Minimizing Visible Edges in Polyhedra

Giovanni Viglietta

Joint work with Csaba D. Tóth and Jorge Urrutia

JAIST – April 26, 2021

Overview

- 3D Art Gallery Problem
 - Vertex and point guards
 - Edge guards
- Minimizing visible edges in polyhedra
- Spherical Occlusion Diagrams
 - Studying the Swirl Graph
 - Minimizing swirls
 - Minimizing arcs
- Minimizing visible edges for vertex-hidden points

3D Art Gallery Problem

Given a polyhedron in \mathbb{R}^3 , choose a (preferably small) set of <u>vertices</u> or edges that collectively see its whole interior.

These are called **vertex guards** and **edge guards**.

Vertex-guarding polyhedra

The Art Gallery Problem for *vertex guards* may be <u>unsolvable</u>, even in some orthogonal polyhedra:

Some points in the central region are invisible to all vertices!

Point-guarding polyhedra

So, we must consider *point guards* that do not lie on vertices. But there are (orthogonal) polyhedra that require $\Omega(n\sqrt{n})$ guards!

Edge-guarding polyhedra

What about edge guards? They are strictly more powerful than point guards: placing a guard on every edge solves the Art Gallery Problem, because each internal point sees at least one edge.

Problem. Does every internal point see at least c > 1 edges?

Consider a <u>cross-section</u> of the polyhedron through any point p, and triangulate it.

The point p sees at least 3 vertices of the cross section, which correspond to 3 distinct edges of the polyhedron. Hence $c \ge 3$. Can we do better?

Note that every point in a tetrahedron sees exactly 6 edges.

So, c cannot be greater than 6.

Can we prove that c = 6?

Theorem

In a polyhedron, every point sees at least 6 distinct edges.

Proof. For any point in a polyhedron, consider the graph obtained by <u>orthographically projecting</u> all visible edge sub-segments onto a small sphere around the point...

What we obtain is a spherical (hence planar) arrangement of (possibly degenerate) arcs.

Transform it into a planar arrangement of non-degenerate lines, where each line "feeds into" exactly two other lines.

The **contact graph** of this arrangement is a simple planar directed graph where each vertex has outdegree 2.

If the contact graph has n vertices, it has 2n edges. So, $n \ge 5$. (Indeed, a simple graph on 4 vertices has at most 6 edges, etc.)

If n = 5, the contact graph must be the complete graph K_5 , which is not planar (Kuratowski's theorem). Hence $n \ge 6$.

This means that a point in a polyhedron sees at least 6 edge sub-segments.

What if a point p sees two sub-segments s_1 and s_2 that are part of the same edge of the polyhedron?

In this case, p sees at least 5 more edges. We conclude that every point in a polyhedron sees at least 6 distinct edges.

Points that see no vertices

What if p does not see any vertex of the polyhedron?

outer view

Problem. Can we prove that p necessarily sees more than 6 edges?

Recall that, when polygons in \mathbb{R}^3 are orthographically projected onto a sphere, their edges become arcs of great circle.

Moreover, when a polygon is <u>partially hidden</u> (i.e., **"occluded"**) by another, in the projection there are arcs feeding into other arcs.

Moreover, when a polygon is <u>partially hidden</u> (i.e., **"occluded"**) by another, in the projection there are arcs feeding into other arcs.

If in an arrangement of polygons <u>all vertices are occluded</u>, then their edges project into a **"Spherical Occlusion Diagram"**.

If in an arrangement of polygons <u>all vertices are occluded</u>, then their edges project into a **"Spherical Occlusion Diagram"**.

If in an arrangement of polygons <u>all vertices are occluded</u>, then their edges project into a **"Spherical Occlusion Diagram"**.

In particular, this applies to <u>polyhedra</u>: if all vertices are occluded, then the 1-skeleton projects into a Spherical Occlusion Diagram.

Problem. How many arcs does such a Diagram have at least?

A **Spherical Occlusion Diagram**, or just "Diagram", is a finite non-empty collection of arcs of great circle on the unit sphere.

All arcs in a Diagram must be internally disjoint.

The endpoints of every arc in a Diagram must lie on some other arcs in the Diagram (we say that every arc **"feeds into"** two arcs).

No two arcs in a Diagram can share an endpoint.

All the arcs in a Diagram that feed into the same arc must reach it from the <u>same side</u>.

All the arcs in a Diagram that feed into the same arc must reach it from the <u>same side</u>.

Spherical Occlusion Diagrams: axioms

Diagram axioms:

- 1. If two arcs intersect, one feeds into the other.
- 2. Each arc feeds into two arcs.
- 3. All arcs that feed into the same arc reach it from the same side.

Spherical Occlusion Diagrams: basic properties

Theorem

- No two arcs in a Diagram feed into each other.
- Each arc in a Diagram is shorter than a great semicircle.
- Every Diagram is connected.
- A Diagram with n arcs partitions the sphere into n + 2 spherically convex regions (called "tiles").

Spherical Occlusion Diagrams: swirls

A **swirl** in a Diagram is a cycle of arcs such that each arc feeds into the next going clockwise or counterclockwise.

