
Seminar 7 – Mobile Robots:
Square Formation and Meeting

Distributed Computing in Anonymous Dynamic Systems

Giovanni Viglietta

Rome – March 14, 2024



Distributed Computing in Anonymous Dynamic Systems

Syllabus

Anonymous Networks

Introduction and basic algorithms for static networks
Dynamicity and history trees
Optimal computation in networks with and without leaders
Computation in dynamic congested networks

Population Protocols

Introduction and basic algorithmic techniques
Leader election in Mediated Population Protocols

Mobile Robots

Gathering and Pattern Formation in the plane
Meeting in a polygon by oblivious robots

Exam
Pre-recorded 10-minute presentation video on one of the papers
that will be suggested at the end of the course.



Today’s seminar

Mobile robots in the plane

Square Formation problem

Meeting problem in a polygon

With memory

With no memory



Square Formation



Anonymous robots sensing and moving in the plane

We consider a swarm of anonymous robots in the Euclidean plane



Anonymous robots sensing and moving in the plane

Each robot can sense the positions of all other robots...



Anonymous robots sensing and moving in the plane

Each robot can sense the positions of all other robots...



Anonymous robots sensing and moving in the plane

Each robot can sense the positions of all other robots...



Anonymous robots sensing and moving in the plane

Each robot can sense the positions of all other robots...



Anonymous robots sensing and moving in the plane

...And move according to a deterministic algorithm



Anonymous robots sensing and moving in the plane

...And move according to a deterministic algorithm



Anonymous robots sensing and moving in the plane

Different robots are activated asynchronously



Anonymous robots sensing and moving in the plane

Different robots are activated asynchronously



Anonymous robots sensing and moving in the plane

Different robots are activated asynchronously



Anonymous robots sensing and moving in the plane

Different robots are activated asynchronously



Pattern Formation problem

Problem: form a given pattern from any initial configuration



Pattern Formation problem

Problem: form a given pattern from any initial configuration



Pattern Formation problem

Problem: form a given pattern from any initial configuration



Pattern Formation problem

Problem: form a given pattern from any initial configuration



Pattern Formation problem

Problem: form a given pattern from any initial configuration



Pattern Formation problem

Problem: form a given pattern from any initial configuration



Pattern Formation problem

Problem: form a given pattern from any initial configuration



Pattern Formation problem

The pattern may be rotated, reflected, and scaled



Pattern Formation problem

The pattern may be rotated, reflected, and scaled



Pattern Formation problem

The pattern may be rotated, reflected, and scaled



Pattern Formation problem

The pattern may be rotated, reflected, and scaled



Model definition

Robots are:

Dimensionless (robots are modeled as geometric points)

Anonymous (no unique identifiers)

Homogeneous (the same algorithm is executed by all robots)

Autonomous (no centralized control)

Oblivious (no memory of past events)

Silent (no explicit way of communicating)

Long-sighted (complete visibility of all other robots)

Disoriented (robots do not share a common reference frame,
and a robot’s reference frame may change from turn to turn)

No common unit distance
No common compass
No common notion of clockwise direction



Life cycles and asynchronicity

Look / Compute

Move

Each robot repeats a Look/Compute/Move cycle



Life cycles and asynchronicity

Look / Compute

Move

Each robot repeats a Look/Compute/Move cycle



Life cycles and asynchronicity

Look / Compute

Move

/In a Look phase, an instantaneous snapshot is taken of all robots/



Life cycles and asynchronicity

Look / Compute

Move

/A destination point is computed as a function of the snapshot/



Life cycles and asynchronicity

Look / Compute

Move

/The destination point is approached with unpredictable speed/



Life cycles and asynchronicity

Look / Compute

Move

/The destination point is approached with unpredictable speed/



Life cycles and asynchronicity

Look / Compute

Move

/The destination point is approached with unpredictable speed/



Life cycles and asynchronicity

Look / Compute

Move

/The destination point is approached with unpredictable speed/



Life cycles and asynchronicity

Look / Compute

Move

/The destination point is approached with unpredictable speed/



Life cycles and asynchronicity

Look / Compute

Move

The robot may unpredictably/stop before reaching the destination...



