Seminar 7 - Mobile Robots:

Square Formation and Meeting
Distributed Computing in Anonymous Dynamic Systems

Giovanni Viglietta

Rome - March 14, 2024

Distributed Computing in Anonymous Dynamic Systems

Syllabus

- Anonymous Networks
- Introduction and basic algorithms for static networks
- Dynamicity and history trees
- Optimal computation in networks with and without leaders
- Computation in dynamic congested networks
- Population Protocols
- Introduction and basic algorithmic techniques
- Leader election in Mediated Population Protocols
- Mobile Robots
- Gathering and Pattern Formation in the plane
- Meeting in a polygon by oblivious robots

Exam

Pre-recorded 10 -minute presentation video on one of the papers that will be suggested at the end of the course.

- Mobile robots in the plane
- Square Formation problem
- Meeting problem in a polygon
- With memory
- With no memory

Square Formation

Anonymous robots sensing and moving in the plane

We consider a swarm of anonymous robots in the Euclidean plane

Anonymous robots sensing and moving in the plane

Each robot can sense the positions of all other robots...

Anonymous robots sensing and moving in the plane

Each robot can sense the positions of all other robots...

Anonymous robots sensing and moving in the plane

Each robot can sense the positions of all other robots...

Anonymous robots sensing and moving in the plane

Each robot can sense the positions of all other robots...

Anonymous robots sensing and moving in the plane

...And move according to a deterministic algorithm

Anonymous robots sensing and moving in the plane

...And move according to a deterministic algorithm

Different robots are activated asynchronously

Anonymous robots sensing and moving in the plane

Different robots are activated asynchronously

Anonymous robots sensing and moving in the plane

Different robots are activated asynchronously

Anonymous robots sensing and moving in the plane

Different robots are activated asynchronously

Pattern Formation problem

Problem: form a given pattern from any initial configuration

Problem: form a given pattern from any initial configuration

Problem: form a given pattern from any initial configuration

Pattern Formation problem

Problem: form a given pattern from any initial configuration

Pattern Formation problem

Problem: form a given pattern from any initial configuration

Pattern Formation problem

Problem: form a given pattern from any initial configuration

Pattern Formation problem

Problem: form a given pattern from any initial configuration

Pattern Formation problem

The pattern may be rotated, reflected, and scaled

Pattern Formation problem

The pattern may be rotated, reflected, and scaled

Pattern Formation problem

The pattern may be rotated, reflected, and scaled

Pattern Formation problem

The pattern may be rotated, reflected, and scaled

Model definition

Robots are:

- Dimensionless (robots are modeled as geometric points)
- Anonymous (no unique identifiers)
- Homogeneous (the same algorithm is executed by all robots)
- Autonomous (no centralized control)
- Oblivious (no memory of past events)
- Silent (no explicit way of communicating)
- Long-sighted (complete visibility of all other robots)
- Disoriented (robots do not share a common reference frame, and a robot's reference frame may change from turn to turn)
- No common unit distance
- No common compass
- No common notion of clockwise direction

Life cycles and asynchronicity

Each robot repeats a Look/Compute/Move cycle

Life cycles and asynchronicity

Each robot repeats a Look/Compute/Move cycle

Life cycles and asynchronicity

In a Look phase, an instantaneous snapshot is taken of all robots

Life cycles and asynchronicity

A destination point is computed as a function of the snapshot

Life cycles and asynchronicity

The destination point is approached with unpredictable speed

Life cycles and asynchronicity

The destination point is approached with unpredictable speed

Life cycles and asynchronicity

The destination point is approached with unpredictable speed

Life cycles and asynchronicity

The destination point is approached with unpredictable speed

Life cycles and asynchronicity

The destination point is approached with unpredictable speed

Life cycles and asynchronicity

The robot may unpredictably stop before reaching the destination...

