
Seminar 5 – Population Protocols:
General Computation and Leader Election

Distributed Computing in Anonymous Dynamic Systems

Giovanni Viglietta

Rome – March 12, 2024



Distributed Computing in Anonymous Dynamic Systems

Syllabus

Anonymous Networks

Introduction and basic algorithms for static networks
Dynamicity and history trees
Optimal computation in networks with and without leaders
Computation in dynamic congested networks

Population Protocols

Introduction and basic algorithmic techniques
Leader election in Mediated Population Protocols

Mobile Robots

Gathering and Pattern Formation in the plane
Meeting in a polygon by oblivious robots

Exam
Pre-recorded 10-minute presentation video on one of the papers
that will be suggested at the end of the course.



Today’s seminar

Introduction to Population Protocols

Computable predicates

Mediated Population Protocols

One-way and faulty models



Population Protocols



Population Protocols

a

b

b

b c

c

d

a

/Setting: a set of finite-state agents./



Population Protocols

a

b

b

b c

c

d

a
δ

/Pairs of agents interact in a non-deterministic order.../



Population Protocols

b

b c

c

d

a

c

e

/...and change states according to a transition function./



Population Protocols

b

b c

c

d

a

c

e

/...and change states according to a transition function./



Population Protocols

b

b c

c

d

a
δ

c

e

/...and change states according to a transition function./



Population Protocols

b

b c

c

d

c

c

e

/...and change states according to a transition function./



Population Protocols

b

b c

c

d

c

c

e

/...and change states according to a transition function./



Population Protocols

b

b c

c

d

c

c

e

δ

/...and change states according to a transition function./



Population Protocols

b

b c

c

c

c

a

b

/...and change states according to a transition function./



Population Protocols

A Population Protocol is a network of anonymous agents where:

Communications are sequential (i.e., only one pair of agents
interacts at any time),

Interactions are asymmetric (i.e., there is an initiator and a
responder).

Each agent has a constant amount of internal memory.

So, if internal states belong to a finite set S, a transition function
has the form f : S × S → S × S.

There are two notions of fairness of interactions:

Local fairness: Any pair of agents interacts infinitely often (in
both ways).

Global fairness: If a configuration of all agents is potentially
reachable for infinitely many times, it is eventually reached.



Population Protocols: Leader Election

Example. Leader Election protocol rules:

(L,L) 7→ (L,N)

(L,N) 7→ (L,N)

(N,L) 7→ (N,L)

(N,N) 7→ (N,N)

If all agents start in state L, eventually there will be only one in
state L (the leader). This protocol works under local fairness.



Population Protocols: Majority

Example. Majority protocol. Agents start in state “red” or “blue”.
Eventually, they reach a configuration where all agents are in state
“yes” if # red > # blue, and in state “no” otherwise. Rules:

(red,blue) 7→ (no,no) (eliminates all “red”s or all “blue”s)

(red,no) 7→ (red, yes) (“red” changes answer to “yes”)

(blue, yes) 7→ (blue,no) (“blue” changes answer to “no”)

(yes,no) 7→ (no,no) (takes care of ties)

This protocol requires global fairness (why?).



Population Protocols: Computable Predicates

Assuming that the initial states are integers (modulo m), what
predicates can be computed by Population Protocols?

A predicate is a function whose output is “yes” or “no”, and all
agents must eventually return the correct output based on the
multiset of initial states.

Theorem (Angluin et al., PODC 2006)

The only predicates computable by Population Protocols are:∑
i cixi ≥ a, where a, ci’s are integer constants

(generalization of Majority),∑
i cixi ≡ a (mod b), where a, b, ci’s are integer constants,

Boolean combinations of the above predicates (¬, ∨, ∧).

These can also be characterized in terms of Presburger arithmetic:
the predicates in first-order logic using the symbols +, 0, 1, ¬, ∨,
∧, ∀, ∃, =, <, (, ), plus variables.