Life cycles and asynchronicity

Look / Compute

Move

...and execute a new Look/Compute phase



Life cycles and asynchronicity

Look / Compute

Move

...and execute a new Look/Compute phase



Life cycles and asynchronicity

δ

Look / Compute

Move

/At each cycle, a robot is guaranteed to move by at least δ/



Life cycles and asynchronicity

Look / Compute

Move

Look / Compute

Move

/Different robots execute independent cycles, asynchronously/



Pattern Formation problem: counterexample

x

y

x

yxy

x

y

x y

x

y

Let the initial configuration be rotationally symmetric



Pattern Formation problem: counterexample

x

y

x

yxy

x

y

x y

x

y

All robots have the same view and compute symmetric destinations



Pattern Formation problem: counterexample

x

y

x

y

xy

x

y

x yx

y

If they are all activated synchronously, they remain symmetric



Pattern Formation problem: counterexample

x

y

x

y

xy

x

y

x yx

y

Hence Pattern Formation is unsolvable if the pattern is asymmetric



Pattern Formation problem: state of the art

No pattern is formable from every possible initial configuration,
except:

Single point (aka Gathering problem)
=⇒ Solved [Cieliebak-Flocchini-Prencipe-Santoro, 2012]

Regular polygon
=⇒ Solved... [Flocchini-Prencipe-Santoro-Viglietta, 2014–15]

...except for 4 robots! (aka Square Formation problem)



Pattern Formation problem: state of the art

No pattern is formable from every possible initial configuration,
except:

Single point (aka Gathering problem)
=⇒ Solved [Cieliebak-Flocchini-Prencipe-Santoro, 2012]

Regular polygon
=⇒ Solved... [Flocchini-Prencipe-Santoro-Viglietta, 2014–15]

...except for 4 robots! (aka Square Formation problem)



Pattern Formation problem: state of the art

No pattern is formable from every possible initial configuration,
except:

Single point (aka Gathering problem)
=⇒ Solved [Cieliebak-Flocchini-Prencipe-Santoro, 2012]

Regular polygon
=⇒ Solved... [Flocchini-Prencipe-Santoro-Viglietta, 2014–15]

...except for 4 robots! (aka Square Formation problem)



General approach to forming a regular polygon

An important configuration is the biangular one



General approach to forming a regular polygon

An important configuration is the biangular one



General approach to forming a regular polygon

The general algorithm identifies a supporting polygon...



General approach to forming a regular polygon

g...And makes each robot move to the closest vertexg



General approach to forming a regular polygon

As robots move, the supporting polygon is preserved



General approach to forming a regular polygon

As robots move, the supporting polygon is preserved



Why the general approach fails with 4 robots

With 4 robots, biangular configurations are rectangles



Why the general approach fails with 4 robots

We can still identify a supporting square...



Why the general approach fails with 4 robots

...But it is not unique!



Why the general approach fails with 4 robots

...But it is not unique!



Why the general approach fails with 4 robots

The “central” supporting polygon may be chosen...



Why the general approach fails with 4 robots

...But asynchronous robots may never manage to form a square



Why the general approach fails with 4 robots

...But asynchronous robots may never manage to form a square



Why the general approach fails with 4 robots

...But asynchronous robots may never manage to form a square



Why the general approach fails with 4 robots

...But asynchronous robots may never manage to form a square



How to solve the rectangle

How do we solve the rectangular case?



How to solve the rectangle

Choose a supporting square that is tilted by 45◦...