Life cycles and asynchronicity

...and execute a new Look/Compute phase

Life cycles and asynchronicity

...and execute a new Look/Compute phase

Life cycles and asynchronicity

At each cycle, a robot is guaranteed to move by at least δ

Life cycles and asynchronicity

Look / Compute

Different robots execute independent cycles, asynchronously

Let the initial configuration be rotationally symmetric

Pattern Formation problem: counterexample

All robots have the same view and compute symmetric destinations

Pattern Formation problem: counterexample

If they are all activated synchronously, they remain symmetric

Pattern Formation problem: counterexample

Hence Pattern Formation is unsolvable if the pattern is asymmetric

Pattern Formation problem: state of the art

No pattern is formable from every possible initial configuration, except:

- Single point (aka Gathering problem)
\Longrightarrow Solved [Cieliebak-Flocchini-Prencipe-Santoro, 2012]

Pattern Formation problem: state of the art

No pattern is formable from every possible initial configuration, except:

- Single point (aka Gathering problem)
\Longrightarrow Solved [Cieliebak-Flocchini-Prencipe-Santoro, 2012]

- Regular polygon
\Longrightarrow Solved... [Flocchini-Prencipe-Santoro-Viglietta, 2014-15]

Pattern Formation problem: state of the art

No pattern is formable from every possible initial configuration, except:

- Single point (aka Gathering problem)
\Longrightarrow Solved [Cieliebak-Flocchini-Prencipe-Santoro, 2012]

- Regular polygon
\Longrightarrow Solved... [Flocchini-Prencipe-Santoro-Viglietta, 2014-15]
...except for 4 robots! (aka Square Formation problem)

General approach to forming a regular polygon

An important configuration is the biangular one

General approach to forming a regular polygon

An important configuration is the biangular one

General approach to forming a regular polygon

The general algorithm identifies a supporting polygon...

General approach to forming a regular polygon

..And makes each robot move to the closest vertex

General approach to forming a regular polygon

As robots move, the supporting polygon is preserved

General approach to forming a regular polygon

As robots move, the supporting polygon is preserved

With 4 robots, biangular configurations are rectangles

Why the general approach fails with 4 robots

We can still identify a supporting square...

Why the general approach fails with 4 robots

...But it is not unique!

Why the general approach fails with 4 robots

...But it is not unique!

Why the general approach fails with 4 robots

The "central" supporting polygon may be chosen...

Why the general approach fails with 4 robots

...But asynchronous robots may never manage to form a square

Why the general approach fails with 4 robots

...But asynchronous robots may never manage to form a square

...But asynchronous robots may never manage to form a square

...But asynchronous robots may never manage to form a square

How do we solve the rectangular case?

Choose a supporting square that is tilted by $45^{\circ} \ldots$

...And make the robots move to the midpoints of its edges

Again, the supporting square is preserved as the robots move

Again, the supporting square is preserved as the robots move

When they reach the midpoints, they form a square

Identifying the supporting square

In general, we can also identify a supporting square...

Identifying the supporting square

...Having a robot on each (extended) edge

Identifying the supporting square

But once again, the supporting square is not unique!

Identifying the supporting square

However, there is a geometric construction that identifies one

Identifying the supporting square

However, there is a geometric construction that identifies one

Identifying the supporting square

However, there is a geometric construction that identifies one

Identifying the supporting square

However, there is a geometric construction that identifies one

Identifying the supporting square

However, there is a geometric construction that identifies one

Identifying the supporting square

However, there is a geometric construction that identifies one

Identifying the supporting square

All robots automatically agree on the same supporting square!

Identifying the supporting square

All robots automatically agree on the same supporting square!

Identifying the supporting square

All robots automatically agree on the same supporting square!

Identifying the supporting square

No two robots have intersecting pathways!

Identifying the supporting square

No two robots have intersecting pathways!

Identifying the supporting square

No two robots have intersecting pathways!

Problem: orthogonal diagonals

Suppose the two diagonals "accidentally" become orthogonal

Problem: orthogonal diagonals

Suppose the two diagonals "accidentally" become orthogonal

Problem: orthogonal diagonals

Then our construction does not work

Problem: orthogonal diagonals

The robots may not agree on a supporting square

Special strategy for orthogonal diagonals

Special strategy for orthogonal diagonals

If the diagonals are orthogonal, we use a different approach

Special strategy for orthogonal diagonals

The robots that are closest to the center move away from it

Special strategy for orthogonal diagonals

The robots that are closest to the center move away from it

Special strategy for orthogonal diagonals

The robots that are closest to the center move away from it

Special strategy for non-convex configurations

Special strategy for non-convex configurations

...Because the diagonals are not well defined

Special strategy for non-convex configurations

In this case, the internal robot moves...

Special strategy for non-convex configurations

In this case, the internal robot moves...

Special strategy for non-convex configurations

...So to make the diagonals orthogonal...