Mediated Population Protocols



Fixed-Network Population Protocol

A

C

D

B

A

A

C

B

D

/Assume that agents can only interact through specific links./



Fixed-Network Population Protocol

A

C

D

B

A

A

C

B

D

f (C, B) = (A, C)

/Pairs of adjacent agents interact in a non-deterministic order.../



Fixed-Network Population Protocol

A

A

D

C

A

A

C

B

D

f (C, B) = (A, C)

/...and change states according to a transition function./



Fixed-Network Population Protocol

A

A

D

C

A

A

C

B

D

/...and change states according to a transition function./



Fixed-Network Population Protocol

A

A

D

C

A

A

C

B

D

f (A, C) = (A, D)

/...and change states according to a transition function./



Fixed-Network Population Protocol

A

A

D

C

A

A

D
f (A, C) = (A, D)

B

D

/...and change states according to a transition function./



Mediated Population Protocol

A B

/Mediated agents: we add ports with (finite) states./



Mediated Population Protocol

A Ba b

/Mediated agents: we add ports with (finite) states./



Mediated Population Protocol

A Ba b

f (A, B, a, b) = (C, D, c, d)

/The transition function affects both agent and port states./



Mediated Population Protocol

C Dc d

f (A, B, a, b) = (C, D, c, d)

/The transition function affects both agent and port states./



Mediated Population Protocol

C Dc d

x

y

x

y

z

/Each agent has a port for each neighbor./



Schedulers

We distinguish two types of scheduler:

Recurrent: each pair of neighboring agents interacts infinitely
often (in both directions)

k-Bounded: it is recurrent and, between two consecutive
interactions of the same pair of agents, no other pair interacts
more than k times

Note: under a 1-bounded scheduler, the sequence of interactions
is periodic



Stability and Termination

A protocol can be:

Stable: eventually, no agent changes state

Terminating: eventually, all agents are in a terminal state
(i.e., “explicit stability”)

Usually, with the recurrent scheduler protocols are stable;
with the k-bounded schedulers, they are terminating



Overview

Leader Election Problem: all agents start in the same state, and
eventually there is a unique agent in a leader state

Complete graphs

Complete bipartite graphs

Trees

Applications of a Unique Leader:

Token circulation

Construction of a shortest-path spanning tree

Stability detection (turning stable protocols into terminating
ones)

Equivalence of k-bounded schedulers for all k > 1



Leader Election in a Complete Graph

/Theorem: in the complete graph Kn, it is possible to elect a
leader under the recurrent scheduler./



Leader Election in a Complete Graph

L

L L

L L

L L

/Initially, all agents have the leader state./
/



Leader Election in a Complete Graph

L

L L

L L

L L

/When two leaders interact, one is “eliminated”./
/



Leader Election in a Complete Graph

L

L N

L L

L L

/When two leaders interact, one is “eliminated”./
/



Leader Election in a Complete Graph

L

L N

L L

L L

/When two leaders interact, one is “eliminated”./
/



Leader Election in a Complete Graph

L

L N

L L

L N

/When two leaders interact, one is “eliminated”./
/



Leader Election in a Complete Graph

L

L N

L L

L N

/When two leaders interact, one is “eliminated”./
/



Leader Election in a Complete Graph

L

L N

L L

L N

/Otherwise, nothing happens./
/



Leader Election in a Complete Graph

L

L N

L L

L N

/Otherwise, nothing happens./
/



Leader Election in a Complete Graph

L

L N

N L

L N

/Otherwise, nothing happens./
/



Leader Election in a Complete Graph

N

L N

N N

N N

/Eventually, only one leader remains./
/



Leader Election in a Complete Bipartite Graph

/Theorem: in Km,n, it is possible to elect a leader under the
1-bounded scheduler if and only if m and n are coprime./



Leader Election in a Complete Bipartite Graph

/Suppose that m and n are coprime./
/



Leader Election in a Complete Bipartite Graph

/Since the 1-bounded scheduler is periodic, an agent can tell
/when a new period starts by marking the first edge that it “sees”.



Leader Election in a Complete Bipartite Graph

/Since the 1-bounded scheduler is periodic, an agent can tell
/when a new period starts by marking the first edge that it “sees”.



Leader Election in a Complete Bipartite Graph

/Since the 1-bounded scheduler is periodic, an agent can tell
/when a new period starts by marking the first edge that it “sees”.



Leader Election in a Complete Bipartite Graph

/Since the 1-bounded scheduler is periodic, an agent can tell
/when a new period starts by marking the first edge that it “sees”.



Leader Election in a Complete Bipartite Graph

/Since the 1-bounded scheduler is periodic, an agent can tell
/when a new period starts by marking the first edge that it “sees”.