How to solve the rectangle

...And make the robots move to the midpoints of its edges



How to solve the rectangle

Again, the supporting square is preserved as the robots move



How to solve the rectangle

Again, the supporting square is preserved as the robots move



How to solve the rectangle

When they reach the midpoints, they form a square



Identifying the supporting square

(In general, we can also identify a supporting square...(



Identifying the supporting square

...Having a robot on each (extended) edge



Identifying the supporting square

(But once again, the supporting square is not unique!(



Identifying the supporting square

(However, there is a geometric construction that identifies one(



Identifying the supporting square

(However, there is a geometric construction that identifies one(



Identifying the supporting square

(However, there is a geometric construction that identifies one(



Identifying the supporting square

(However, there is a geometric construction that identifies one(



Identifying the supporting square

(However, there is a geometric construction that identifies one(



Identifying the supporting square

(However, there is a geometric construction that identifies one(



Identifying the supporting square

(All robots automatically agree on the same supporting square!(



Identifying the supporting square

(All robots automatically agree on the same supporting square!(



Identifying the supporting square

(All robots automatically agree on the same supporting square!(



Identifying the supporting square

(No two robots have intersecting pathways!(



Identifying the supporting square

(No two robots have intersecting pathways!(



Identifying the supporting square

(No two robots have intersecting pathways!(



Problem: orthogonal diagonals

Suppose the two diagonals “accidentally” become orthogonal



Problem: orthogonal diagonals

Suppose the two diagonals “accidentally” become orthogonal



Problem: orthogonal diagonals

gThen our construction does not workg



Problem: orthogonal diagonals

The robots may not agree on a supporting square



Special strategy for orthogonal diagonals

If the diagonals are orthogonal, we use a different approach



Special strategy for orthogonal diagonals

If the diagonals are orthogonal, we use a different approach



Special strategy for orthogonal diagonals

The robots that are closest to the center move away from it



Special strategy for orthogonal diagonals

The robots that are closest to the center move away from it



Special strategy for orthogonal diagonals

The robots that are closest to the center move away from it



Special strategy for non-convex configurations

For non-convex configurations, our construction does not work...



Special strategy for non-convex configurations

...Because the diagonals are not well defined



Special strategy for non-convex configurations

gIn this case, the internal robot moves...g



Special strategy for non-convex configurations

gIn this case, the internal robot moves...g



Special strategy for non-convex configurations

...So to make the diagonals orthogonal...



Special strategy for non-convex configurations

...And reduce the problem to the previous case



Special strategy for collinear configurations

If the robots are collinear, the previous approach does not work



Special strategy for collinear configurations

gIn this case, the internal robots move to either side of the lineg



Special strategy for collinear configurations

As they asynchronously move, their supporting square may change



Special strategy for collinear configurations

◦50 ◦50

So we must identify a “safe region”, e.g., a thin hexagon



Special strategy for collinear configurations

◦50 ◦50

If the robots are in a thin hexagon, they follow a special algorithm



Special strategy for collinear configurations

◦50 ◦50

If they end up on opposite sides of the long diagonal...



Special strategy for collinear configurations

...We make them form a configuration with orthogonal diagonals



Special strategy for collinear configurations

Otherwise, they move on two vertices and wait for each other



Special strategy for collinear configurations

Otherwise, they move on two vertices and wait for each other



Special strategy for collinear configurations

◦50 ◦50

Otherwise, they move on two vertices and wait for each other



Special strategy for collinear configurations

◦50 ◦50

Otherwise, they move on two vertices and wait for each other



Special strategy for collinear configurations

◦50 ◦50

Now that they are not moving, they agree on a supporting square



General algorithm: one discordant robot

Suppose one robot is “discordant” with all the others



General algorithm: one discordant robot

Suppose one robot is “discordant” with all the others



General algorithm: one discordant robot

We let only the discordant robot move toward its final destination



General algorithm: one discordant robot

As it moves, it may cause the diagonals to become orthogonal!



General algorithm: one discordant robot

In this case, it has to stop at the point of orthogonality...