Special strategy for non-convex configurations

...And reduce the problem to the previous case

Special strategy for collinear configurations

If the robots are collinear, the previous approach does not work

Special strategy for collinear configurations

In this case, the internal robots move to either side of the line

Special strategy for collinear configurations

As they asynchronously move, their supporting square may change

Special strategy for collinear configurations

So we must identify a "safe region", e.g., a thin hexagon

Special strategy for collinear configurations

If the robots are in a thin hexagon, they follow a special algorithm

Special strategy for collinear configurations

If they end up on opposite sides of the long diagonal...

Special strategy for collinear configurations

...We make them form a configuration with orthogonal diagonals

Special strategy for collinear configurations

Otherwise, they move on two vertices and wait for each other

Special strategy for collinear configurations

Otherwise, they move on two vertices and wait for each other

Special strategy for collinear configurations

Otherwise, they move on two vertices and wait for each other

Special strategy for collinear configurations

Otherwise, they move on two vertices and wait for each other

Special strategy for collinear configurations

Now that they are not moving, they agree on a supporting square

General algorithm: one discordant robot

Suppose one robot is "discordant" with all the others

General algorithm: one discordant robot

Suppose one robot is "discordant" with all the others

General algorithm: one discordant robot

We let only the discordant robot move toward its final destination

General algorithm: one discordant robot

As it moves, it may cause the diagonals to become orthogonal!

General algorithm: one discordant robot

In this case, it has to stop at the point of orthogonality...

General algorithm: one discordant robot

In this case, it has to stop at the point of orthogonality...

General algorithm: one discordant robot

..So all robots will behave coherently, despite asynchronicity

General algorithm: two opposite concordant, two finished

We let the two opposite robots move

General algorithm: two opposite concordant, two finished

The diagonals can never become orthogonal by accident

General algorithm: two opposite concordant, two finished

The diagonals can never become orthogonal by accident

General algorithm: two opposite concordant, two finished

The diagonals can never become orthogonal by accident

General algorithm: two opposite concordant, two finished

No thin hexagon can be formed by accident...

General algorithm: two opposite concordant, two finished

No thin hexagon can be formed by accident...

General algorithm: two opposite concordant, two finished

...Because the sum of distances from the long diagonal is too large

General algorithm: two opposite concordant, two finished

...Because the sum of distances from the long diagonal is too large

General algorithm: two opposite concordant, two finished

...Because the sum of distances from the long diagonal is too large

General algorithm: two opposite concordant, two finished

...Because the sum of distances from the long diagonal is too large

General algorithm: two opposite concordant, two finished

...Because the sum of distances from the long diagonal is too large

General algorithm: two opposite concordant, two finished

But the configuration may become non-convex by accident!

General algorithm: two opposite concordant, two finished

But the configuration may become non-convex by accident!

General algorithm: two opposite concordant, two finished

But the configuration may become non-convex by accident!

General algorithm: two opposite concordant, two finished

This can be prevented by making several shorter moves

General algorithm: two opposite concordant, two finished

This can be prevented by making several shorter moves

General algorithm: two opposite concordant, two finished

This can be prevented by making several shorter moves

General algorithm: two opposite concordant, two finished

This can be prevented by making several shorter moves

General algorithm: two opposite concordant, two finished

This can be prevented by making several shorter moves

General algorithm: two opposite concordant, two finished

This can be prevented by making several shorter moves

General algorithm: two opposite concordant, two finished

This can be prevented by making several shorter moves

General algorithm: all concordant

We let only the robots on the shortest diagonal move...

General algorithm: all concordant

...Because it will remain the shortest as they move

General algorithm: all concordant

But one robot (not both!) may be "blocked" by the other diagonal

General algorithm: all concordant

If so, only the blocked robot moves, and stops on the diagonal

General algorithm: all concordant

Then all robots behave coherently as in the non-convex case

General algorithm: two convergent robots

The convergent robots move, while the others wait

General algorithm: two convergent robots

No thin hexagon can be formed by accident

General algorithm: two convergent robots

No thin hexagon can be formed by accident

General algorithm: two convergent robots

No thin hexagon can be formed by accident

General algorithm: two convergent robots

No thin hexagon can be formed by accident

General algorithm: last case

If only one robot is external...

