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Distributed Computing in Anonymous Dynamic Systems

Syllabus

Anonymous Networks

Introduction and basic algorithms for static networks
Dynamicity and history trees
Optimal computation in networks with and without leaders
Computation in dynamic congested networks

Population Protocols

Introduction and basic algorithmic techniques
Leader election in Mediated Population Protocols

Mobile Robots

Gathering and Pattern Formation in the plane
Meeting in a polygon by oblivious robots

Exam
Pre-recorded 10-minute presentation video on one of the papers
that will be suggested at the end of the course.



Today’s seminar

Disconnected networks

Asynchronous communications

Self-stabilization

Networks with multiple leaders

Directed networks

Congested networks



Disconnected Networks



Disconnected networks

While networks are typically assumed to be (strongly) connected at
every round, we may remove this assumption.

In a τ -union-connected network, the union of the network graphs
at τ consecutive rounds is a (strongly) connected multi-graph.
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Disconnected networks

While networks are typically assumed to be (strongly) connected at
every round, we may remove this assumption.

In a τ -union-connected network, the union of the network graphs
at τ consecutive rounds is a (strongly) connected multi-graph.



τ -union-connected networks

Any algorithm for τ = 1 can be adapted to networks with τ > 1,
assuming τ is known by all agents.
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update
state

Each agent accumulates messages for τ rounds, and then updates
its state all at once. Hence, the running time is multiplied by τ .



τ -union-connected networks

This is the best we can do: Consider, for instance, a network that
contains no links for τ − 1 out of every τ rounds.
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Thus, the Counting Problem has a lower bound of 2τn rounds and
can be solved with termination in 3τn rounds.



Asynchronous Communications



Asynchronous communications

In the asynchronous model, any agent may be “asleep” at any
round. The only constraint is that no agent stays asleep forever.

If an agent is asleep, it does not receive nor send any messages.
The (dynamic) diameter of the network is still assumed to be finite.

We can adapt the history tree technique to this model as follows.

When two agents interact, the view of one may have fewer levels
that the other. In the merge procedure, we simply append a branch
of “dummy nodes” to the shortest view to match the other one.

The outcome is compatible with a network where the agent with
fewer levels was asleep in the last few rounds (it may not be the
correct assumption, but the result of the computation will be
correct anyway).

In this model, a round is defined as a minimal time frame in which
each agent is active at least once.





Self-Stabilization



Self-stabilizing computations

An algorithm is self-stabilizing if all agents are guaranteed to
return the correct output regardless of their initial internal states.

For example, their initial states may encode completely arbitrary
history trees, which may lead to incorrect computations...

How can we adapt our history tree technique to this scenario?

Simply update the history tree as usual, but every two rounds
delete the level L0, as well as all edges incident to it, and connect
all nodes in L1 directly to the root.

This technique converts any non-self-stabilizing algorithm with a
running time of f(n) rounds into a self-stabilizing algorithm that
gives the correct output in 2f(n) rounds (plus the time it takes to
erase any incorrect data initially present in the agents’ states).

Note that termination is impossible: Any non-trivial computation
cannot be both self-stabilizing and terminating.





Multiple Leaders



Multiple Leaders

We will now consider the scenario where more than one Leader is
present in the network. All leaders are indistinguishable.

Initial state: L

Initial state: N Initial state: N

Initial state: N

Initial state: N

Initial state: NInitial state: N

Initial state: L

Initial state: L

How can we solve the Counting Problem in this case?



Multiple Leaders

The Counting Problem is unsolvable with no knowledge on the
number of Leaders, ℓ.

System 1 System 2
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In the above (static) networks, the history tree is the same.



Multiple Leaders

Having more than one Leader may not be very helpful. Actually,
multiple Leaders introduce more symmetry in the network.

System 1 System 2

L

L L

LL L L

If multiple Leaders were always helpful, a single Leader could
“pretend” to see several other Leaders to speed up computation.



Multiple Leaders: Stabilizing algorithm

For a stabilizing (non-terminating) Counting algorithm, we can use
the single-Leader technique (assuming that all agents know ℓ).