General algorithm: one discordant robot

In this case, it has to stop at the point of orthogonality...



General algorithm: one discordant robot

...So all robots will behave coherently, despite asynchronicity



General algorithm: two opposite concordant, two finished

We let the two opposite robots move



General algorithm: two opposite concordant, two finished

The diagonals can never become orthogonal by accident



General algorithm: two opposite concordant, two finished

The diagonals can never become orthogonal by accident



General algorithm: two opposite concordant, two finished

The diagonals can never become orthogonal by accident



General algorithm: two opposite concordant, two finished

No thin hexagon can be formed by accident...



General algorithm: two opposite concordant, two finished

No thin hexagon can be formed by accident...



General algorithm: two opposite concordant, two finished

...Because the sum of distances from the long diagonal is too large



General algorithm: two opposite concordant, two finished

...Because the sum of distances from the long diagonal is too large



General algorithm: two opposite concordant, two finished

...Because the sum of distances from the long diagonal is too large



General algorithm: two opposite concordant, two finished

...Because the sum of distances from the long diagonal is too large



General algorithm: two opposite concordant, two finished

...Because the sum of distances from the long diagonal is too large



General algorithm: two opposite concordant, two finished

But the configuration may become non-convex by accident!



General algorithm: two opposite concordant, two finished

But the configuration may become non-convex by accident!



General algorithm: two opposite concordant, two finished

But the configuration may become non-convex by accident!



General algorithm: two opposite concordant, two finished

This can be prevented by making several shorter moves



General algorithm: two opposite concordant, two finished

This can be prevented by making several shorter moves



General algorithm: two opposite concordant, two finished

This can be prevented by making several shorter moves



General algorithm: two opposite concordant, two finished

This can be prevented by making several shorter moves



General algorithm: two opposite concordant, two finished

This can be prevented by making several shorter moves



General algorithm: two opposite concordant, two finished

This can be prevented by making several shorter moves



General algorithm: two opposite concordant, two finished

This can be prevented by making several shorter moves



General algorithm: all concordant

(We let only the robots on the shortest diagonal move...(



General algorithm: all concordant

(...Because it will remain the shortest as they move(



General algorithm: all concordant

But one robot (not both!) may be “blocked” by the other diagonal



General algorithm: all concordant

(If so, only the blocked robot moves, and stops on the diagonal(



General algorithm: all concordant

(Then all robots behave coherently as in the non-convex case(



General algorithm: two convergent robots

The convergent robots move, while the others wait



General algorithm: two convergent robots

No thin hexagon can be formed by accident



General algorithm: two convergent robots

No thin hexagon can be formed by accident



General algorithm: two convergent robots

No thin hexagon can be formed by accident



General algorithm: two convergent robots

No thin hexagon can be formed by accident



General algorithm: last case

If only one robot is external...



General algorithm: last case

◦25>

...The angles it forms with the two far robots are > 25◦



General algorithm: last case

So a thin hexagon cannot be formed, because its angles are 50◦



General algorithm: last case

So a thin hexagon cannot be formed, because its angles are 50◦



General algorithm: last case

This yields a simple coordination protocol for the robots in all cases



Algorithm summary

The configuration is checked against each possible class,
in the correct order!

1 Orthogonal diagonals

2 Thin hexagon

3 Non-convex

4 All concordant

5 Two convergent, two divergent

6 Two divergent, two divergent

7 One discordant

Ensure that, when a class transition occurs,

No robot is moving (to prevent inconsistent behaviors!)

The resulting class has lower index (in the list above)

The last rule is broken in only one case!



Algorithm summary

The configuration is checked against each possible class,
in the correct order!

1 Orthogonal diagonals

2 Thin hexagon

3 Non-convex

4 All concordant

5 Two convergent, two divergent

6 Two divergent, two divergent

7 One discordant

Ensure that, when a class transition occurs,

No robot is moving (to prevent inconsistent behaviors!)

