Efficient Computation in Congested Anonymous Dynamic Networks

PODC 2023, Brief Announcement

Giuseppe A. Di Luna and Giovanni Viglietta

Orlando - June 21, 2023

Dynamic Networks

In a **dynamic network**, communication links between agents may unpredictably appear or disappear over time. The network is always connected, but its topology is unknown to the agents.

Each agent has an *input*, and all agents eventually have to agree on an *output*. How many *communication rounds* do they need?

Anonymity and Leader

All agents are *anonymous*, i.e., they have no IDs and are indistinguishable, they start in the same state, etc.

The only exception is a unique agent, called the *leader*.

Congested Networks

Normally, there is no limit to the size of messages that can be sent through the links. Any kind of information can be sent.

In a *congested network*, each message must have size $O(\log n)$. This is a severe limitation on how much information can be sent.

Bounds on General Computation

LOCAL model (unlimited message size):

- Looks impossible... [Michail et al., SSS 2013]
- ullet $O(n^{n+4})$ rounds [Di Luna-Baldoni, OPODIS 2015]
- ullet $O(n^5 \log^2 n)$ rounds [Kowalski–Mosteiro, ICALP 2018 Best Paper]
- $oldsymbol{\circ}$ $\mathbf{O}(\mathbf{n^{4+\epsilon}}\log^3\mathbf{n})$ rounds [Kowalski-Mosteiro, ICALP 2019]
- 3n rounds (optimal) [Di Luna–V., FOCS 2022]

CONGEST model $(O(\log n) \text{ message size})$:

- \bullet Lower bound of $\Omega(n^2/\log n)$ rounds [Dutta et al., SODA 2013]
- ullet $\mathbf{O}(\mathbf{n^{5+\epsilon}\log^3 n})$ rounds [Kowalski–Mosteiro, ArXiV 2022]
- $O(n^3)$ rounds [Di Luna–V., this work]

History Trees

A history tree is a data structure that naturally captures the idea that anonymous agents become distinguishable as soon as they have different "histories" [FOCS 2022].

Constructing and sharing history trees is a way of doing arbitrary computations in linear time. Unfortunately, the size of a history tree is $O(n^3 \log n)$, unsuitable for the CONGEST model.

Our Solution

We developed techniques to enable the transmission of history trees on congested networks in $O(\mathbf{n}^3)$ rounds, in spite of the anonymity of the agents and the dyamicity of the network.

Full paper: https://arxiv.org/abs/2301.07849