Leader Election in a Complete Bipartite Graph

/The next time it encounters the marked edge, it knows that a
new period has started./



Leader Election in a Complete Bipartite Graph

/In the first phase, we construct a maximal matching./
/



Leader Election in a Complete Bipartite Graph

/When two unmatched agents meet, they become matched./
/



Leader Election in a Complete Bipartite Graph

/When two unmatched agents meet, they become matched./
/



Leader Election in a Complete Bipartite Graph

/When two unmatched agents meet, they become matched./
/



Leader Election in a Complete Bipartite Graph

/When two unmatched agents meet, they become matched./
/



Leader Election in a Complete Bipartite Graph

/When two unmatched agents meet, they become matched./
/



Leader Election in a Complete Bipartite Graph

/When two unmatched agents meet, they become matched./
/



Leader Election in a Complete Bipartite Graph

/When an unmatched agent sees only matched agents for an entire
period, it knows that the matching is maximal./



Leader Election in a Complete Bipartite Graph

/These unmatched agents assume a “reset” state./
/



Leader Election in a Complete Bipartite Graph

/After another period, whoever sees a “reset” agent becomes
unmatched again./



Leader Election in a Complete Bipartite Graph

/After another period, whoever sees a “reset” agent becomes
unmatched again./



Leader Election in a Complete Bipartite Graph

/In the next period, the agents that are still matched become
“eliminated”./



Leader Election in a Complete Bipartite Graph

/Then another matching phase starts, but the “eliminated” agents
are ignored. The same protocol is repeated./



Leader Election in a Complete Bipartite Graph

/Then another matching phase starts, but the “eliminated” agents
are ignored. The same protocol is repeated./



Leader Election in a Complete Bipartite Graph

/Then another matching phase starts, but the “eliminated” agents
are ignored. The same protocol is repeated./



Leader Election in a Complete Bipartite Graph

/Then another matching phase starts, but the “eliminated” agents
are ignored. The same protocol is repeated./



Leader Election in a Complete Bipartite Graph

/Then another matching phase starts, but the “eliminated” agents
are ignored. The same protocol is repeated./



Leader Election in a Complete Bipartite Graph

/Then another matching phase starts, but the “eliminated” agents
are ignored. The same protocol is repeated./



Leader Election in a Complete Bipartite Graph

/Since m and n are coprime, eventually only one agent will remain
available./



Leader Election in a Complete Bipartite Graph

L

/When this agent sees that all its neighbors are “eliminated”, it
becomes the leader. This protocol is terminating./



Leader Election in a Complete Bipartite Graph

/Suppose that m and n have a common divisor d > 1./
/



Leader Election in a Complete Bipartite Graph

A A A A A A

A A A A A A A A A

/We partition each side of the network into groups of d agents,
and we assign all agents the same initial state./



Leader Election in a Complete Bipartite Graph

B B B A A A

C C C A A A A A A

/The scheduler chooses two groups on opposite sides, and
activates the agents according to a perfect matching./



Leader Election in a Complete Bipartite Graph

D D D A A A

E E E A A A A A A

/Then it chooses another perfect matching, and so on, until all
pairs of neighbors have been activated./



Leader Election in a Complete Bipartite Graph

F F F A A A

G G G A A A A A A

/Then it chooses another perfect matching, and so on, until all
pairs of neighbors have been activated./



Leader Election in a Complete Bipartite Graph

H H H A A A

G G G I I I A A A

/Then it does the same with two other groups, and so on, until all
pairs of neighbors have been activated./



Leader Election in a Complete Bipartite Graph

H H H J J J

K K K I I I A A A

/Every d interactions, all agents in the same group have the same
state. Hence a leader cannot be elected./



Leader Election in a Tree

/Theorem: in a tree, it is possible to elect a leader under the
recurrent scheduler./



Leader Election in a Tree

L

/When two agents meet, they form a small rooted tree, where the
root is a leader./



Leader Election in a Tree

L

L

/Arrows are encoded as port states./
/



Leader Election in a Tree

L

L
L

/New agents may join existing trees, and a forest is formed./
/



Leader Election in a Tree

L

L L

busy

/When two trees merge, one agent becomes “busy”. Its task is to
tell its leader that it is no longer a leader./