The resulting class has lower index (in the list above)

The last rule is broken in only one case!



Algorithm summary

The configuration is checked against each possible class,
in the correct order!

1 Orthogonal diagonals

2 Thin hexagon

3 Non-convex

4 All concordant

5 Two convergent, two divergent

6 Two divergent, two divergent

7 One discordant

Ensure that, when a class transition occurs,

No robot is moving (to prevent inconsistent behaviors!)

The resulting class has lower index (in the list above)

The last rule is broken in only one case!



Resolving the anomaly

When all robots are on the same side of a thin hexagon...



Resolving the anomaly

...They move to the vertices, and then apply the general algorithm



Resolving the anomaly

As a consequence, the internal robots move first



Resolving the anomaly

As a consequence, the internal robots move first



Resolving the anomaly

And finally the external robots move...



Resolving the anomaly

...Thus forming a square



Concluding remarks

The only solvable Pattern Formation problems for n robots are:

Single point (except the case n = 2, which is unsolvable)

Regular n-gon (now also for n = 4)

For n > 2, this is true even if

Robots are fully synchronous

Robots have a common notion of “clockwise” (chirality)

Robots always reach their destination (rigidity)

=⇒ For Pattern Formation problems, these features are
computationally irrelevant!



Concluding remarks

The only solvable Pattern Formation problems for n robots are:

Single point (except the case n = 2, which is unsolvable)

Regular n-gon (now also for n = 4)

For n > 2, this is true even if

Robots are fully synchronous

Robots have a common notion of “clockwise” (chirality)

Robots always reach their destination (rigidity)

=⇒ For Pattern Formation problems, these features are
computationally irrelevant!



Meeting in a Polygon



Meeting Problem

/Setting: a polygon with some searchers in it./



Meeting Problem

/The polygon’s edges obstruct visibility./



Meeting Problem

/The invisible parts of the polygon are unknown to the searchers./



Meeting Problem

y

x

y
x

y

x

/Each searcher has its own coordinate system./



Meeting Problem

/Searchers can move within the polygon./



Meeting Problem

/Movements are asynchronous./



Meeting Problem

/Movements are asynchronous./



Meeting Problem

/Movements are asynchronous./



Meeting Problem

/Searchers are anonymous: they all execute the same algorithm./



Meeting Problem

/The goal is for any two searchers to see each other./



Meeting Problem

/The goal is for any two searchers to see each other./



Meeting Problem

/After, they can rendezvous and carry out more complex tasks./



Related Literature

“Static version” of the Meeting problem:

T. Shermer
Hiding people in polygons
Computing, 42(2):109–131, 1989

Meeting with unique ids or unlimited reliable memory:

J. Czyzowicz, D. Ilcinkas, A. Labourel, and A. Pelc
Asynchronous deterministic rendezvous in bounded terrains
Theoretical Computer Science, 412(50):6926–6937, 2011

J. Czyzowicz, A. Labourel, and A. Pelc
How to meet asynchronously (almost) everywhere
ACM Transactions on Algorithms, 8(4):37:1–37:14, 2012

J. Czyzowicz, A. Kosowski, and A. Pelc
Deterministic rendezvous of asynchronous bounded-memory agents in polygonal
terrains
Theory of Computing Systems, 52(2):179–199, 2013

Y. Dieudonné, A. Pelc, and V. Villain
How to meet asynchronously at polynomial cost
SIAM Journal on Computing, 44(3):844–867, 2015



Summary

Results:

If the polygon’s symmetricity is σ, then σ + 1 searchers are
always sufficient and sometimes necessary.

(the symmetricity is the order of the rotation group of the polygon)

If the polygon’s center is not in a hole, 2 searchers are enough.

(this includes all polygons with no holes)

We establish these results for searchers with infinite faulty memory,
and then we extend them to memoryless searchers.

