Seminar 3 — Anonymous Networks:
Optimal Computation with a Leader

Distributed Computing in Anonymous Dynamic Systems

Giovanni Viglietta

Rome — March 8, 2024

Distributed Computing in Anonymous Dynamic Systems

Syllabus
@ Anonymous Networks
e Introduction and basic algorithms for static networks
Dynamicity and history trees
Optimal computation in networks with and without leaders
Computation in dynamic congested networks

@ Population Protocols

e Introduction and basic algorithmic techniques
o Leader election in Mediated Population Protocols

@ Mobile Robots

e Gathering and Pattern Formation in the plane
e Meeting in a polygon by oblivious robots

Exam
Pre-recorded 10-minute presentation video on one of the papers
that will be suggested at the end of the course.

Today's seminar

@ Review of history trees
@ Counting in dynamic networks

@ Terminating algorithm for Counting

Dynamic networks

In a dynamic network, some machines (or agents) are connected
with each other through links that may change over time.

What can be computed by this network, and in how many rounds?

Dynamic networks

In a dynamic network, some machines (or agents) are connected
with each other through links that may change over time.

What can be computed by this network, and in how many rounds?

Dynamic networks

In a dynamic network, some machines (or agents) are connected
with each other through links that may change over time.

a3 _
'

5

=

What can be computed by this network, and in how many rounds?

Dynamic networks

In a dynamic network, some machines (or agents) are connected
with each other through links that may change over time.

What can be computed by this network, and in how many rounds?

Dynamic networks

In a dynamic network, some machines (or agents) are connected
with each other through links that may change over time.

a3 _
'

5

=

What can be computed by this network, and in how many rounds?

Dynamic networks

In a dynamic network, some machines (or agents) are connected
with each other through links that may change over time.

What can be computed by this network, and in how many rounds?

Counting anonymous agents with a Leader

Our assumption is that the dynamic network is anonymous,
i.e., all agents start in the same state, except one: the Leader.

Initial state: N Initial state: N

The complete problem in this model is the Counting Problem:
Eventually, all agents must know the total number of agents, n.
(If agents have inputs, also compute how many agents have each input.)

Counting anonymous agents with a Leader

Our assumption is that the dynamic network is anonymous,
i.e., all agents start in the same state, except one: the Leader.

Output: 9 Output: 9

The complete problem in this model is the Counting Problem:
Eventually, all agents must know the total number of agents, n.
(If agents have inputs, also compute how many agents have each input.)

Literature on the Counting Problem

@ Michail et al.: Looks impossible! (SSS 2013)

o Di Luna et al.: Solvable in O(eN" N?) rounds (ICDCN 2014)

@ Di Luna-Baldoni: O(n™**) rounds (OPODIS 2015)

e Kowalski—-Mosteiro: O(n°log®n) rounds (ICALP 2018 Best Paper)
o Kowalski-Mosteiro: O(n*t<log®n) rounds (ICALP 2019)

@ Di Luna-V.: 3n rounds (FOCS 2022) (Today’s seminar)

Symbols:
@ n: number of agents in the network (unknown)

@ N: upper bound on n (unknown, except in ICDCN 2014)

Counting in dynamic networks with a unique leader

Theorem (Di Luna-V., FOCS 2022)

In connected anonymous dynamic networks with a unique Leader,
the Counting Problem can be solved:

@ in 2n rounds without explicit termination, (Yesterday)
@ in 3n rounds with termination. (Today)

Furthermore, no (stabilizing or terminating) algorithm can solve
the Counting problem in less than 2n rounds.

The theorem applies not only to the Counting Problem, but to all
functions computable in anonymous (dynamic) networks.
These are precisely the multi-aggregate functions f:

o Agent p outputs f(xp, 1),

@ where x), is the input of agent p,

@ and p is the multi-set of all inputs.

Constructing a history tree

System @
® © @ P © ® ®
E anonymity: 1 anonymity: 6 anonymity: 5
® ®

History tree

Constructing a history tree

anonymity: 1 * anonymity: 4 anonymity: 4 f
anonymity: 2 anonymity: 1

}

anonymity: 1

anonymity: 4

anonymity: 4

anonymity: 2

anonymity: 1

Round 2

Constructing a history tree

Constructing a history tree

E anonymity: 1 * anonymity: 2 f anonymity: 4 f
H anonymity: 2 anonymity: 2 anonymity: 1

Constructing a history tree

View of a history tree

At any point in time, an agent only has a view of the history tree.

View of a history tree

At any point in time, an agent only has a view of the history tree.

View of a history tree

At any point in time, an agent only has a view of the history tree.

Views as internal states and messages

An agent's view summarizes its whole history up to some round.
It contains all the information the agent has learned about the
network up to that point.

Observation

Without loss of generality, we may assume that an agent’s internal
state coincides with its view of the history tree.

Observation

Without loss of generality, we may assume that an agent
broadcasts its own internal state at every round.

