply connected polyhedron with f faces, e edges, v
vertices, and a total of h face holes, we have f + v − e− h = 2.

Proof.

If a new edge eliminates a hole, we have e← e+ 1 and h← h− 1.



Euler’s Formula

Theorem (Euler, 1758)

For any simply connected polyhedron with f faces, e edges, v
vertices, and a total of h face holes, we have f + v − e− h = 2.

Proof.

Otherwise, we have e← e+ 1 and f ← f + 1.



Euler’s Formula

Theorem (Euler, 1758)

For any simply connected polyhedron with f faces, e edges, v
vertices, and a total of h face holes, we have f + v − e− h = 2.

Proof.

Either way, the quantity f + v − e− h is preserved.



Euler’s Formula

Theorem (Euler, 1758)

For any simply connected polyhedron with f faces, e edges, v
vertices, and a total of h face holes, we have f + v − e− h = 2.

Proof.

Thus, we may assume that all faces are triangles, and hence h = 0.



Euler’s Formula

Theorem (Euler, 1758)

For any simply connected polyhedron with f faces, e edges, v
vertices, and a total of h face holes, we have f + v − e− h = 2.

Proof.

We will prove the formula by induction on v. Choose any vertex.



Euler’s Formula

Theorem (Euler, 1758)

For any simply connected polyhedron with f faces, e edges, v
vertices, and a total of h face holes, we have f + v − e− h = 2.

Proof.

Remove its incident faces and add new triangles to cover the hole.



Euler’s Formula

Theorem (Euler, 1758)

For any simply connected polyhedron with f faces, e edges, v
vertices, and a total of h face holes, we have f + v − e− h = 2.

Proof.

As a result, v ← v − 1, f ← f − 2, and e← e− 3.



Euler’s Formula

Theorem (Euler, 1758)

For any simply connected polyhedron with f faces, e edges, v
vertices, and a total of h face holes, we have f + v − e− h = 2.

Proof.

Again, f + v − e is preserved, and by induction f + v − e = 2.



Euler’s Formula

Theorem (Euler, 1758)

For any simply connected polyhedron with f faces, e edges, v
vertices, and a total of h face holes, we have f + v − e− h = 2.

Proof.

The base case is a tetrahedron, where f = 4, v = 4, and e = 6.



Angular Defect

If the face angles incident to a vertex v of a polyhedron are
α1, α2, . . . , αk, we define the angular defect of v as

δv = 2π −
k∑

i=1

αi

1α

2α

3α
4α

5α

δ

Note that the angular defect is at most 2π and may be negative.



Descartes’ Theorem (i.e., Polyhedral Gauss–Bonnet)

Theorem (Descartes, ∼1630)

For any simply connected polyhedron, we have
∑
δv = 4π, where

the sum ranges through all vertices of the polyhedron.

Proof.

Triangulate all faces of the polyhedron. Note that
∑
δv remains

unchanged.



Descartes’ Theorem (i.e., Polyhedral Gauss–Bonnet)

Theorem (Descartes, ∼1630)

For any simply connected polyhedron, we have
∑
δv = 4π, where

the sum ranges through all vertices of the polyhedron.

Proof.
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Recall that the sum of angles of a triangle is π. Thus, the sum of
all face angles is

∑
αi = πf .



Descartes’ Theorem (i.e., Polyhedral Gauss–Bonnet)

Theorem (Descartes, ∼1630)

For any simply connected polyhedron, we have
∑
δv = 4π, where

the sum ranges through all vertices of the polyhedron.

Proof.
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By regrouping the terms of the sum, we have∑
δv = 2πv −

∑
αi = 2πv − πf .



Descartes’ Theorem (i.e., Polyhedral Gauss–Bonnet)

Theorem (Descartes, ∼1630)

For any simply connected polyhedron, we have
∑
δv = 4π, where

the sum ranges through all vertices of the polyhedron.