Leader Election in a Tree

L

L L

busy

busy

/The parent of a busy agent becomes busy too, and reverses the
corresponding arrow./



Leader Election in a Tree

L

L L

busy

/The child then ceases to be busy./
/



Leader Election in a Tree

L

L L

busy

/A busy agent rejects all requests to merge./
/



Leader Election in a Tree

L

L L

busy

/A busy agent rejects all requests to merge./
/



Leader Election in a Tree

L

L

L L

busy

busy

/When a leader notices that one of its children is busy, it stops
being a leader./



Leader Election in a Tree

L

L L

busy

busy

/When a leader notices that one of its children is busy, it stops
being a leader./



Leader Election in a Tree

L

L

busy

busy

/When a leader notices that one of its children is busy, it stops
being a leader./



Leader Election in a Tree

L

L

busy

/When a leader notices that one of its children is busy, it stops
being a leader./



Leader Election in a Tree

L

L

busy

busy

/Agents that are no longer busy accept new merge requests./
/



Leader Election in a Tree

L

/Eventually, only one leader is left, and the whole tree is oriented
toward it./



Leader Election in a Tree

LN

/If the scheduler is k-bounded, a leaf eventually knows that it is a
leaf. A non-leader leaf can safely terminate./



Leader Election in a Tree

LN

N N
N

N

N

N

N

/If the scheduler is k-bounded, a leaf eventually knows that it is a
leaf. A non-leader leaf can safely terminate./



Leader Election in a Tree

N

LN

N N
N

N

N

N

N

N

/If an agent’s children all have terminated, the agent eventually
realizes and terminates./



Leader Election in a Tree

N

LN

N N
N

N

N

N

N

N

N

N

N

/Eventually, all non-leader agents terminate, and hence the
protocol is terminating./



Application: Token Circulation

L

/Suppose there is a unique leader and we want to make it “visit”
the entire network./



Application: Token Circulation

L

/By that we mean that the leadership is “transferred” to a
different agent during an interaction./



Application: Token Circulation

L

/When an agent that has never been leader meets the leader, it
takes the leadership./



Application: Token Circulation

L

/As the leader goes, it leaves a “trail” of arrows./
/



Application: Token Circulation

L

/When a new agent meets an agent that has already been leader,
it becomes a “summoner”./

/



Application: Token Circulation

L

/When a new agent meets an agent that has already been leader,
it becomes a “summoner”./

/



Application: Token Circulation

L

/The parent of a summoner becomes a summoner as well, and
reverses the corresponding arrow./



Application: Token Circulation

L

/The parent of a summoner becomes a summoner as well, and
reverses the corresponding arrow./



Application: Token Circulation

L

/When the leader meets a summoner, it gives it the leadership./
/



Application: Token Circulation

L

/A summoner ignores all requests from new agents./
/



Application: Token Circulation

L

/The leader keeps following the arrows through summoners,
reversing them as it goes./

/



Application: Token Circulation

L

/Different agents may summon the leader in parallel, but they
never interfere with each other./



Application: Token Circulation

L

/Different agents may summon the leader in parallel, but they
never interfere with each other./



Application: Token Circulation

L

/Different agents may summon the leader in parallel, but they
never interfere with each other./



Application: Token Circulation

L

/This is because all operations are performed on a subtree of the
network./



Application: Token Circulation

L

/This is because all operations are performed on a subtree of the
network./



Application: Token Circulation

L

/This is because all operations are performed on a subtree of the
network./



Application: Token Circulation

L

/This is because all operations are performed on a subtree of the
network./



Application: Token Circulation

L

/Eventually, the leader visits the entire network. As a byproduct, a
rooted spanning tree has been constructed./



Application: Token Circulation

L

/Note that this spanning tree may not be balanced./
/



Application: Shortest-Path Spanning Tree Construction

L

/Say we want to construct a better spanning tree rooted at the
leader, under the k-bounded scheduler./



Application: Shortest-Path Spanning Tree Construction

L

leaf

/When a new agent interacts with the leader, it becomes a “leaf”./
/



Application: Shortest-Path Spanning Tree Construction

L

leaf

leaf

/When a new agent interacts with the leader, it becomes a “leaf”./
/



Application: Shortest-Path Spanning Tree Construction

L

leaf

leaf

/When a new agent interacts with the leader, it becomes a “leaf”./
/



Application: Shortest-Path Spanning Tree Construction

L

leaf

leaf

leaf

/Since the scheduler is k-bounded, the leader knows when all its
neighbors are leaves./



