
Seminar 1 – Anonymous Networks:
Introduction and Basic Techniques

Distributed Computing in Anonymous Dynamic Systems

Giovanni Viglietta

Rome – March 6, 2024



Distributed Computing in Anonymous Dynamic Systems

Syllabus

Anonymous Networks

Introduction and basic algorithms for static networks
Dynamicity and history trees
Optimal computation in networks with and without leaders
Computation in dynamic congested networks

Population Protocols

Introduction and basic algorithmic techniques
Leader election in Mediated Population Protocols

Mobile Robots

Gathering and Pattern Formation in the plane
Meeting in a polygon by oblivious robots

Exam
Pre-recorded 10-minute presentation video on one of the papers
that will be suggested at the end of the course.



Today’s seminar

Network models

Broadcast

Leader election

Spanning tree construction

Counting

Average consensus



Static networks

In a static network, some agents (or processes, or machines) are
connected with each other through permanent links.

At each time unit, all agents send messages to their neighbors and
do some local deterministic computation.



Static networks

In a static network, some agents (or processes, or machines) are
connected with each other through permanent links.

At each time unit, all agents send messages to their neighbors and
do some local deterministic computation.



Static networks

In a static network, some agents (or processes, or machines) are
connected with each other through permanent links.

At each time unit, all agents send messages to their neighbors and
do some local deterministic computation.



Static networks

In a static network, some agents (or processes, or machines) are
connected with each other through permanent links.

At each time unit, all agents send messages to their neighbors and
do some local deterministic computation.



Static networks

In a static network, some agents (or processes, or machines) are
connected with each other through permanent links.

At each time unit, all agents send messages to their neighbors and
do some local deterministic computation.



Static networks

In a static network, some agents (or processes, or machines) are
connected with each other through permanent links.

At each time unit, all agents send messages to their neighbors and
do some local deterministic computation.



Static networks

In a static network, some agents (or processes, or machines) are
connected with each other through permanent links.

At each time unit, all agents send messages to their neighbors and
do some local deterministic computation.



Dynamic networks

In a dynamic network, links may change over time.



Dynamic networks

In a dynamic network, links may change over time.



Dynamic networks

In a dynamic network, links may change over time.



Dynamic networks

In a dynamic network, links may change over time.



Dynamic networks

In a dynamic network, links may change over time.



Dynamic networks

In a dynamic network, links may change over time.



Disconnected networks

While the network is typically assumed to be (strongly) connected
at every round, we may remove this assumption.

In a τ -union-connected network, the union of the network graphs
at τ consecutive rounds is a (strongly) connected multi-graph.



Disconnected networks

While the network is typically assumed to be (strongly) connected
at every round, we may remove this assumption.

In a τ -union-connected network, the union of the network graphs
at τ consecutive rounds is a (strongly) connected multi-graph.



Disconnected networks

While the network is typically assumed to be (strongly) connected
at every round, we may remove this assumption.

In a τ -union-connected network, the union of the network graphs
at τ consecutive rounds is a (strongly) connected multi-graph.



Disconnected networks

While the network is typically assumed to be (strongly) connected
at every round, we may remove this assumption.

In a τ -union-connected network, the union of the network graphs
at τ consecutive rounds is a (strongly) connected multi-graph.



Disconnected networks

While the network is typically assumed to be (strongly) connected
at every round, we may remove this assumption.

In a τ -union-connected network, the union of the network graphs
at τ consecutive rounds is a (strongly) connected multi-graph.



Anonymous networks

In this course, we will focus on anonymous networks, where agents
do not have unique IDs, but are indistinguishable from each other.

Initial state: L

Initial state: N

Initial state: N Initial state: N

Initial state: N

Initial state: N

Initial state: NInitial state: N

Initial state: N

Occasionally, we may assume the existence of one or more
distinguished agents called leaders.



Directed links

The network’s graph may be undirected or directed.