Proof.
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Since each face has 3 edges and each edge is shared by 2 faces, we
have 3f = 2e. Euler’s formula becomes f + v − e = v − f/2 = 2.



Descartes’ Theorem (i.e., Polyhedral Gauss–Bonnet)

Theorem (Descartes, ∼1630)

For any simply connected polyhedron, we have
∑
δv = 4π, where

the sum ranges through all vertices of the polyhedron.

Proof.
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Therefore,
∑
δv = 2πv − πf = 2π(v − f/2) = 4π.



Roadmap

Let us assume that P is a simply connected monohedral
polyhedron with an odd number of faces. Let F be a face of P.

We will prove the following:

F cannot have a distinguished edge.

F cannot have holes.

F cannot have an odd number of edges.

F must have 4 edges.

F must be a parallelogram, a dart, or a kite.

F cannot be a parallelogram.

F cannot be a dart.

Can F be a kite?



Faces with a Distinguished Edge

Assume that a face of the polyhedron has an edge whose length is
different from all others.

Then, all faces can be paired up, and therefore they are even.



Bounding the Number of Face Edges

If each face of the polyhedron has at least one hole, then h ≥ f .

Each vertex is incident to at least 2 edges, and each edge is
incident to exactly 2 vertices. Thus, 2v ≤ 2e.

By Euler’s formula, 2 = f + v− e− h ≤ v− e ≤ 0, a contradiction.

We conclude that faces have no holes, i.e., h = 0.

Let k be the number of edges of each face of the polyhedron.

We have kf = 2e, because each edge is shared by exactly 2 faces.

Therefore, if the number of faces is odd, then k must be even.

Assume that all vertices of the polyhedron have at least 3 incident
edges. Thus, 3v ≤ 2e, because each edge is incident to 2 vertices.

By Euler’s formula, 2 = f + v − e (recall that h = 0).

6 = 3f + 3v − 3e ≤ 3f + 2e− 3e = 3f − e
12 ≤ 6f − 2e = 6f − kf
k ≤ 6− 12/f < 6.

We conclude that k < 6, and hence faces must be quadrilaterals.



Vertices of Degree 2

If the polyhedron has some vertices of degree 2, we can eliminate
them and merge co-planar faces.

The resulting polyhedron has no vertices of degree 2.

By the previous argument, it has a face with fewer than 6 edges.

A case analysis allows us to conclude that, also in this situation,

faces must be quadrilaterals (details omitted).



Allowed Faces: Parallelogram, Dart, and Kite

Summarizing, the faces must be of one of these three types:

Parallelogram Dart Kite



Parallelogram Faces

Assume that all faces are parallelograms.

We will prove that the number of faces must be even.

(This is also true if the parallelograms are not all congruent.)



Parallelogram Faces

Each face determines a zone of faces with parallel opposite edges
that divides the polyhedron into an “upper” and a “lower” region.



Parallelogram Faces

Each face determines a zone of faces with parallel opposite edges
that divides the polyhedron into an “upper” and a “lower” region.



Parallelogram Faces

Each face determines a zone of faces with parallel opposite edges
that divides the polyhedron into an “upper” and a “lower” region.



Parallelogram Faces

This face also determines a second zone that crosses the first zone
an even number of times (moving between upper and lower region).



Parallelogram Faces

This face also determines a second zone that crosses the first zone
an even number of times (moving between upper and lower region).



Parallelogram Faces

Since each face belongs to exactly two zones, we can partition the
set of faces into subsets of even size. Thus, the faces are even.



Dart Faces

Assume that all faces are darts. Let us focus on the short edges.



Dart Faces

Two darts sharing a short edge cannot be “concordant”, or they
would not be internally disjoint.



Dart Faces

So, darts sharing short edges should be “discordant” and form
closed chains of faces.



Dart Faces

The line of short edges in a chain divides the polyhedron in two
parts, with darts alternately pointing to one side or the other.