Application: Shortest-Path Spanning Tree Construction

L leaf

leaf

new level

/The leader issues a “new level” command along the tree./
/



Application: Shortest-Path Spanning Tree Construction

L leaf

leaf

leaf

/The leaves that receive a “new level” message start a new level of
the spanning tree./



Application: Shortest-Path Spanning Tree Construction

L

leaf

leaf

new level

/The leaves that receive a “new level” message start a new level of
the spanning tree./



Application: Shortest-Path Spanning Tree Construction

L

leaf

leaf

/The leaves that receive a “new level” message start a new level of
the spanning tree./



Application: Shortest-Path Spanning Tree Construction

L

leaf

leaf

leaf

leaf

leaf

/The leaves that receive a “new level” message start a new level of
the spanning tree./



Application: Shortest-Path Spanning Tree Construction

L

leaf

leaf

leaf

leaf

leaf

done

/When they realize that all their neighbors have been included in
the spanning tree, they send a “done” message to the leader./



Application: Shortest-Path Spanning Tree Construction

L

leaf

leaf

leaf

leaf

leaf

done
done

done

/When they realize that all their neighbors have been included in
the spanning tree, they send a “done” message to the leader./



Application: Shortest-Path Spanning Tree Construction

L

leaf

leaf

leaf

leaf

leaf

new level

new level new level

/The leader issues another “new level” command, which is
forwarded along the spanning tree./

/



Application: Shortest-Path Spanning Tree Construction

L

leaf

leaf

leaf

leaf

leaf

new level new level

new level

/The leader issues another “new level” command, which is
forwarded along the spanning tree./

/



Application: Shortest-Path Spanning Tree Construction

L

leaf

leaf

leaf

leaf

T

/A new level of the spanning tree is constructed./
/



Application: Shortest-Path Spanning Tree Construction

L

leaf

leaf

leaf

leaf

T

term.

/The leaves that are unable to expand assume a terminal state and
send a “terminated” message toward the leader./



Application: Shortest-Path Spanning Tree Construction

L

T

T

T

leaf

T

/The leaves that are unable to expand assume a terminal state and
send a “terminated” message toward the leader./



Application: Shortest-Path Spanning Tree Construction

L

T

T

T

leaf

T

term.

term.

term.

term.

/The leaves that are unable to expand assume a terminal state and
send a “terminated” message toward the leader./



Application: Shortest-Path Spanning Tree Construction

L

T

T

T

leaf

T

term.

term.

term.

term.

term.

term.

term.

T

T

T

/When an agent’s children are all sending a “terminated” message,
the agent forwards it and terminates as well./



Application: Shortest-Path Spanning Tree Construction

L

T

T

T

leaf

T

term.

term.

term.

term.

term.

term.

term.

term.

term.

T

T

T

T

T

/When an agent’s children are all sending a “terminated” message,
the agent forwards it and terminates as well./



Application: Shortest-Path Spanning Tree Construction

L

T

T

T

T

T

T

T

T

leaf

T

term.

term.

term.

term.

term.

term.

term.

term.

term.

new level

/When an agent’s children are all sending a “terminated” message,
the agent forwards it and terminates as well./



Application: Shortest-Path Spanning Tree Construction

L

T

T

T

T

T

T

T

T

T

term.

term.

term.

term.

term.

term.

term.

term.

term.

T

/When an agent’s children are all sending a “terminated” message,
the agent forwards it and terminates as well./



Application: Shortest-Path Spanning Tree Construction

L

T

T

T

T

T

T

T

T

T

term.

term.

term.

term.

term.

term.

term.

term.

term.

term.

T

/When an agent’s children are all sending a “terminated” message,
the agent forwards it and terminates as well./



Application: Shortest-Path Spanning Tree Construction

L

T

T

T

T

T

T

T

T

T

term.

term.

term.

term.

term.

term.

term.

term.

term.

term.

T

term.

term.

term.