As soon as a level has no branching nodes, we can compute all
anonymities as a function of a single Leader node’s anonymity, x.

Leaders

x x3a
x4a x6a

x2ax1a x5a

We know that x+ a1x+ a2x = ℓ, and we can determine x.

This yields a non-terminating Counting algorithm that stabilizes in
at most 2n rounds (optimal).



Single-Leader algorithm review

Suppose we know the anonymities of a node x and its children.
If some of the agents represented by x have observed agents
represented by y, we can guess the anonymity of a child of y.
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If only one child of y has seen x, then the guess is correct.
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Suppose we know the anonymities of a node x and its children.
If some of the agents represented by x have observed agents
represented by y, we can guess the anonymity of a child of y.
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Otherwise, the guess is an overestimation of the anonymity.



Single-Leader algorithm review

We can make one guess per round using the Leader’s observations.

L A B C1
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How do we know which guesses are correct?



Single-Leader algorithm review

When a node v has a guess, we define its weight w(v) as the
number of nodes in the subtree hanging from v that have guesses.

v

) = 5v(w



Single-Leader algorithm review

A node v is heavy if its weight w(v) is at least as large as the value
of its guess g(v).

4

)v(g≥)v(w

Correctness Criterion: If a node v is heavy and no descendants
of v are heavy, then the guess on v is correct.



Single-Leader algorithm review

Initially, all Leader nodes are Guessers with anonymity ℓ = 1.
Eventually, some guessed nodes become correct.



Single-Leader algorithm review

Correct nodes will form islands, which allow us to determine more
anonymities.



Single-Leader algorithm review

In turn, all nodes whose anonymity is known and whose children’s
anonymities are known become new Guessers.



Single-Leader algorithm review

Eventually, some nodes determine a cut of the history tree, in
which case we have an estimate n′ on n, given by their sum.



Single-Leader algorithm review

Once we have a cut and an estimate n′ ≤ n, we wait n′ rounds.

If n′ < n, a new node appears in the first levels of the history tree.

n2

view

rounds
all nodes are visible

History tree

n
rounds

If n′=n, then no new nodes appear, and the algorithm terminates.

This happens within 3n rounds.



Multiple Leaders: Terminating algorithm

With ℓ > 1 of Leaders, we do ℓ runs similar to the ℓ = 1 algorithm.

ℓ runs

n
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Multiple Leaders: Terminating algorithm

Terminating algorithm for ℓ > 1 Leaders:

Do ℓ runs of the terminating algorithm for ℓ = 1 as follows.

Choose a branch of Leader nodes and assign it anonymity x.

Run the terminating algorithm assuming x = ℓ (note that all
guesses are still upper bounds of the real anonymities).

If we encounter a node where the chosen Leader branch splits,
stop the current run and proceed with the next.

Else, the algorithm eventually terminates with an estimate n′
i

of n, as well as an estimate of all nodes’ anonymities.

If the sum of Leaders’ anonymities is ℓ, store n′
i and proceed

with the next run. Else, repeat this run with x = ℓ− 1, etc.

We end up with at most ℓ estimates of n: n′
1, n

′
2, . . . .

Wait another max{n′
1, n

′
2, . . . } rounds to confirm them.

If the n′
i’s have not changed, they are all equal to n and all

correct (note that at least one run must be correct, because
the Leader nodes can split at most ℓ− 1 times).



Multiple Leaders

Recall that the (Generalized) Counting Problem is complete for the
class of multi-aggregate functions, which are all the functions that
can be computed in anonymous networks with leaders.

Thus, we have the following result:

Theorem (Di Luna–V., DISC 2023)

Any problem that is solvable in τ -union-connected anonymous
dynamic networks with ℓ ≥ 1 Leaders (assuming τ and ℓ are
known) has a solution:

in 2τn rounds without explicit termination (stabilizing),

in (ℓ2 + ℓ+ 1)τn rounds with termination.

2τn rounds is a lower bound for the Counting Problem.



Directed Networks



Directed networks

We will now assume that the network is modeled by a (dynamic)
directed graph that is (strongly) connected at all rounds.