Techniques:

Self-stabilizing map-construction algorithm

Positional encoding of algebraic numbers



Summary

Results:

If the polygon’s symmetricity is σ, then σ + 1 searchers are
always sufficient and sometimes necessary.

(the symmetricity is the order of the rotation group of the polygon)

If the polygon’s center is not in a hole, 2 searchers are enough.

(this includes all polygons with no holes)

We establish these results for searchers with infinite faulty memory,
and then we extend them to memoryless searchers.

Techniques:

Self-stabilizing map-construction algorithm

Positional encoding of algebraic numbers



Summary

Results:

If the polygon’s symmetricity is σ, then σ + 1 searchers are
always sufficient and sometimes necessary.

(the symmetricity is the order of the rotation group of the polygon)

If the polygon’s center is not in a hole, 2 searchers are enough.

(this includes all polygons with no holes)

We establish these results for searchers with infinite faulty memory,
and then we extend them to memoryless searchers.

Techniques:

Self-stabilizing map-construction algorithm

Positional encoding of algebraic numbers



Negative Examples

/Consider a polygon of symmetricty σ with a large central hole./



Negative Examples

/No two symmetric points can see each other./



Negative Examples

x
y

x

y

x
y

x

y

x

y

/Place σ searchers in symmetric locations, oriented symmetrically./



Negative Examples

x
y

x

y

x
y

x

y

x

y

/Their views are equal, so they compute symmetric destinations./



Negative Examples

x
y

x

y

x
y

x

y

x

y

/If they keep moving synchronously, they never see each other./



Negative Examples

x
y

x

y

x
y

x

y

x

y

/Theorem: in general, σ searchers are insufficient./



Negative Examples

x
y

x

y

x
y

x

y

x

y

/Claim: σ + 1 searchers are always sufficient./



Meeting with Faulty Memory

/Traditionally, Meeting has been solved by identifying a landmark/



Meeting with Faulty Memory

/and making all searchers go there and wait for each other./



Meeting with Faulty Memory

/However, this does not work if searchers have faulty memory!/



Meeting with Faulty Memory

/A searcher may believe to be in the polygon’s landmark,/



Meeting with Faulty Memory

/and its local view may support this belief./



Meeting with Faulty Memory

/But the polygon may actually be different,/



Meeting with Faulty Memory

/and different searchers may wait in different landmarks./



Meeting with Faulty Memory

/Observation: searchers must keep exploring the polygon./



Meeting with Faulty Memory

x
y

x
y

/In this polygon, the only asymmetric element is the central hole./



Meeting with Faulty Memory

x
y

x
y

/Its symmetricity is 1, but it “looks” 2 from the outer perimeter./



Meeting with Faulty Memory

x
y

x
y

/If the searchers do not explore the center, they cannot meet./



Meeting with Faulty Memory

x
y

x
y

/Observation: searchers must explore every hole of the polygon./



Basic Algorithm: EXPLORE Phase

/To begin with, assume searchers have infinite memory./



Basic Algorithm: EXPLORE Phase

/So they can build a partial map of the polygon as they explore it./



Basic Algorithm: EXPLORE Phase

/A searcher keeps a list of the vertices it has seen but not visited./



Basic Algorithm: EXPLORE Phase

/So it keeps moving toward the next unvisited vertex./



Basic Algorithm: EXPLORE Phase

/However, the initial contents of its memory are arbitrary!/



Basic Algorithm: EXPLORE Phase

/In particular, a searcher may have a false map of the polygon./



Basic Algorithm: EXPLORE Phase

/Hence, when it notices any discrepancy, it resets its own memory/



Basic Algorithm: EXPLORE Phase

/and starts rebuilding a new map from scratch./



Basic Algorithm: EXPLORE Phase

/Eventually, the list of unvisited vertices becomes empty./



Basic Algorithm: EXPLORE Phase