General algorithm: last case

The angles it forms with the two far robots are $>25^{\circ}$

General algorithm: last case

So a thin hexagon cannot be formed, because its angles are 50°

General algorithm: last case

So a thin hexagon cannot be formed, because its angles are 50°

General algorithm: last case

This yields a simple coordination protocol for the robots in all cases

Algorithm summary

The configuration is checked against each possible class, in the correct order!
(1) Orthogonal diagonals
(2) Thin hexagon
(3) Non-convex
(9) All concordant
(3) Two convergent, two divergent
(6) Two divergent, two divergent
(3) One discordant

Algorithm summary

The configuration is checked against each possible class, in the correct order!
(1) Orthogonal diagonals
(2) Thin hexagon
(3) Non-convex
(9) All concordant
(6) Two convergent, two divergent
((wwo divergent, two divergent
(3) One discordant

Ensure that, when a class transition occurs,

- No robot is moving (to prevent inconsistent behaviors!)
- The resulting class has lower index (in the list above)

Algorithm summary

The configuration is checked against each possible class, in the correct order!
(1) Orthogonal diagonals
(2) Thin hexagon
(3) Non-convex
(9) All concordant
(6) Two convergent, two divergent
(0) Two divergent, two divergent
(3) One discordant

Ensure that, when a class transition occurs,

- No robot is moving (to prevent inconsistent behaviors!)
- The resulting class has lower index (in the list above)

The last rule is broken in only one case!

Resolving the anomaly

When all robots are on the same side of a thin hexagon...

Resolving the anomaly

...They move to the vertices, and then apply the general algorithm

Resolving the anomaly

As a consequence, the internal robots move first

Resolving the anomaly

As a consequence, the internal robots move first

And finally the external robots move...

Resolving the anomaly

...Thus forming a square

Concluding remarks

The only solvable Pattern Formation problems for n robots are:

- Single point (except the case $n=2$, which is unsolvable)
- Regular n-gon (now also for $n=4$)

Concluding remarks

The only solvable Pattern Formation problems for n robots are:

- Single point (except the case $n=2$, which is unsolvable)
- Regular n-gon (now also for $n=4$)

For $n>2$, this is true even if

- Robots are fully synchronous
- Robots have a common notion of "clockwise" (chirality)
- Robots always reach their destination (rigidity)
\Longrightarrow For Pattern Formation problems, these features are computationally irrelevant!

Meeting in a Polygon

Meeting Problem

Setting: a polygon with some searchers in it.

Meeting Problem

The polygon's edges obstruct visibility.

Meeting Problem

The invisible parts of the polygon are unknown to the searchers.

Meeting Problem

Each searcher has its own coordinate system.

Meeting Problem

Searchers can move within the polygon.

Meeting Problem

Movements are asynchronous.

Meeting Problem

Movements are asynchronous.

Meeting Problem

Movements are asynchronous.

Meeting Problem

Searchers are anonymous: they all execute the same algorithm.

Meeting Problem

The goal is for any two searchers to see each other.

Meeting Problem

The goal is for any two searchers to see each other.

Meeting Problem

After, they can rendezvous and carry out more complex tasks.

Related Literature

"Static version" of the Meeting problem:
\square T. Shermer

Hiding people in polygons
Computing, 42(2):109-131, 1989
Meeting with unique ids or unlimited reliable memory:

J. Czyzowicz, D. Ilcinkas, A. Labourel, and A. Pelc Asynchronous deterministic rendezvous in bounded terrains
Theoretical Computer Science, 412(50):6926-6937, 2011
J. Czyzowicz, A. Labourel, and A. Pelc

How to meet asynchronously (almost) everywhere
ACM Transactions on Algorithms, 8(4):37:1-37:14, 2012

J. Czyzowicz, A. Kosowski, and A. Pelc

Deterministic rendezvous of asynchronous bounded-memory agents in polygonal terrains
Theory of Computing Systems, 52(2):179-199, 2013

Y. Dieudonné, A. Pelc, and V. Villain

How to meet asynchronously at polynomial cost
SIAM Journal on Computing, 44(3):844-867, 2015

Summary

Results:

- If the polygon's symmetricity is σ, then $\sigma+1$ searchers are always sufficient and sometimes necessary.
(the symmetricity is the order of the rotation group of the polygon)
- If the polygon's center is not in a hole, 2 searchers are enough. (this includes all polygons with no holes)

Summary

Results:

- If the polygon's symmetricity is σ, then $\sigma+1$ searchers are always sufficient and sometimes necessary.
(the symmetricity is the order of the rotation group of the polygon)
- If the polygon's center is not in a hole, 2 searchers are enough. (this includes all polygons with no holes)

We establish these results for searchers with infinite faulty memory, and then we extend them to memoryless searchers.