A B

Directed networks may model a situation where agents have
different communication ranges.



Other network models

The communication network may be a simple graph or a
multigraph (if there may be more than one link between the
same two agents, or a link from an agent to itself).

Communications may be synchronous, asynchronous, or
sequential. Usually, we assume them to be synchronous.

Interactions between processes may be symmetric or
asymmetric (if there is an initiator and a responder).
Usually, we assume them to be symmetric.

Agents may have port awareness if their incident links have
unique identifiers. A weaker assumption is degree awareness,
where an agent (especially in a dynamic network) knows how
many neighbors it has before sending them messages.

Each agent may have an input assigned to it at the beginning
of the first round. Agents may also be able to return an
output as a result of their communications and computations.

Agents may have a-priori knowledge about the network.
E.g., number of agents, number of leaders, diameter, τ , etc.







Broadcasting

If a network of n agents is (strongly) connected at all rounds,
information can be broadcast to all agents in n− 1 rounds.

!

??
?

?

?

?

?

?

Each agent simply has to forward the information to all its
neighbors. Since the network is (strongly) connected, the number
of agents that have the information grows at each round.



Broadcasting

If a network of n agents is (strongly) connected at all rounds,
information can be broadcast to all agents in n− 1 rounds.

!

??
? ?

?

?
!

!

Each agent simply has to forward the information to all its
neighbors. Since the network is (strongly) connected, the number
of agents that have the information grows at each round.



Broadcasting

If a network of n agents is (strongly) connected at all rounds,
information can be broadcast to all agents in n− 1 rounds.

!

?
?

?

?
!

!

!
!

Each agent simply has to forward the information to all its
neighbors. Since the network is (strongly) connected, the number
of agents that have the information grows at each round.



Broadcasting

If a network of n agents is (strongly) connected at all rounds,
information can be broadcast to all agents in n− 1 rounds.

!

? ?

?
!

!

!
!

!

Each agent simply has to forward the information to all its
neighbors. Since the network is (strongly) connected, the number
of agents that have the information grows at each round.



Broadcasting

If a network of n agents is (strongly) connected at all rounds,
information can be broadcast to all agents in n− 1 rounds.

!

?

!

!

!
!

!

!

!

Each agent simply has to forward the information to all its
neighbors. Since the network is (strongly) connected, the number
of agents that have the information grows at each round.



Broadcasting

If a network of n agents is (strongly) connected at all rounds,
information can be broadcast to all agents in n− 1 rounds.

!

!

!

!
!

!

!

!

!

Each agent simply has to forward the information to all its
neighbors. Since the network is (strongly) connected, the number
of agents that have the information grows at each round.



Broadcasting

The broadcasting technique works even in dynamic and directed
networks, assuming they are strongly connected at all rounds.

Applications of the broadcasting technique:

Simple broadcast: one agent receives an input that has to
be communicated to all agents.

Compute minimum/maximum: all agents receive a number
as input, and they have to find the minimum/maximum.

Compute input set: all agents receive an input, and the goal
is to find the set of all inputs (ignoring multiplicities).

These algorithms are:

Stabilizing (i.e., give the correct output but may not realize
that they are done) in n− 1 rounds.

Terminating in n− 1 rounds if agents have a-priori knowledge
of the (dynamic) diameter of the network (or an upper bound
thereof, such as n).





All-to-all token dissemination

All-to-all token dissemination: special case of computing the
input set when all agents are assumed to have unique inputs (i.e.,
there are n different tokens).

Local algorithm:

At first, I only know my token.

At each round, I send all the tokens I know to all my
neighbors.

If I receive any new tokens from my neighbors, I add them to
the list of my known tokens.

Increment a “round counter” at every round.

When (round number) = (number of known tokens), halt.

This algorithm terminates in n rounds with no a-priori knowledge
about the network.



Leader election

Leader election: assuming all agents are anonymous, agree on a
unique leader.