A B

Recall that directed networks may model a situation where agents
have different communication ranges.



Outdegree awareness

The following example shows that some knowledge of the
outdegree of an agent is necessary to do basic computations.

System 1

History tree

2

2

System 2

2

So, we will assume that an agent knows its outdegree at the end of
each round (weak outdegree awareness).



Dynamic directed networks: Stabilization

In a directed network’s history tree, if nodes do not branch, we
have equations of the form d · a(x) = ∑

imi · a(yi), where d is the
outdegree of the agents in x.

= 3d
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Dynamic directed networks: Stabilization

Algorithm:

Wait for a history tree level Li with no branching nodes.

Write the linear system of all equations given by Li.

Solve the linear system to find the anonymities of all nodes in
Li (as multiples of a free variable x).

If there are ℓ leaders, set the sum of the corresponding nodes’
anonymities to ℓ to find x and compute all anonymities.

This algorithm stabilizes in 2n rounds.

Proof of correctness:
The matrix A corresponding to the linear system is irreducible
because the network is strongly connected. Also, A = sI − P , with
s > 0 and P ≥ 0. Note that P is also irreducible.
We have Ax = 0, where x > 0 is the vector of anonymities of the
nodes in Li. Hence, Px = sx. By the Perron-Frobenius theorem, s
is a simple eigenvalue of P , and thus 0 is a simple eigenvalue of A.
Therefore, the rank of A is n− 1.



Dynamic directed networks: Termination

Algorithm for networks with ℓ ≥ 1 Leaders:

Wait for a long-enough sequence of levels with no branching
nodes. Let b1 be a Leader branch, and let Ub1 = ℓ.

Repeat (assuming that Ubi ≥ a(bi)):

Take a branch bi+1 that gets messages from bi for Ubi rounds.
Each of these interactions gives us an estimate on a(bi+1).
One of the estimates is actually an upper bound on a(bi+1),
because it occurs when bi does not branch.
Let Ubi+1

be the maximum of all estimates on a(bi+1).

Until we have an upper bound M =
∑

i Ubi on the
anonymities of all visible branches.

Wait for M rounds to confirm there are no invisible branches.

Run the stabilizing algorithm to compute n.

This algorithm terminates in O(nn+2) rounds.





Congested Networks



Congested networks

Normally, there is no limit to the size of messages that can be sent
through a network’s links. Any kind of information can be sent.

)n(logO

)n(logO

)n(logO
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In a congested network, each message must have size O(log n).
This is a severe limitation on how much information can be sent.



Bounds on the Counting Problem

LOCAL model (unlimited message size):

Looks impossible... [Michail et al., SSS 2013]

O(nn+4) rounds [Di Luna–Baldoni, OPODIS 2015]

O(n5 log2 n) rounds [Kowalski–Mosteiro, ICALP 2018 Best Paper]

O(n4+ϵ log3 n) rounds [Kowalski–Mosteiro, ICALP 2019]

3n rounds (optimal) [Di Luna–V., FOCS 2022]

CONGEST model (O(log n) message size):

Lower bound of Ω(n2/ logn) rounds [Dutta et al., SODA 2013]

O(n5+ϵ log3 n) rounds [Kowalski–Mosteiro, ArXiV 2022]

O(n3) rounds [Di Luna–V., PODC 2023 Brief Announcement]



History trees

As we know, in the LOCAL
model we typically use history
trees, which are a structure that
naturally captures the idea that
anonymous agents become dis-
tinguishable as soon as they
have different “histories”.
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Constructing and sharing history trees is a way of doing arbitrary
computations in linear time. Unfortunately, the size of a history
tree is O(n3 log n), unsuitable for the CONGEST model.



Outline of Counting algorithms

Non-congested networks (LOCAL algorithm):

Each agent constructs its view of the history tree, updating it
at every round based on the messages it receives.

After 3n rounds, the view of each agent has enough
information to solve the Counting problem.
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Outline of Counting algorithms

Congested networks (CONGEST algorithm):

Construct the history tree of some “artificial” network with n agents
(we call it the official history tree, OHT).