Summary

Results:

- If the polygon's symmetricity is σ, then $\sigma+1$ searchers are always sufficient and sometimes necessary.
(the symmetricity is the order of the rotation group of the polygon)
- If the polygon's center is not in a hole, 2 searchers are enough. (this includes all polygons with no holes)

We establish these results for searchers with infinite faulty memory, and then we extend them to memoryless searchers.

Techniques:

- Self-stabilizing map-construction algorithm
- Positional encoding of algebraic numbers

Negative Examples

Consider a polygon of symmetricty σ with a large central hole.

Negative Examples

No two symmetric points can see each other.

Negative Examples

Place σ searchers in symmetric locations, oriented symmetrically.

Negative Examples

Their views are equal, so they compute symmetric destinations.

Negative Examples

If they keep moving synchronously, they never see each other.

Negative Examples

Theorem: in general, σ searchers are insufficient.

Negative Examples

Claim: $\sigma+1$ searchers are always sufficient.

Meeting with Faulty Memory

Traditionally, Meeting has been solved by identifying a landmark

Meeting with Faulty Memory

and making all searchers go there and wait for each other.

Meeting with Faulty Memory

However, this does not work if searchers have faulty memory!

Meeting with Faulty Memory

A searcher may believe to be in the polygon's landmark,

Meeting with Faulty Memory

and its local view may support this belief.

Meeting with Faulty Memory

But the polygon may actually be different,

Meeting with Faulty Memory

and different searchers may wait in different landmarks.

Meeting with Faulty Memory

Observation: searchers must keep exploring the polygon.

Meeting with Faulty Memory

In this polygon, the only asymmetric element is the central hole.

Meeting with Faulty Memory

Its symmetricity is 1 , but it "looks" 2 from the outer perimeter.

Meeting with Faulty Memory

If the searchers do not explore the center, they cannot meet.

Meeting with Faulty Memory

Observation: searchers must explore every hole of the polygon.

Basic Algorithm: EXPLORE Phase

To begin with, assume searchers have infinite memory.

Basic Algorithm: EXPLORE Phase

So they can build a partial map of the polygon as they explore it.

Basic Algorithm: EXPLORE Phase

A searcher keeps a list of the vertices it has seen but not visited.

Basic Algorithm: EXPLORE Phase

So it keeps moving toward the next unvisited vertex.

Basic Algorithm: EXPLORE Phase

However, the initial contents of its memory are arbitrary!

Basic Algorithm: EXPLORE Phase

In particular, a searcher may have a false map of the polygon.

Basic Algorithm: EXPLORE Phase

Hence, when it notices any discrepancy, it resets its own memory

Basic Algorithm: EXPLORE Phase

and starts rebuilding a new map from scratch.

Basic Algorithm: EXPLORE Phase

Eventually, the list of unvisited vertices becomes empty.

Basic Algorithm: EXPLORE Phase

At this point, the searcher's map may or may not be correct.

Basic Algorithm: EXPLORE Phase

However, it assumes it is, and moves on to the next phase.

Basic Algorithm: PATROL Phase

The searcher selects a pivot point in a similarity-invariant way.

Unless the polygon has some axes of symmetry.

Basic Algorithm: PATROL Phase

In this case, the searcher picks one axis of symmetry

Basic Algorithm: PATROL Phase

and selects a point on it in a similarity-invariant way.

First, the searcher goes to the pivot point.

Basic Algorithm: PATROL Phase

First, the searcher goes to the pivot point.

Basic Algorithm: PATROL Phase

Then it augments the polygon in a similarity-invariant way

Basic Algorithm: PATROL Phase

so to make its boundary connected, i.e., eliminate all holes.

Then it keeps patrolling the augmented boundary.

Basic Algorithm: PATROL Phase

Whenever it reaches the pivot point again, it inverts direction.

Basic Algorithm: PATROL Phase

If at any time it realizes its map is wrong, it resets its memory.

Basic Algorithm: Correctness

Eventually, all searchers have a correct map of the polygon.

Basic Algorithm: Correctness

If the symmetricity is σ, there are σ possible pivot points.

Basic Algorithm: Correctness

If there are $\sigma+1$ searchers, two of them choose the same pivot

Basic Algorithm: Correctness

and they augment the polygon in the same way.

Basic Algorithm: Correctness

Hence they keep following the same path in both directions.

Basic Algorithm: Correctness

Hence they keep following the same path in both directions.