Assume that all agents have a-priori knowledge about the (static)
network. A necessary condition for leader election is that the
network graph has at least one vertex that cannot be moved to
another vertex by an automorphism. Is this condition sufficient?





Leader or co-leader election

Assume that the network is a (static) tree. Then, it is possible to
elect either a unique leader or a pair of adjacent co-leaders.

Local algorithm (saturation):

At first, my status is eligible.

At all rounds, I communicate my status to all neighbors and
receive their statuses.

If I am eligible and all my neighbors are eliminated, I become
leader and halt.

If I am eligible and all my neighbors except one are
eliminated, I become a candidate co-leader.

If I am a candidate co-leader and my non-eliminated neighbor
is also a candidate co-leader, I become co-leader and halt.

If I am a candidate co-leader and my non-eliminated neighbor
is not a candidate co-leader, I become eliminated and halt.

It terminates in O(n) rounds (even without port awareness).





Spanning tree construction

If there is port awareness, and a spanning tree of the network is
given as input, then the previous algorithm can be adapted to elect
a leader or a co-leader in a general (static) network, as well.

Conversely, if there is port awareness and a unique leader or two
adjacent co-leaders are given, a spanning tree can be constructed.
Local algorithm (distributed breadth-first search):

If there are two co-leaders, add the link connecting them to
the spanning tree.

The leader or the co-leaders become part of the spanning tree.

If I have just become part of the spanning tree, I send a join
message to all neighbors.

If I am not part of the spanning tree and I receive join
messages from some neighbors, select one of them and send it
an ack. The link between us is added to the spanning tree,
and I become part of the spanning tree, as well.

If me and all my neighbors are part of the spanning tree, halt.

This algorithm terminates in O(n) rounds.





Counting

Counting problem: determine the number of agents n.

Local algorithm assuming a connected static network with a unique
leader (no port awareness):

Phase 1:

The leader broadcasts a ping.
If I receive the ping at round t, then my distance from the
leader is t.
After I know t, I communicate it to my neighbors.
I store the number d of my neighbors at distance t− 1 from
the leader.
If none of my neighbors has distance t+ 1 from the leader, I
am a farthest agent.





Counting

Phase 2:

If I am a farthest agent, I send the mass 1/d (as well as my
distance t) to all my neighbors.
If I receive masses from neighbors at distance t+ 1 from the
leader, I add them together, obtaining s, and send (s+1)/d to
all my neighbors (i.e., I add my own mass to the sum).
When the leader receives numbers from its neighbors, it adds
them together, and adds 1 to the total: this is n.

Phase 3:

The leader broadcasts n to all other agents.
After n rounds, everyone halts.

This algorithm terminates in O(n) rounds and uses messages of
size O(log n).





General computation

General computation: given an input to each process, determine
the multiset of all inputs and compute an arbitrary function on it.

Assuming a static network with a unique leader, we can adapt the
previous algorithm to this problem.

Essentially, instead of sending “a fraction of mass” toward the
leader, the farthest agents send “a fraction of their input”.

Then, intermediate agents add together these fractions as a linear
combination of inputs, and add their own input to the sum.

Finally, the leader is able to reconstruct how many agents had
which input.

Once the leader knows the multiset of all inputs, it can locally
compute any arbitrary function on it, and broadcast the result to
all agents.





Average consensus

Average consensus: compute the average of a multiset of input
numbers.

Of course, the previous algorithm can solve the average consensus
problem in a static undirected network with a unique leader.

What if the network is dynamic (with outdegree awareness),
directed (strongly connected) and there is no leader?

Local algorithm (iterated averaging):

Set x := my input.

Repeat indefinitely:

If d is my outdegree for the current round, set x := x/(d+ 1).
Send x to all neighbors.
Add all received values to x.

This algorithm may not compute the exact average in finite time,
but converges to it, i.e., x becomes arbitrarily close to the average.




