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Distributed Computing in Anonymous Dynamic Systems

Syllabus

Anonymous Networks

Introduction and basic algorithms for static networks
Dynamicity and history trees
Optimal computation in networks with and without leaders
Computation in dynamic congested networks

Population Protocols

Introduction and basic algorithmic techniques
Leader election in Mediated Population Protocols

Mobile Robots

Gathering and Pattern Formation in the plane
Meeting in a polygon by oblivious robots

Exam
Pre-recorded 10-minute presentation video on one of the papers
that will be suggested at the end of the course.



Today’s seminar

Introduction to history trees

Counting in dynamic networks

Average consensus in dynamic networks

Leader election with knowledge of n



Dynamic networks

In a dynamic network, some machines (or agents) are connected
with each other through links that may change over time.

What can be computed by this network, and in how many rounds?
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History Trees



History trees

A history tree is a combinatorial structure that characterizes classes
of indistinguishable agents and the way they interact in time.

Essentially, two agents p and q are distinguishable at round t if:

t = 0 and p and q have different inputs, OR

t > 0 and

p and q were distinguishable at round t− 1, OR
p and q receive different multisets of messages at round t.

A history tree has a level for every round, and each level contains a
node for every class of indistinguishable agents.

Rephrasing problems in terms of history trees is often a useful
algorithmic idea.

This shifts the problem from anonymous networks to history trees
(and their construction).



Constructing a history tree
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Constructing a history tree
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Constructing a history tree
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Constructing a history tree
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View of a history tree

At any point in time, an agent only has a view of the history tree.
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Views as internal states and messages

An agent’s view summarizes its whole history up to some round.
It contains all the information the agent has learned about the
network up to that point.

Observation

Without loss of generality, we may assume that an agent’s internal
state coincides with its view of the history tree.

Observation

Without loss of generality, we may assume that an agent
broadcasts its own internal state at every round.

At round t, the size of a view is only O(tn2 log n) bits.

Observation

If a problem is solvable in a polynomial number of rounds, it can
be solved by using a polynomial amount of local memory and
sending messages of polynomial size.



Updating the view

An agent updates its internal state by merging its view with the
views it receives from its neighbors.
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Updating the view

An agent updates its internal state by merging its view with the
views it receives from its neighbors.
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Computability
(with a Unique Leader)



General computation

In general, we may assume that each agent has an input and has to
compute an output depending on the entire network’s inputs.
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Agents with the same input are still indistinguishable (anonymous).



General computation

If the network is the complete graph at every round, all agents
with the same input will always have the same internal state.
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Thus, an agent’s output can only depend on its input and the
number of agents having each input.



Completeness of the Generalized Counting Problem

Thus, only the multi-aggregate functions may be computable:

A function f is multi-aggregate if it is of the form f(xp, µ), where
xp is the input of agent p and µ is the multi-set of all inputs.

Examples: The average, maximum, minimum, sum, mode,
variance, and most statistical functions are (multi-)aggregate.

Observation

If a function is computable in an anonymous dynamic network
(with a unique Leader), it must be a multi-aggregate function.

Generalized Counting Problem: Eventually, all agents must
know how many agents have each input.

Observation

If the Generalized Counting Problem is solvable in f(n) rounds,
then every multi-aggregate function is computable in f(n) rounds.



Lower Bound on Counting
(with a Unique Leader)



Lower bound

Theorem

The Counting Problem is not solvable in less than 2n− 3 rounds.
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Theorem
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Lower bound

Theorem

The Counting Problem is not solvable in less than 2n− 3 rounds.
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Stabilizing Computation
with a Unique Leader



Computing anonymities

Suppose we know the anonymity of a node x in the history tree.

If x has only one child x′, then x′ must have the same anonymity.
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Computing anonymities

Suppose we know the anonymity of a node x with a single child x′.
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If the agents represented by x have observed agents whose
corresponding node y has only one child y′, then we can compute
the anonymity of y and y′, as well.