Basic Algorithm: Correctness

Eventually, they must meet on an edge of this path.

Basic Algorithm: Correctness

Theorem: among $\sigma+1$ searchers, at least two will meet.

Improving the Basic Algorithm

Recall that our negative examples had a hole around the center.

Improving the Basic Algorithm

Can we do better if we exclude these polygons?

Improving the Basic Algorithm

Suppose the center of the polygon is not in a hole.

Improving the Basic Algorithm

Claim: in this case 2 searchers are sufficient.

Improving the Basic Algorithm

The basic algorithm may not work in this case!

Improving the Basic Algorithm

Let the two searchers choose opposite pivot points.

Improving the Basic Algorithm

We can schedule their movements so that the never meet.

Improving the Basic Algorithm

We can schedule their movements so that the never meet.

Improving the Basic Algorithm

by keeping one hidden while the other visits the central area.

Improving the Basic Algorithm

by keeping one hidden while the other visits the central area.

Improving the Basic Algorithm

by keeping one hidden while the other visits the central area.

Improving the Basic Algorithm

by keeping one hidden while the other visits the central area.

Improving the Basic Algorithm

by keeping one hidden while the other visits the central area.

Improving the Basic Algorithm

by keeping one hidden while the other visits the central area.

Improving the Basic Algorithm

Observation: searchers should "spiral" around the center,

Improving the Basic Algorithm

modifying their distance gradually.

Improved Algorithm: PATROL Phase

The EXPLORE phase is the same as in the basic algorithm.

Improved Algorithm: PATROL Phase

At the end, a pivot point is chosen as before.

Improved Algorithm: PATROL Phase

Then the non-central areas are triangulated.

Improved Algorithm: PATROL Phase

Symmetric branches are triangulated in a symmetric way.

Improved Algorithm: PATROL Phase

The patrol starts with a clockwise tour of the central area.

Improved Algorithm: PATROL Phase

Followed by a clockwise tour of the triangles at depth 1.

Improved Algorithm: PATROL Phase

Then a clockwise tour of the triangles at depth at most 2.

Improved Algorithm: PATROL Phase

Then a clockwise tour of the triangles at depth at most 3, etc.

Improved Algorithm: PATROL Phase

Then several counterclockwise tours of the perimeter.

Improved Algorithm: PATROL Phase

(A quadratic number of tours suffices.)

Improved Algorithm: PATROL Phase

Then the smaller tours are repeated the reverse order,

Improved Algorithm: PATROL Phase

this time counterclockwise.

Improved Algorithm: PATROL Phase

this time counterclockwise.

Improved Algorithm: PATROL Phase

The patrol restarts with a clockwise tour of the central area, etc.

Improved Algorithm: PATROL Phase

If the polygon has axes of symmetry, it is augmented first.

Improved Algorithm: PATROL Phase

If the polygon has axes of symmetry, it is augmented first.

Improved Algorithm: PATROL Phase

So that its branches can be triangulated in a symmetric way.

Improved Algorithm: PATROL Phase

Hence the searchers implicitly agree on the same triangulation,

Improved Algorithm: PATROL Phase

even if their coordinate systems are oriented specularly.

Improved Algorithm: Correctness

If $\sigma=1$, the basic algorithm already works for 2 searchers.

Improved Algorithm: Correctness

Let $\sigma>1$ and let two searchers execute the improved algorithm.

Improved Algorithm: Correctness

Eventually, both searchers have a correct map of the polygon,

Improved Algorithm: Correctness

and execute the PATROL phase.

Improved Algorithm: Correctness

At some point, one searchers begins a series of perimeter tours.

Improved Algorithm: Correctness

Meanwhile, the other searcher is performing one of its own tours.

Improved Algorithm: Correctness

If the second searcher does not move, the first searcher sees it

Improved Algorithm: Correctness

by the time it has completed a perimeter tour.

Improved Algorithm: Correctness

Hence, every time the first searcher performs one perimeter tour,

Improved Algorithm: Correctness

the second searcher must make some "progress" on its own tour:

Improved Algorithm: Correctness

it should at least move to another triangle of the triangulation.

Improved Algorithm: Correctness

Since the first searcher performs $\Theta\left(n^{2}\right)$ perimeter tours,

Improved Algorithm: Correctness

and the other performs $O(n)$ tours which cover $O(n)$ triangles,

Improved Algorithm: Correctness

eventually both searchers will be performing a perimeter tour.

