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Partial Searchlight Scheduling Problem

Can the three guards keep any moving intruder out of the
dashed area by turning their searchlights?
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Complexity of Partial Searchlight Scheduling

Deciding partial searchability is in PSPACE.

Identify critical angles and split the polygon into cells.

Extend the target area to a set of cells.

Search the target area by turning one searchlight at a time,
and stopping only at critical angles.
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Nondeterministic Constraint Logic machines

An NCL machine is a directed 3-regular graph, whose nodes
may be of two types:

OR node. At least one of its three incident edges must be
directed inward.
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Nondeterministic Constraint Logic machines

A legal move is the reversal of an edge, preserving the above
constraints.

Moves may be asynchronous.

NCL machines have two distinguished edges, ea and eb.

Each edge has a target orientation.

It is PSPACE-complete to decide if legal configurations A
and B exist, such that:

ea is in its target orientation in A;
eb is in its target orientation in B;
there is a legal sequence of asynchronous moves from A to B.
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From NCL machines to orthogonal polygons
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From NCL machines to orthogonal polygons
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Pipes (each one contains a guard)



Crossings between pipes and NCL edges

Construction overview



Crossings between pipes and NCL edges

External searchlights are closing the pipe’s ends



Crossings between pipes and NCL edges

Search begins



Crossings between pipes and NCL edges

Search continues



Crossings between pipes and NCL edges

Search ends



OR nodes

Construction overview
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OR nodes

Illegal configuration (pipe recontaminated)
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Clearing process

(NCL network)
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Conclusions and open problems

Partial Searchlight Scheduling is strongly PSPACE-complete,
even for orthogonal polygons and rectangular target areas.

Full Searchlight Scheduling is (obviously) in PSPACE.
Is it also PSPACE-complete?

Generalizing to 3D polyhedral environments, Partial
Searchlight Scheduling stays (obviously) PSPACE-hard, but is
it in PSPACE?

3D Full Searchlight Scheduling is NP-hard for general
polyhedra, but is it in NP?
What about orthogonal polyhedra?
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