Dart Faces

Thus, we can partition the set of faces into chains, and each chain
has even size. We conclude that the faces are even.



Kite Faces

Assume that all faces are kites.

We will analyze the combinatorial structure of these polyhedra.



Kite Faces

We may assume that the kite’s edges are not all equal, or it would
be a parallelogram. Hence, it has two short and two long edges.

α

β

γ γ



Kite Faces: Apexes

An apex is a vertex whose incident edges have all the same length.

Theorem

Any simply connected monohedral polyhedron whose faces are
kites has at least two apexes.

Proof.

Draw a node on each face, and connect nodes on adjacent faces.
This is called the dual graph of the polyhedron.



Kite Faces: Apexes

An apex is a vertex whose incident edges have all the same length.

Theorem

Any simply connected monohedral polyhedron whose faces are
kites has at least two apexes.

Proof.

Draw a node on each face, and connect nodes on adjacent faces.
This is called the dual graph of the polyhedron.



Kite Faces: Apexes

An apex is a vertex whose incident edges have all the same length.

Theorem

Any simply connected monohedral polyhedron whose faces are
kites has at least two apexes.

Proof.

Draw a node on each face, and connect nodes on adjacent faces.
This is called the dual graph of the polyhedron.



Kite Faces: Apexes

An apex is a vertex whose incident edges have all the same length.

Theorem

Any simply connected monohedral polyhedron whose faces are
kites has at least two apexes.

Proof.

Draw a node on each face, and connect nodes on adjacent faces.
This is called the dual graph of the polyhedron.



Kite Faces: Apexes

An apex is a vertex whose incident edges have all the same length.

Theorem

Any simply connected monohedral polyhedron whose faces are
kites has at least two apexes.

Proof.

Observe that the edges corresponding to short (resp. long) edges
induce a vertex-disjoint cycle cover of the dual graph.



Kite Faces: Apexes

An apex is a vertex whose incident edges have all the same length.

Theorem

Any simply connected monohedral polyhedron whose faces are
kites has at least two apexes.

Proof.

The cycles of one cover never cross the cycles of the other cover,
so all the edges of a cycle are on the same side of any other cycle.



Kite Faces: Apexes

An apex is a vertex whose incident edges have all the same length.

Theorem

Any simply connected monohedral polyhedron whose faces are
kites has at least two apexes.

Proof.

Since the dual graph is spherical, there must be at least two cycles
with no cycles on one side. These cycles correspond to apexes.



Kite Faces

Observe that this technique is insufficient to conclude that there
must be an even number of faces. This is a counterexample:

Furthermore, both Euler’s formula and Descartes’ theorem are
insufficient to prove that this cannot be a monohedral polyhedron:



Kite Faces: Zones

Let us define zones in the same way as we did for polyhedra with
parallelogram faces. Here, a zone alternates short and long edges.



Kite Faces: Zones

Again, a zone is a cycle of kites. However, since kites do not have
parallel opposite edges, a zone may self-intersect multiple times.



Kite Faces: Zones

How do different zones interact with each other? Do they always
intersect in an even number of kites?



Eulerian Graphs and their Duals

A connected graph is Eulerian if all its vertices have even degree.
A graph is bipartite if all its cycles have even length.

Lemma

Any plane Eulerian graph has a bipartite dual graph.

Proof.

Note that the dual graph can be drawn as a plane graph, as well.



Eulerian Graphs and their Duals

A connected graph is Eulerian if all its vertices have even degree.
A graph is bipartite if all its cycles have even length.

Lemma

Any plane Eulerian graph has a bipartite dual graph.

Proof.

Note that the dual graph can be drawn as a plane graph, as well.



Eulerian Graphs and their Duals

A connected graph is Eulerian if all its vertices have even degree.
A graph is bipartite if all its cycles have even length.

Lemma

Any plane Eulerian graph has a bipartite dual graph.