Improved Algorithm: Correctness

eventually both searchers will be performing a perimeter tour.

Improved Algorithm: Correctness

eventually both searchers will be performing a perimeter tour.

Improved Algorithm: Correctness

eventually both searchers will be performing a perimeter tour.

Improved Algorithm: Correctness

If the searchers disagree on the notion of "clockwise",

Improved Algorithm: Correctness

they tour the perimeter in opposite directions.

Improved Algorithm: Correctness

Hence they eventually meet on the perimeter.

Improved Algorithm: Correctness

If the searchers agree on the notion of "clockwise",

Improved Algorithm: Correctness

they tour the perimeter in the same direction.

Improved Algorithm: Correctness

Hence they may not meet on a perimeter tour,

Improved Algorithm: Correctness

and one searcher may start spiraling toward the central area.

Improved Algorithm: Correctness

and one searcher may start spiraling toward the central area.

Improved Algorithm: Correctness

and one searcher may start spiraling toward the central area.

Improved Algorithm: Correctness

If the other searcher spirals toward the central area too,

Improved Algorithm: Correctness

and they are both on a tour of the central area at the same time,

Improved Algorithm: Correctness

they see each other, because there is no hole around the center.

Improved Algorithm: Correctness

Otherwise, they start spiraling in opposite directions.

Improved Algorithm: Correctness

Otherwise, they start spiraling in opposite directions.

Improved Algorithm: Correctness

Eventually, they perform the same tour or two "adjacent" tours.

Since they go in opposite directions, they must meet.

Since they go in opposite directions, they must meet.

Improved Algorithm: Correctness

The meeting occurs whenever they reach the same triangle.

Improved Algorithm: Correctness

Theorem: if there is no central hole, 2 searchers can meet.

Meeting with no Memory

Suppose that searchers are memoryless.

Meeting with no Memory

They must decide where to go based solely on their current view.

But they can simulate memory by moving to certain points,

such as points at specific distances from some vertices.

Meeting with no Memory

The visible vertex closest to a searcher is its virtual vertex.

Meeting with no Memory

Its distance d from its virtual vertex represents its memory.

Meeting with no Memory

As long as this distance is d, the data represented is the same.

Meeting with no Memory

Also, d and $d / 2$ represent the same data.

Meeting with no Memory

So the searcher can get arbitrarily close to its virtual vertex

Meeting with no Memory

without "forgetting" anything.

Meeting with no Memory

Searchers execute the previous Meeting algorithms

Meeting with no Memory

pretending to be exactly on their virtual vertices

Meeting with no Memory

and decoding d to retrieve their memory.

Meeting with no Memory

When they move to another vertex, they choose a distance d^{\prime}

Meeting with no Memory

representing the updated memory contents.

Meeting with no Memory

Initially, searchers are located in arbitrary positions.

Meeting with no Memory

So, the data they encode is arbitrary.

Meeting with no Memory

When a searcher changes virtual vertex,

Meeting with no Memory

it may discover that the map it is representing is wrong.

Meeting with no Memory

If that happens, it goes to its virtual vertex,

Meeting with no Memory

which corresponds to resetting its own memory.

Meeting with no Memory

After the first reset, the (partial) map will be correct.

Traveling Around Reflex Vertices

Suppose the virtual vertex is reflex

Traveling Around Reflex Vertices

and the searcher has to move around it.

Traveling Around Reflex Vertices

This may accidentally cause the virtual vertex to change.

Traveling Around Reflex Vertices

So the searcher has to carefully devise a series of moves.

Traveling Around Reflex Vertices

First it moves to the line perpendicular to the visible edge,

Traveling Around Reflex Vertices

maintaining its distance from the virtual vertex.

Traveling Around Reflex Vertices

Then it moves to the extension of the visible edge,

Traveling Around Reflex Vertices

always maintaining the same distance.

Traveling Around Reflex Vertices

If the other edge is not completely visible,

Traveling Around Reflex Vertices

it halves its distance from the virtual vertex

Traveling Around Reflex Vertices

until both its adjacent vertices are visible.

Representing Composite Data Structures

$$
0.34672345 \ldots \quad 0.17838946 \ldots
$$

We want to represent arbitrary data as a single real number.

Representing Composite Data Structures

$$
0.34672345 \ldots \quad 0.17838946 \ldots
$$

This boils down to "merging" two real numbers into one.