Swirling Diagrams

A Diagram is swirling if every arc is part of two swirls.

The **Swirl Graph** of a Diagram is an <u>undirected multigraph</u> on the set of swirls. For each arc shared by two swirls, there is an edge in the Swirl Graph.

Swirl Graph

Theorem

The Swirl Graph of a Diagram is a simple planar bipartite graph with non-empty partite sets.

Proof. Obviously the Swirl Graph is spherical, hence planar. The bipartition is given by the clockwise and counterclockwise swirls...

Each edge in the Swirl Graph must connect a clockwise and a counterclockwise swirl. So the Swirl Graph is bipartite.

To find a (counter)clockwise swirl, start anywhere and follow the Diagram (counter)clockwise. Hence the partite sets are not empty.

Swirl Graph

Assume that the yellow swirl shares arcs a and b with another swirl. The second swirl must be located in the highlighted spherical lune.

Since a goes upward, the second swirl must be in A. But b goes downward, so the second swirl must be in B: contradiction. Hence, the Swirl Graph is simple.

More swirls?

We want to prove that a Diagram has <u>more than two swirls</u>. Can we expand on our previous idea?

Maybe following arcs in other directions leads to different swirls? Unfortunately, most reasonable ideas are bound to fail...

Counterexample

- Starting from any of the red arcs and going (counter)clockwise in the four possible ways ends up in the same two swirls.
- Taking any edge of the counterclockwise swirl and following the Diagram counterclockwise away from the swirl ends up back in the counterclockwise swirl.

Counterexample

Another reasonable conjecture is that every <u>hemisphere</u> intersects both a <u>clockwise</u> and a <u>counterclockwise</u> swirl.

Unfortunately, there is a counterexample:

But we can prove that every hemisphere contains at least one swirl!

Lemma

In a Diagram, every hemisphere contains at least one full swirl.

Proof. Take any hemisphere H. Since the Diagram is connected and tiles are convex, there is an arc crossing the boundary of H.

Lemma

In a Diagram, every hemisphere contains at least one full swirl.

Follow the Diagram clockwise starting from this arc. If we remain in H, we eventually find a clockwise swirl fully contained in H.

Lemma

In a Diagram, every hemisphere contains at least one full swirl.

Otherwise, we find one arc whose clockwise endpoint is outside H. But then, the other endpoint is in H. Reach that endpoint.

Lemma

In a Diagram, every hemisphere contains at least one full swirl.

Continuing in this fashion, we either find a clockwise swirl in H, or eventually we enclose a region within H by going counterclockwise.

Lemma

In a Diagram, every hemisphere contains at least one full swirl.

In this case, starting from the boundary of the enclosed region and following the Diagram counterclockwise, we eventually find a swirl.

More swirls

Corollary

Every Diagram has at least 4 swirls.

Proof. We already know that a Diagram has 2 swirls.

More swirls

Corollary

Every Diagram has at least 4 swirls.

Take a great circle that properly intersects both swirls.

More swirls

Corollary

Every Diagram has at least 4 swirls.

By the previous lemma, each hemisphere contains one new swirl.

Minimizing arcs (and swirls)

Theorem

Every Diagram has <u>at least 8 arcs</u>, and there exist Diagrams with exactly 8 arcs (and exactly 4 swirls).

Proof. This is an example of a Diagram with 8 arcs and 4 swirls...

Minimizing arcs (and swirls)

We know that a Diagram has at least 4 swirls. Obviously, if they do not share any arcs, then the Diagram has at least 12 arcs.

Minimizing arcs (and swirls)

Since the Swirl Graph must be simple and bipartite, these 4 swirls can share at most 4 arcs. Thus the Diagram has at least 8 arcs.

Edges are distinct

We can prove that the 8-arc configuration is <u>unique</u>. Also, note that the contact graph has diameter 2. (In other words, given any arc, each other arc is either a neighbor or a neighbor of a neighbor.)

It follows that no two arcs are aligned, and thus they correspond to distinct visible edges of a polyhedron.

Disproving old conjectures

Conjecture

There are no Diagrams with fewer than 12 arcs.

False! There are Diagrams with 8, 9, 10, 11 arcs.

Conjecture

Any Diagram can be constructed by a sequence of "elementary operations" starting from a swirling Diagram (e.g., continuously shifting arcs' endpoints or adding arcs).

False! An 8-arc Diagram cannot be obtained from a swirling one.

Conclusion and future work

- We proved that a point in a polyhedron sees at least 6 edges.
- If the point does not see any vertices, it sees at least 8 edges.

New problem. How many faces does a point see at least?

The unrestricted case is easy:

Theorem (Lusternik-Schnirelmann, 1930)

If the n-dimensional sphere is covered by n + 1 closed sets, one of them contains a pair of antipodal points.

Corollary

In a polyhedron, every point sees at least <u>4 faces</u>. (The tetrahedron gives a matching lower bound.)

However, for points that see no vertices, we still have no answer.

Conjecture

In a polyhedron, if a point sees <u>no vertices</u>, it sees at least <u>8 faces</u>.