Proof.

Note that the dual graph can be drawn as a plane graph, as well.



Eulerian Graphs and their Duals

A connected graph is Eulerian if all its vertices have even degree.
A graph is bipartite if all its cycles have even length.

Lemma

Any plane Eulerian graph has a bipartite dual graph.

Proof.

Consider any cycle C in the dual graph.



Eulerian Graphs and their Duals

A connected graph is Eulerian if all its vertices have even degree.
A graph is bipartite if all its cycles have even length.

Lemma

Any plane Eulerian graph has a bipartite dual graph.

Proof.

The region bounded by C is the union of faces of the dual graph.



Eulerian Graphs and their Duals

A connected graph is Eulerian if all its vertices have even degree.
A graph is bipartite if all its cycles have even length.

Lemma

Any plane Eulerian graph has a bipartite dual graph.

Proof.

Note that each face has an even number of edges.



Eulerian Graphs and their Duals

A connected graph is Eulerian if all its vertices have even degree.
A graph is bipartite if all its cycles have even length.

Lemma

Any plane Eulerian graph has a bipartite dual graph.

Proof.

The set of edges of C can be constructed as the symmetric
difference of the sets of edges of the faces bounded by C.



Eulerian Graphs and their Duals

A connected graph is Eulerian if all its vertices have even degree.
A graph is bipartite if all its cycles have even length.

Lemma

Any plane Eulerian graph has a bipartite dual graph.

Proof.

Since the symmetric difference of even-sized sets has even size, we
conclude that C has even length.



Eulerian Graphs and their Duals

A connected graph is Eulerian if all its vertices have even degree.
A graph is bipartite if all its cycles have even length.

Lemma

Any plane Eulerian graph has a bipartite dual graph.

Proof.

Since the symmetric difference of even-sized sets has even size, we
conclude that C has even length.



Kite Faces: Zones

Theorem

In a simply connected monohedral polyhedron whose faces are
kites, any two zones intersect in an even number of faces.

Proof.

A zone can be turned into a graph whose vertices have degree 2 or
4 (depending on where it self-intersects). Such a graph is Eulerian.



Kite Faces: Zones

Theorem

In a simply connected monohedral polyhedron whose faces are
kites, any two zones intersect in an even number of faces.

Proof.

A zone can be turned into a graph whose vertices have degree 2 or
4 (depending on where it self-intersects). Such a graph is Eulerian.



Kite Faces: Zones

Theorem

In a simply connected monohedral polyhedron whose faces are
kites, any two zones intersect in an even number of faces.

Proof.

Since this graph is spherical, it is also planar. Thus, by the
previous lemma, its dual graph is bipartite.



Kite Faces: Zones

Theorem

In a simply connected monohedral polyhedron whose faces are
kites, any two zones intersect in an even number of faces.

Proof.

Since this graph is spherical, it is also planar. Thus, by the
previous lemma, its dual graph is bipartite.



Kite Faces: Zones

Theorem

In a simply connected monohedral polyhedron whose faces are
kites, any two zones intersect in an even number of faces.

Proof.

Consider a second zone, which is represented by a closed circuit
that may intersect the first one.



Kite Faces: Zones

Theorem

In a simply connected monohedral polyhedron whose faces are
kites, any two zones intersect in an even number of faces.

Proof.

Since the two circuits properly intersect each other away from their
self-intersections, they intersect an even number of times.



Conclusions

If a simply connected monohedral polyhedron has an odd
number of faces, then its faces must be kites.

The polyhedron must have at least two apexes.

The polyhedron’s zones must self-intersect an odd number of
times in total.

Euler’s formula and Descartes’ theorem are ineffective here,
because they are insensitive to the metric properties of kites.

Conjecture

In a simply connected monohedral polyhedron whose faces are
kites, no zone has self-intersections.

This would imply that all simply connected monohedral polyhedra
have an even number of faces.