/At this point, the searcher’s map may or may not be correct./



Basic Algorithm: EXPLORE Phase

/However, it assumes it is, and moves on to the next phase./



Basic Algorithm: PATROL Phase

pivot

/The searcher selects a pivot point in a similarity-invariant way./



Basic Algorithm: PATROL Phase

/Unless the polygon has some axes of symmetry./



Basic Algorithm: PATROL Phase

/In this case, the searcher picks one axis of symmetry/



Basic Algorithm: PATROL Phase

pivot

/and selects a point on it in a similarity-invariant way./



Basic Algorithm: PATROL Phase

pivot

/First, the searcher goes to the pivot point./



Basic Algorithm: PATROL Phase

pivot

/First, the searcher goes to the pivot point./



Basic Algorithm: PATROL Phase

pivot

/Then it augments the polygon in a similarity-invariant way/



Basic Algorithm: PATROL Phase

pivot

/so to make its boundary connected, i.e., eliminate all holes./



Basic Algorithm: PATROL Phase

pivot

/Then it keeps patrolling the augmented boundary./



Basic Algorithm: PATROL Phase

pivot

/Whenever it reaches the pivot point again, it inverts direction./



Basic Algorithm: PATROL Phase

pivot

/If at any time it realizes its map is wrong, it resets its memory./



Basic Algorithm: Correctness

pivot

pivot

pivot pivot

/Eventually, all searchers have a correct map of the polygon./



Basic Algorithm: Correctness

pivot

pivot

pivot pivot

/If the symmetricity is σ, there are σ possible pivot points./



Basic Algorithm: Correctness

pivot

pivot

pivot pivot

/If there are σ + 1 searchers, two of them choose the same pivot/



Basic Algorithm: Correctness

pivot

/and they augment the polygon in the same way./



Basic Algorithm: Correctness

pivot

/Hence they keep following the same path in both directions./



Basic Algorithm: Correctness

pivot

/Hence they keep following the same path in both directions./



Basic Algorithm: Correctness

pivot

/Eventually, they must meet on an edge of this path./



Basic Algorithm: Correctness

pivot

/Theorem: among σ + 1 searchers, at least two will meet./



Improving the Basic Algorithm

/Recall that our negative examples had a hole around the center./



Improving the Basic Algorithm

/Can we do better if we exclude these polygons?/



Improving the Basic Algorithm

/Suppose the center of the polygon is not in a hole./



Improving the Basic Algorithm

/Claim: in this case 2 searchers are sufficient./



Improving the Basic Algorithm

pivot

pivot

/The basic algorithm may not work in this case!/



Improving the Basic Algorithm

pivot

pivot

/Let the two searchers choose opposite pivot points./



Improving the Basic Algorithm

pivot

pivot

/We can schedule their movements so that the never meet./



Improving the Basic Algorithm

pivot

pivot

/We can schedule their movements so that the never meet./



Improving the Basic Algorithm

pivot

pivot

/by keeping one hidden while the other visits the central area./



Improving the Basic Algorithm

pivot

pivot

/by keeping one hidden while the other visits the central area./



Improving the Basic Algorithm

pivot

pivot

/by keeping one hidden while the other visits the central area./



Improving the Basic Algorithm

pivot

pivot

/by keeping one hidden while the other visits the central area./



Improving the Basic Algorithm

pivot

pivot

/by keeping one hidden while the other visits the central area./



Improving the Basic Algorithm

pivot

pivot

/by keeping one hidden while the other visits the central area./



Improving the Basic Algorithm

pivot

/Observation: searchers should “spiral” around the center,/



Improving the Basic Algorithm

pivot

/modifying their distance gradually./



Improved Algorithm: PATROL Phase

/The EXPLORE phase is the same as in the basic algorithm./



Improved Algorithm: PATROL Phase

pivot

/At the end, a pivot point is chosen as before./



Improved Algorithm: PATROL Phase