T

T
T

/When the leader receives a “terminated” message from all its
children, it terminates./

/



Application: Stability Detection

Say we have a leader and a spanning tree, and we want to detect/
(under the k-bounded scheduler) when a protocol P stabilizes./



Application: Stability Detection

f(*)

f(*)

/Whenever a new edge is activated, its endpoints “simulate” a
transition according to P ./



Application: Stability Detection

f(*)

f(*)

/Whenever a new edge is activated, its endpoints “simulate” a
transition according to P ./



Application: Stability Detection

f(*)

f(*)

/Whenever a new edge is activated, its endpoints “simulate” a
transition according to P ./



Application: Stability Detection

/These edges are marked, so the corresponding simulated
interaction does not occur twice./



Application: Stability Detection

f(*)

f(*)

/These edges are marked, so the corresponding simulated
interaction does not occur twice./



Application: Stability Detection

f(*)
f(*)

stable

/If a simulated interaction over an edge leaves the simulated states
unchanged, the edge is marked as “stable”./



Application: Stability Detection

f(*)

f(*)

stable

/If a simulated interaction over an edge leaves the simulated states
unchanged, the edge is marked as “stable”./



Application: Stability Detection

f(*)

f(*) stable

/Since the scheduler is k-bounded, an agent eventually realizes
that it has interacted with all its neighbors./



Application: Stability Detection

stabledone

/When this happens, the agent becomes “done”./
/



Application: Stability Detection

stabledone

done

donedone

/If all the children of a “done” agent (in the spanning tree) are/
“done”, the agent forwards a “done” message to its parent.



Application: Stability Detection

stabledone

done

donedone

done

done

/If all the children of a “done” agent (in the spanning tree) are/
“done”, the agent forwards a “done” message to its parent.



Application: Stability Detection

stabledone

done

donedone

done

done

done

done

/If all the children of a “done” agent (in the spanning tree) are/
“done”, the agent forwards a “done” message to its parent.



Application: Stability Detection

stabledone

done

donedone

done

done

done

done

stable

stable

done

done

done

done

done

done

done

done

done

done

done

done

done

done

/Eventually, the leader receives “done” messages from all its
children./



Application: Stability Detection

done

done

donedone

reset

done

done

done

done

done

done

done

/At this point, the leader broadcasts a “reset” message./
/



Application: Stability Detection

done

donedone

reset

done

done

done

done

done

done

done

/At this point, the leader broadcasts a “reset” message./
/



Application: Stability Detection

done

donedone

done

done

done

done

done

done

done

/All edges that are incident to a “reset” agent become unmarked./
/



Application: Stability Detection

done

donedone

done

done

done

done

done

done

reset

/The “reset” message is forwarded along the spanning tree./
/



Application: Stability Detection

/Eventually, the whole network is reset. The leader is notified, and
starts a new simulation phase./



Application: Stability Detection

stable

f(*)

f(*)

/If P is stable, eventually all edges will be marked as “stable”./
/



Application: Stability Detection

stable

f(*)

f(*)
stable

/If P is stable, eventually all edges will be marked as “stable”./
/



Application: Stability Detection

stable

stable

stabledone

done

donedone

done

done

done

stable

stable

done

done

done

done

done

done

done

done

done

done

done

done

done

/All agents send “done” and “stable” messages to their parents./
/



Application: Stability Detection

done

done

donedone

done

done

done

done

done

done

done

done

T

/Eventually, the leader receives “done” and “stable” messages
from all its children./



Application: Stability Detection

done

done

donedone

done

done

done

done

done

done

done

T

term.

T

/The leader then terminates and broadcasts a “terminate”
/message, which is forwarded along the spanning tree.



Application: Stability Detection

done

donedone

done

done

done

done

done

done

done

T

term.

T

T

/The leader then terminates and broadcasts a “terminate”
/message, which is forwarded along the spanning tree.



Application: Stability Detection

T

T

T

T

T

T

T

T

T

T

T

T

T

/This converts the stable protocol P into a terminating one./
/



Application: Simulation of 2-Bounded Schedulers

c a b e d e b a d c

Note: The simulated schedule activates all edges of the network in
some order, then it activates them again in some other order, etc.