Each level of the OHT is constructed from a spanning tree of the
real network at some round (so each level takes O(n log n) bits).

The construction is done in a series of broadcasts, each of which
results in a O(log n)-size piece of information σ reaching the Leader.

When the Leader receives σ, it records it in the OHT and
broadcasts σ back to the other agents (acknowledgment).

Assign temporary IDs to agents; when two agents get disambiguated
due to some information becoming official, change their IDs.

An estimate U on the size of the network is used to time the
broadcasts; if it is determined that U < n, double U and reset.

Whenever a new level of the OHT is complete, run the LOCAL
algorithm on the OHT and see if it can determine n.



Construction of the OHT

Round 1 Round 2 Round 3 Round 4

...

Round k+1 Round k+2 Round k+3 Round k+4

...

Round 2k+1 Round 2k+2 Round 2k+3 Round 2k+4

...

The OHT is constructed on a subsequence of selected network
rounds.



Construction of the OHT

Round 1 Round 2 Round 3 Round 4

...

Round k+1 Round k+2 Round k+3 Round k+4

...

Round 2k+1 Round 2k+2 Round 2k+3 Round 2k+4

...

Take a spanning tree of the network at the selected rounds.



Construction of the OHT

Broadcasting the first spanning tree

Broadcasting the second spanning tree

Broadcasting the third spanning tree

Round 1 Round 2 Round 3 Round 4

...

Round k+1 Round k+2 Round k+3 Round k+4

...

Round 2k+1 Round 2k+2 Round 2k+3 Round 2k+4

...

For each spanning tree, broadcast enough information to construct
a level of the OHT. It takes O(n) broadcasts for each level.



Construction of the OHT

Round 1 Round k+1 Round 2k+1 Round 3k+1

...

Official history tree

Construct the OHT level by level; continue until there are enough
levels for the LOCAL Counting algorithm to compute n.



Constructing a level of the OHT
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We assign IDs to agents: Initially, the Leader has ID 0, and the
non-Leaders have ID 1. IDs may be modified over time...



Constructing a level of the OHT

5

0

5

3

2

5
7

8

2

We assign IDs to agents: Initially, the Leader has ID 0, and the
non-Leaders have ID 1. IDs may be modified over time...



Constructing a level of the OHT
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At a selected round, each agent sends its ID to all neighboring
agents. Thus, each agent receives a multiset of IDs.



Constructing a level of the OHT
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(5, 3, 2)

(5, 5, 1)

(5, 7, 3)

2 x 1

3 x 2
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7 x 3

This multiset is converted into triplets (ID1, ID2,m), meaning “An
agent named ID1 received m messages from agents named ID2”.



Constructing a level of the OHT
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(4, 7, 2)

(9, 3, 1)

(4, 9, 4)

Minimum triplet:

(4, 7, 2)

The triplets are sorted lexicographically, and the smallest is
broadcast for the next rounds.



Constructing a level of the OHT

5
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(6, 3, 2)

Minimum triplet:

(4, 7, 2)
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(4, 3, 5)

When an agent receives a triplet that is lexicographically smaller
than the one it is currently broadcasting, it broadcasts the new one.



Constructing a level of the OHT
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The broadcast continues for a certain number of rounds (more on
this later...) until all agents get the minimum triplet σ.



Constructing a level of the OHT

= (3, 6, 2)σ

Official history tree modification:

Smallest unassigned ID: 10

6 63
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The Leader uses σ = (ID1, ID2,m) to update the OHT: ID1 gets a
child with a fresh name ID1’ and the red edge (ID1’, ID2,m).



Constructing a level of the OHT
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= (3, 6, 2)σ

σack:

σack:

σack:

The Leader broadcasts σ as an acknowledgment to all agents,
which modify their local OHT in the same way.



Constructing a level of the OHT
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σack:

σack:

σack:

σack:

σack:

= (3, 6, 2)σ

Also, each agent named ID1 whose list of triplets contains σ
modifies its name in ID1’ (all other agents keep their names).