At round t, the size of a view is only O(tn?logn) bits.

Observation

If a problem is solvable in a polynomial number of rounds, it can
be solved by using a polynomial amount of local memory and
sending messages of polynomial size.

Updating the view

An agent updates its internal state by merging its view with the
views it receives from its neighbors.

view

Updating the view

An agent updates its internal state by merging its view with the
views it receives from its neighbors.

Updating the view

An agent updates its internal state by merging its view with the
views it receives from its neighbors.

Updating the view

An agent updates its internal state by merging its view with the
views it receives from its neighbors.

Updating the view

An agent updates its internal state by merging its view with the
views it receives from its neighbors.

Updating the view

An agent updates its internal state by merging its view with the
views it receives from its neighbors.

Updating the view

An agent updates its internal state by merging its view with the
views it receives from its neighbors.

new view

Computing anonymities

Suppose we know the anonymity of a node x with a single child x’.

Round i .

PR

~m———

If the agents represented by = have observed agents whose
corresponding node y has only one child 3/, then we can compute
the anonymity of and 3/, as well.

Computing anonymities

Suppose we know the anonymity of a node x with a single child x’.

e

If the agents represented by = have observed agents whose
corresponding node y has only one child 3/, then we can compute
the anonymity of and 3/, as well.

Stabilizing algorithm

If all nodes in a level have only one child, we can compute the
anonymity of all of them (because the network is connected).

Since there are n agents, the tree can branch at most n — 1 times.

Thus, among the first n — 1 levels, there must be a level where no
node branches. In this level, we can compute all anonymities.

Stabilizing algorithm

If all nodes in a level have only one child, we can compute the
anonymity of all of them (because the network is connected).

Since there are n agents, the tree can branch at most n — 1 times.

Thus, among the first n — 1 levels, there must be a level where no
node branches. In this level, we can compute all anonymities.

Counterexample for termination

Round 0 Round 3

O ®
O o O

Round 4+

Round 1

Round 2

Counterexample for termination

Round 1 Round 4

@O—O—0O—® O-O-O-0-ww
CICICEC)

Round 2 Round 5

OO0 - -©®
Round 3 Round 6
(O 0 O Ca Ol O) (OO CaCaCa R Oy O)

:

7

o

A
O

3

i,
X
1
5)
0
0
0
0
0
0

Terminating Computation
with a Unique Leader

Terminating algorithm: Overview

We will give a terminating algorithm for the Counting Problem.

The algorithm is as follows:

@ Use the Leader's observations to make guesses on
anonymities.

@ In any set of n guesses, we can always identify a correct one.

@ Once we have identified n — 1 correct guesses, we can use
some of them to make new guesses on anonymities.

@ Repeat until we have the anonymity of all visible branches of
the history tree: this gives an estimate n’ on n.

o Wait n’ rounds to confirm the estimate; if correct, terminate.

The Generalized Counting Problem can be solved in 3n — 2 rounds
with explicit termination.

Guessing anonymities

Suppose we know the anonymities of a node x and its children.
If some of the agents represented by = have observed agents
represented by y, we can guess the anonymity of a child of y.

¥ 14 6
3 i ‘ /@
] @ é & I
i b 7 3 4 ®
i Guess on ¥1: M:G

3

If only one child of y has seen x, then the guess is correct.

Guessing anonymities

Suppose we know the anonymities of a node x and its children.
If some of the agents represented by = have observed agents
represented by y, we can guess the anonymity of a child of y.

- {:0000000:

Otherwise, the guess is an overestimation of the anonymity.

Guessing anonymities from the Leader

We can make one guess per round using the Leader’s observations.

How do we know which guesses are correct?

Weight of a node

When a node v has a guess, we define its weight w(v) as the
number of nodes in the subtree hanging from v that have guesses.

Weight of a node

A node v is heavy if its weight w(v) is at least as large as the value
of its guess g(v).

Limiting theorem

We denote by a(v) the anonymity of a node v, by g(v) a guess on
a(v), and by w(v) the weight of v.

If all guesses are on different levels and w(v) > a(v), then some
descendants of v are heavy.

Proof. By well-founded induction on w(v).

Let v1, va, ... be the closest descendants of v that
have guesses. Of course, a(v) > >, a(v;).

By the inductive hypothesis, w(v;) < a(v;) for all 4.
w®)—1 = S wv;) < 2 a(v;) < alv) < wv)-1 .
Thus, w(v;) = a(v;) and a(v) = >, a(v;). o

The deepest node vy has no siblings, because all
guesses are on different levels.

Hence g(vq) = a(vg) = w(vg), and vgq is heavy. [l

Criterion of correctness

If v is heavy and no descendant of v is heavy, then g(v) = a(v).

Proof. By assumption, g(v) < w(v).

By the limiting theorem, w(v) < a(v).