Application: Simulation of 2-Bounded Schedulers

c a b e d e b a d c

/So, between two activations of an edge (say, a), each other edge
is activated at most twice./



Application: Simulation of 2-Bounded Schedulers

c a b e d e b a d c

/So, between two activations of an edge (say, a), each other edge
is activated at most twice./



Application: Simulation of 2-Bounded Schedulers

c a b e d e b a d c

/So, between two activations of an edge (say, a), each other edge
is activated at most twice./



Application: Simulation of 2-Bounded Schedulers

c a b e d e b a d c

/It follows that the simulated schedule is 2-bounded./
/



Application: Simulation of 2-Bounded Schedulers

c a b e d e b a d c

/So, the protocols that work under the 2-bounded scheduler also
work under all k-bounded schedulers, for all k > 2./



Application: Simulation of 2-Bounded Schedulers

c a b e d e b a d c

/Theorem: in every network where a leader can be elected, the
k-bounded schedulers are all equivalent, for k > 1./



One-Way and Faulty Models



One-way models and omission faults

)a, b(sf )a, b(rf

a b

I2

TW

T3 IT

I4I3T2

I1
T1

IO

/The traditional interaction model is called Two-Way./



One-way models and omission faults

a b

I2

TW

T3 IT

I4I3T2

I1
T1

IO

)a, b(f

/Immediate Observation: only the second agent transitions./



One-way models and omission faults

a b

I2

TW

T3 IT

I4I3T2

I1
T1

)a(g

IO

)a, b(f

/Immediate Transmission: the first agent detects proximity./



One-way models and omission faults

a b

I2

TW

T3 IT

I4I3T2

I1
T1

)a(g

IO

)a, b(f

a b

)a(g

/I1: IT with omission faults, no detection./



One-way models and omission faults

a b

I2

TW

T3 IT

I4I3T2

I1
T1

)a(g

IO

)a, b(f

a b

)a(g )b(g

/I2: IT with omission faults, proximity detection./



One-way models and omission faults

a b

I2

TW

T3 IT

I4I3T2

I1
T1

)a(g

IO

)a, b(f

a b

)a(g )b(h

/I3: IT with omission faults, reactor-side omission detection./



One-way models and omission faults

a b

I2

TW

T3 IT

I4I3T2

I1
T1

)a(g

IO

)a, b(f

a b

)b(g)a(o

/I4: IT with omission faults, starter-side omission detection./



One-way models and omission faults

I2

TW

T3 IT

)a, b(sf )a, b(rf

a b

I4I3T2

I1
T1

IOa b

)a, b(rf

a b

)a, b(sf

/T1: TW with omission faults, no detection./



One-way models and omission faults

I2

TW

T3 IT

)a, b(sf )a, b(rf

a b

I4I3T2

I1
T1

IO

)a, b(rf

a b

a b

a b

)a, b(sf

)a(o

)a(o

/T2: TW with omission faults, starter-side omission detection./



One-way models and omission faults

I2

TW

T3 IT

)a, b(sf )a, b(rf

a b

I4I3T2

I1
T1

IO

)a, b(rf

a b

a b

a b

)a, b(sf

)a(o

)a(o

)b(h

)b(h

/T3: TW with omission faults, omission detection by both sides./



One-way models and omission faults

}))ra(, h)sa(o(,))ra(, h)r, asa(sf(,))r, asa(r, f)sa(o(

,))r, asa(r, f)r, asa(sf({) =r, asa(δ

3T

))r, asa(r, f)r, asa(sf) = (r, asa(δ

TW

})r, a)sa(o(,)r, a)r, asa(sf(,))r, asa(r, f)sa(o(

,))r, asa(r, f)r, asa(sf({) =r, asa(δ

2T

})r, a)r, asa(sf(,))r, asa(r, fsa(

,))r, asa(r, f)r, asa(sf({) =r, asa(δ

1T

}))ra(, h)sa(g(,))r, asa(, f)sa(g({) =r, asa(δ

3I

}))ra(, g)sa(o(,))r, asa(, f)sa(g({) =r, asa(δ

4I

}))ra(, g)sa(g(,))r, asa(, f)sa(g({) =r, asa(δ

2I

})r, a)sa(g(,))r, asa(, f)sa(g({) =r, asa(δ

1I

))r, asa(, f)sa(g) = (r, asa(δ

IT

))r, asa(, fsa) = (r, asa(δ

IO

Theorem: all possible models obtained by combining one-way and
two-way interactions with omission detection and proximity
detection, starter-side or reactor-side, fall into one of these classes.