Representing Composite Data Structures

0.34672345... 0.17838946...
 $0.3147687328394456 \ldots$

A naive approach would be to interleave their digits.

Representing Composite Data Structures

```
0.34672345\ldots... 0.17838946...
0.3147687328394456...
```

Unfortunately, this function is not computable by a real RAM,

Representing Composite Data Structures

because its discontinuities are everywhere dense in its domain.

Representing Composite Data Structures

$0.34672345 \quad 0.17838946$
0.3147687328394456

However, if the numbers have finitely many digits,

Representing Composite Data Structures

$0.34672345 \quad 0.17838946$
0.3147687328394456

this function is computable with arithmetic operations only!

Representing Composite Data Structures

$k t$ th real root of $a_{n} x^{n}+a_{n+1} x^{n+1}+\cdots+a_{1} x+a_{0}$

$$
\left(k, a_{n}, a_{n+1}, \ldots, a_{1}, a_{0}\right) \in \mathbb{Z}^{n+2}
$$

This allows us to represent (sequences of) algebraic numbers

Representing Composite Data Structures

k th real root of $a_{n} x^{n}+a_{n+1} x^{n+1}+\cdots+a_{1} x+a_{0}$

$$
\left(k, a_{n}, a_{n+1}, \ldots, a_{1}, a_{0}\right) \in \mathbb{Z}^{n+2}
$$

and do exact computations on them with standard techniques.

Representing Composite Data Structures

We stipulate that the polygon's vertices are algebraic points

Representing Composite Data Structures

as expressed in some global coordinate system.

Virtual Coordinate Systems

Unfortunately, each searcher has its own coordinate system,

Virtual Coordinate Systems

in which the vertices may not be algebraic points

Virtual Coordinate Systems

and may be impossible to memorize with our method!

Virtual Coordinate Systems

To cope with this, the searcher constructs a virtual system.

Virtual Coordinate Systems

With its current virtual vertex as the origin

Virtual Coordinate Systems

and its next destination vertex at unit distance on the y axis.

Virtual Coordinate Systems

In this coordinate system, all vertices are again algebraic,

Virtual Coordinate Systems

and therefore can be encoded as a single real number!

Virtual Coordinate Systems

When the searcher moves to another virtual vertex,

Virtual Coordinate Systems

it reconstructs the old coordinate system to decode all the data,

Virtual Coordinate Systems

then it constructs the new virtual coordinate system,

Virtual Coordinate Systems

converting the data into the new one,

Virtual Coordinate Systems

and computing the exact destination point accordingly.

Modifying Patrol Routes

In our algorithms, a searcher may have to stop at points

Modifying Patrol Routes

that are not vertices of the polygon.

Modifying Patrol Routes

But a searcher always has to stop close to its virtual vertex!

Modifying Patrol Routes

So we modify its patrol route, making it turn only at vertices.

Modifying Patrol Routes

In the improved Meeting algorithm, this is more complicated,

Modifying Patrol Routes

because the augmented polygon has to be triangulated

Modifying Patrol Routes

and the triangle's vertices are not always vertices of the polygon.

Modifying Patrol Routes

Hence, along with triangles, we also use isosceles trapezoids,

Modifying Patrol Routes

and we make the k-tours turn only at vertices.

Modifying Patrol Routes

and we make the k-tours turn only at vertices.

Preserving Total Visibility

Searchers need to see the entire polygon during their patrol,

Preserving Total Visibility

otherwise they may be unable to tell if their map is correct.

Preserving Total Visibility

They can do it if they visit all vertices,

Preserving Total Visibility

but now they are only getting close to their virtual vertices!

Preserving Total Visibility

This may prevent them from seeing the entire polygon.

Preserving Total Visibility

An easy way to avoid this situation

Preserving Total Visibility

is to stop on the angle bisector of every vertex.

Preserving Total Visibility

This may not be possible on every k-tour of the polygon.

Preserving Total Visibility

But for every vertex, there is a k-tour where this is possible.

Preserving Total Visibility

Theorem: our algorithms work also with memoryless searchers.

Results on the Meeting Problem

The following results hold even for memoryless searchers:
(assuming the polygon's vertices are algebraic points)

- If the polygon's symmetricity is σ, then $\sigma+1$ searchers are always sufficient and sometimes necessary.
- If the polygon's center is not in a hole, 2 searchers are enough. (this includes all polygons with no holes)

Destination points are geometrically constructible using a compass only.