Guesses never underestimate anonymities, and so a(v) < g(v).
g(v) <w() < a(v) < g(v), hence g(v) = a(v). O

This corollary gives agents a criterion to determine when a guess is
necessarily correct: If v is heavy and no descendants of v are
heavy, then the guess on v is correct.

Moreover, by the limiting theorem, such a node v is found by the
time there are n guesses in total.

Criterion of correctness: Example

Any agent with this view is able to determine which guess is
necessarily correct:

Criterion of correctness: Example

Any agent with this view is able to determine which guess is
necessarily correct:

correct

Propagation of guesses

An island is a connected component of (a view of) the history tree
that contains no leaves and does not contain the root.

Suppose that the nodes with necessarily correct guesses bound an
island in the history tree.

Propagation of guesses

An island is a connected component of (a view of) the history tree
that contains no leaves and does not contain the root.

If the anonymity of the top node is the sum of the bottom ones,
then we can infer the anonymities of all the nodes in the island.

Propagation of guesses

An island is a connected component of (a view of) the history tree
that contains no leaves and does not contain the root.

Since the network is connected at every round, we can make a new
guess from one of the nodes in the island.

Propagation of guesses

An island is a connected component of (a view of) the history tree
that contains no leaves and does not contain the root.

Since the network is connected at every round, we can make a new
guess from one of the nodes in the island.

Propagation of guesses

Suppose that there are n — 1 nodes with necessarily correct guesses
(other than the Leader ones). There are two cases:

Propagation of guesses

(2
O (2 @ O
O O O (2 (2
O O O O O O O O
O () O () O O O
O O O O: 0 OO0 0 O
O OO0 O 0 O :0:0 O
.. o O O0:0:0 O

Either these nodes determine a cut of the history tree, in which
case we have an estimate n’ on n, given by their sum...

Propagation of guesses

...Or else, some of these nodes determine an island, which allows
us to make a new guess, and so on.

Propagation of guesses

...Or else, some of these nodes determine an island, which allows
us to make a new guess, and so on.

Dynamics of new guesses

Summarizing, we have two “buffers”:
@ A buffer of n — 1 overestimating guesses (yellow nodes),

@ A buffer of n — 2 necessarily correct guesses (blue nodes).

Once the first buffer is full, every new guess (yellow node) allows us
to determine a correct guess (blue node), by the limiting theorem.

Once the second buffer is full, every new correct guess (blue node)
either creates a new island (hence we can make a new guess) or
creates a cut.

Therefore, within 2n — 2 rounds, the chain of guesses “snowballs”
and generates enough guesses to determine a cut of the history
tree, which in turn yields an estimate n’ < n.

Propagation of guesses

Let us make the previous argument more precise...

If all guesses are on different levels, and n nodes have a guess,
then there is a heavy node.

Proof. We will prove that there is a node v with a guess such that
w(v) > a(v). Hence, there is a heavy node by the limiting theorem.

All n guesses are in the non-leader subtree, whose total anonymity
is n — 1. By induction and the basic properties of history trees, it
is easy to prove that there is a node v with w(v) > a(v). O

Propagation of guesses

A level is bad if it is entirely contained in the view, it has no nodes
with a guess, and making a new guess in this level is impossible.

A node with a necessarily correct guess whose children also have
necessarily correct guesses is called a guesser.

If there are n — 1 bad levels, then the nodes with a necessarily
correct guess form a cut or an island.

Proof. Consider a bad level L;. If all nodes in L;_1 are guessers,
they constitute a cut: impossible.

So, there is a guesser in L;_1 that is connected to a child v € L;
of a non-guesser v’ € L;.

Since L; is a bad level, v has a necessarily correct guess.

Since v’ is not a guesser, either v’ does not have a necessarily
correct guess or a sibling of v does not have a necessarily correct
guess. We say that v is a bad node.

So, every bad level has a bad node, and thus there are at least
n — 1 bad nodes.

Propagation of guesses

If there are n — 1 bad levels, then the nodes with a necessarily
correct guess form a cut or an island.

Proof (continued). Let v be a deepest bad node, and consider
the path P connecting v to the root r.

Let u be the deepest branching node in P.

The parent of v cannot have a necessarily correct guess (unless
v = u) or v would not be bad.

All other nodes in P between v and u cannot have necessarily
correct guesses, or they would form an island with v.

Cut P just below u. The resulting tree has one less branch and
one less bad node.

Proceeding by induction, we conclude that there can be at most
n — 2 bad nodes. O

Termination condition

Once we have a cut and an estimate n’ < n, we wait n/ rounds.

If n’ < n, a new node appears in the first levels of the history tree.

History tree
2n —2
rounds o
all nodes are visible
n
rounds

view

If n’=n, then no new nodes appear, and the algorithm terminates.

Worst case

This is an example where it terminates in 3n — 3 rounds:

This algorithm terminates in at most 3n — 2 rounds.

®
(d

()
@)

<

Round 1
@

@—a——w—

Round 2
Round 3
Round 4
Round 5+