Simulating TW protocols with weaker ones

)a, b(sf )a, b(rf

a b

/We seek to simulate two-way interactions in weaker models./



Simulating TW protocols with weaker ones

a b

a 1w b 1
′w

c) =a, b(sf d) =a, b(rf

/The simulating agents have a simulated state and a work state./



Simulating TW protocols with weaker ones

a b

a 2w b 2
′w

c) =a, b(sf d) =a, b(rf

/Typically, an interaction determines a change in the work state./



Simulating TW protocols with weaker ones

a b

a 3w b 2
′w

c) =a, b(sf d) =a, b(rf

/Typically, an interaction determines a change in the work state./



Simulating TW protocols with weaker ones

a b

a 3w b 3
′w

c) =a, b(sf d) =a, b(rf

/Typically, an interaction determines a change in the work state./



Simulating TW protocols with weaker ones

a b

c 4w b 3
′w

c) =a, b(sf d) =a, b(rf

/Occasionally, changes in the simulated state may occur./



Simulating TW protocols with weaker ones

a b

c 4w b 4
′w

c) =a, b(sf d) =a, b(rf

/Occasionally, changes in the simulated state may occur./



Simulating TW protocols with weaker ones

a b

c 4w b 5
′w

c) =a, b(sf d) =a, b(rf

/Occasionally, changes in the simulated state may occur./



Simulating TW protocols with weaker ones

a b

c 4w d 6
′w

c) =a, b(sf d) =a, b(rf

/These have to mimic transitions in the simulated TW protocol./



Simulating TW protocols with weaker ones

c d

c 4w d 6
′w

/Globally, we want to pair up simulated states transitions.../



Simulating TW protocols with weaker ones

c d

c 4w d 6
′w

/...in a way that is compatible with the simulated TW protocol./



Results: infinite memory

I2

TW

T3 IT

I4I3T2

I1
T1

IO

/Suppose the simulating agents have infinite memory: what
models can simulate all TW population protocols?/



Results: infinite memory

I2

TW

T3 IT

I4I3T2

I1
T1

IO

/In IT, we can implement a token-passing technique that can be
used to simulate two-way interactions./



Results: infinite memory

I2

TW

T3 IT

I4I3T2

I1
T1

IO

/In T3, it is impossible to simulate a two-way protocol for the
pairing problem./



Results: infinite memory

I2

TW

T3 IT

I4I3T2

I1
T1

IO

/As a consequence, simulation is impossible also in the weaker
interaction models./



Results: unique IDs

I2

TW

T3 IT

I4I3T2

I1
T1

IO

/Suppose the simulating agents have unique IDs as part of their
initial state./



Results: unique IDs

I2

TW

T3 IT

I4I3T2

I1
T1

IO

/In IO, we can implement a locking mechanism, along with a
rollback process to avoid deadlocks./



Results: unique IDs

I2

TW

T3 IT

I4I3T2

I1
T1

IO

/As a consequence, simulation is possible also in the stronger
interaction models./



Results: knowledge of n

I2

TW

T3 IT

I4I3T2

I1
T1

IO

/Suppose the simulating agents know the size of the system, n,
and have O(log n) bits of internal memory./



Results: knowledge of n

I2

TW

T3 IT

I4I3T2

I1
T1

IO

/In IO, we can implement a naming algorithm that eventually
gives each agent a unique ID./



Results: knowledge of n

I2

TW

T3 IT

I4I3T2

I1
T1

IO

/When an agent has ID n, the system starts executing the previous
unique-ID simulation protocol./



Results: knowledge on omissions

I2

TW

T3 IT

I4I3T2

I1
T1

IO

/Suppose that the simulating agents are given an upper bound b
on the number of faulty interactions in the system./



Results: knowledge on omissions

I2

TW

T3 IT

I4I3T2

I1
T1

IO

/In I3 and I4, we can extend the token-passing technique by
splitting each token into b+ 1 parts./



Results: knowledge on omissions

I2

TW

T3 IT

I4I3T2

I1
T1

IO

/In T1, I1, and I2, it is impossible to simulate the pairing protocol,
even for b = 1./



Results: knowledge on omissions

I2

TW

T3 IT

I4I3T2

I1
T1

IO

/Open problem: is it possible to simulate all TW protocols in T2,
given an upper bound on the number of faulty interactions?/