Computing anonymities

Suppose we know the anonymity of a node x with a single child x′.
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If the agents represented by x have observed agents whose
corresponding node y has only one child y′, then we can compute
the anonymity of y and y′, as well.



Stabilizing algorithm

If all nodes in a level have only one child, we can compute the
anonymity of all of them (because the network is connected).

L
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Since there are n agents, the tree can branch at most n− 1 times.

Thus, among the first n− 1 levels, there must be a level where no
node branches. In this level, we can compute all anonymities.
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Stabilizing algorithm

Theorem

The Generalized Counting Problem can be stably solved in 2n− 2
rounds (without explicit termination).

1−n

view

rounds

all nodes are visible

History tree

1−n
rounds

Note that, after 2n− 2 rounds, all nodes in the first n− 1 levels of
the history tree are in the views of all agents.



Propagation of information

If the network is connected at all rounds, every news reaches every
agent in at most n− 1 rounds.

!

??
?

?

?

?

?

?

Hence, whenever two agents interact, all agents will know it within
n− 1 rounds (and it will show in their views of the history tree).
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Counterexample for termination
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Leaderless Computation



Leaderless computation

If there is no Leader, we can still use our stabilizing technique and
find a level where no nodes branch within the first n− 1 levels.

x x3a
x4a x6a

x2ax1a x5a

However, since no anonymities are given, we can only compute
them up to a common factor x. We just assign anonymity x to an
arbitrary node, and then express all other anonymities as linear
functions of x.



Leaderless computation

Thus, if there is no Leader, we can solve in 2n rounds all the
multi-aggregate functions f such that:

f(xi, {x1 × n1, x2 × n2, . . . , xm × nm}) =
f(xi, {x1 × kn1, x2 × kn2, . . . , xm × knm}).
We call them scale-invariant multi-aggregate functions.

Examples include the mean (cf. Average Consensus Problem),
variance, median, maximum, mode, and other statistical functions.

In Leaderless networks, we can compute functions that
depend only on the “concentration” of each input.



Leaderless computation

The following example shows that no other function can be
computed without a Leader: We can multiply all anonymities by
any integer factor ≥ 2 and get the same history tree.
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Leaderless computation

Also, 2n is a lower bound for the Average Consensus Problem.

Input: 1

Input: 0

Input: 0 Input: 0

Input: 0

Input: 0

Input: 0Input: 0

Input: 0

Indeed, if we assign input 1 to one agent and 0 to all other agents,
the Average Consensus Problem becomes equivalent to the
Counting Problem with a single Leader.



Leaderless computation

Also, 2n is a lower bound on the Average Consensus Problem.
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Output: 1/9Output: 1/9

Output: 1/9

Indeed, if we assign input 1 to one agent and 0 to all other agents,
the Average Consensus Problem becomes equivalent to the
Counting Problem with a single Leader.



Conclusion

Theorem (Di Luna–V., 2022–2023)

Any function that is computable in connected anonymous dynamic
networks with no Leader can be computed:

in 2n rounds without explicit termination,

in n+N rounds with termination if N ≥ n is known.

2n rounds is a lower bound for the Average Consensus Problem.

Theorem (Di Luna–V., 2022–2023)

Any function that is computable in connected anonymous dynamic
networks with a unique Leader can be computed:

in 2n rounds without explicit termination,

in 3n rounds with termination. (Tomorrow’s seminar!)

2n rounds is a lower bound for the Counting Problem.





Leader Election
with Knowledge of n



Leader election

We can elect a unique leader in a network with knowledge of n if
and only if there is a non-branching level in the history tree where
at least one node has anonymity 1.

L

1

In a static network, this algorithm terminates in 2n rounds and
either elects a leader or reports that no leader can be elected.

In a dynamic network, it may be necessary to wait indefinitely
for a node of anonymity 1 to be created (stabilizing).

=⇒ Counting and Leader election are equivalent!