Constructing a level of the OHT

(10, 7, 1)

(10, 7, 1)

(10, 7, 1)

10

(3, 6, 2)

(10, 7, 1)

(10, 7, 5)

(10, 8, 2)

Then the next smallest triplet is broadcast, etc. Agents discard all
triplets that form cycles with triplets already in the OHT.



Constructing a level of the OHT

Round 1 Round k+1 Round 3k+1

...

Official history tree

Round 2k+1

When the current level of the OHT is complete, it represents a
spanning tree (of size O(n)) of the network at the selected round.



Broadcasting information

Since the network is connected at all rounds, any piece of
information can reach every agent in at most n− 1 rounds.
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Thus, each broadcast takes at most n− 1 rounds to complete.
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Broadcasting information

Since the network is connected at all rounds, any piece of
information can reach every agent in at most n− 1 rounds.
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Thus, each broadcast takes at most n− 1 rounds to complete.



Reset module

U

Agents do not know n, so they cannot broadcast information
correctly. They only have an estimate U on the network size.



Reset module

U2

All agents begin with U = 1, and then implement a reset module
that doubles U every time they detect that U < n.



Reset module

U

At each round, agents send triplets (N,R,U) (alongside the usual
triplets (ID1, ID2,m)), indicating that this is the N th broadcast,
which started at round R and runs for U rounds.



Reset module

U<n

U

σ

At the U th round of a broadcast, if an agent receives a new
minimum triplet σ, it knows that U < n, and starts broadcasting a
reset message (reset, N, 2U) that takes priority over anything else.



Reset module

)U2, N,(reset

At the U th round of a broadcast, if an agent receives a new
minimum triplet σ, it knows that U < n, and starts broadcasting a
reset message (reset, N, 2U) that takes priority over anything else.



Reset module

σack:

Similarly, if an agent does not receive an acknowledgment from the
Leader for broadcast N or does not receive the acknowledgment it
expects, it broadcasts a reset message (reset, N, 2U).



Reset module

)U2, N,(reset

Similarly, if an agent does not receive an acknowledgment from the
Leader for broadcast N or does not receive the acknowledgment it
expects, it broadcasts a reset message (reset, N, 2U).



Reset module

Leader

)U2, N,(ack

)U2, N,(reset

When the Leader receives a reset message (reset, N, 2U), it
broadcasts an acknowledgment, ordering all agents to restart from
broadcast N with a size estimate of 2U .



Algorithm correctness

Official history tree

Because any piece of information becomes official only when the
Leader sends an acknowledgment about it, at any time there is
only one version of the OHT circulating in the network.



Algorithm correctness

Official history tree

Not registeredNot registered

It is possible for the OHT to be missing some red edges, but the
LOCAL Counting algorithm can detect when an incomplete history
tree does not contain enough information to compute n.



Algorithm correctness

nX
Official history tree

Not registered

After completing each level of the OHT, we run the LOCAL
Counting algorithm on it. As soon as it returns a number n (as
opposed to “Unknown”), we can safely output n.



Algorithm running time

Broadcast Broadcast BroadcastBroadcast Broadcast
OHT level 1

Construct

Broadcast Broadcast BroadcastBroadcast Broadcast
OHT level 2

Construct

Broadcast Broadcast BroadcastBroadcast Broadcast
OHT level 3

Construct

Broadcast Broadcast BroadcastBroadcast Broadcast
OHT level 4

Construct
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We need 3n levels of the OHT for the LOCAL algorithm to return
n. The information on each level can be gathered in O(n)
broadcasts, and each broadcast takes O(n) rounds.



Algorithm running time

Broadcast Reset ResetBroadcast Broadcast
OHT level 1

Construct

Broadcast BroadcastBroadcast Reset Broadcast
OHT level 2

Construct

Broadcast Broadcast ResetBroadcast Broadcast
OHT level 3

Construct

Broadcast Broadcast BroadcastBroadcast Broadcast
OHT level 4

Construct
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.
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. . .

. . .

If we add the total time lost doing resets, this is just O(n log n).
Indeed, it takes at most O(log n) resets before U ≥ n, and
broadcasting a reset message cannot take more than n rounds.

In total, the algorithm takes O(n3) rounds.