pivot

/Then the non-central areas are triangulated./



Improved Algorithm: PATROL Phase

pivot

/Symmetric branches are triangulated in a symmetric way./



Improved Algorithm: PATROL Phase

pivot

CW 0-tour

/The patrol starts with a clockwise tour of the central area./



Improved Algorithm: PATROL Phase

pivot

CW 1-tour

/Followed by a clockwise tour of the triangles at depth 1./



Improved Algorithm: PATROL Phase

pivot

CW 2-tour

/Then a clockwise tour of the triangles at depth at most 2./



Improved Algorithm: PATROL Phase

pivot

CW 3-tour

/Then a clockwise tour of the triangles at depth at most 3, etc./



Improved Algorithm: PATROL Phase

pivot

CCW 4-tour

) times2nΘ(

/Then several counterclockwise tours of the perimeter./



Improved Algorithm: PATROL Phase

pivot

CCW 4-tour

) times2nΘ(

/(A quadratic number of tours suffices.)/



Improved Algorithm: PATROL Phase

pivot

CCW 3-tour

/Then the smaller tours are repeated the reverse order,/



Improved Algorithm: PATROL Phase

pivot

CCW 2-tour

/this time counterclockwise./



Improved Algorithm: PATROL Phase

pivot

CCW 1-tour

/this time counterclockwise./



Improved Algorithm: PATROL Phase

pivot

CW 0-tour

/The patrol restarts with a clockwise tour of the central area, etc./



Improved Algorithm: PATROL Phase

/If the polygon has axes of symmetry, it is augmented first./



Improved Algorithm: PATROL Phase

/If the polygon has axes of symmetry, it is augmented first./



Improved Algorithm: PATROL Phase

/So that its branches can be triangulated in a symmetric way./



Improved Algorithm: PATROL Phase

/Hence the searchers implicitly agree on the same triangulation,/



Improved Algorithm: PATROL Phase

/even if their coordinate systems are oriented specularly./



Improved Algorithm: Correctness

/If σ = 1, the basic algorithm already works for 2 searchers./



Improved Algorithm: Correctness

/Let σ > 1 and let two searchers execute the improved algorithm./



Improved Algorithm: Correctness

/Eventually, both searchers have a correct map of the polygon,/



Improved Algorithm: Correctness

/and execute the PATROL phase./



Improved Algorithm: Correctness

/At some point, one searchers begins a series of perimeter tours./



Improved Algorithm: Correctness

/Meanwhile, the other searcher is performing one of its own tours./



Improved Algorithm: Correctness

/If the second searcher does not move, the first searcher sees it/



Improved Algorithm: Correctness

/by the time it has completed a perimeter tour./



Improved Algorithm: Correctness

/Hence, every time the first searcher performs one perimeter tour,/



Improved Algorithm: Correctness

/the second searcher must make some “progress” on its own tour:/



Improved Algorithm: Correctness

/it should at least move to another triangle of the triangulation./



Improved Algorithm: Correctness

/Since the first searcher performs Θ(n2) perimeter tours,/



Improved Algorithm: Correctness

/and the other performs O(n) tours which cover O(n) triangles,/



Improved Algorithm: Correctness

/eventually both searchers will be performing a perimeter tour./



Improved Algorithm: Correctness

/eventually both searchers will be performing a perimeter tour./



Improved Algorithm: Correctness

/eventually both searchers will be performing a perimeter tour./



Improved Algorithm: Correctness

/eventually both searchers will be performing a perimeter tour./



Improved Algorithm: Correctness

/If the searchers disagree on the notion of “clockwise”,/



Improved Algorithm: Correctness

/they tour the perimeter in opposite directions./



Improved Algorithm: Correctness

/Hence they eventually meet on the perimeter./



Improved Algorithm: Correctness

/If the searchers agree on the notion of “clockwise”,/



Improved Algorithm: Correctness

/they tour the perimeter in the same direction./



Improved Algorithm: Correctness

/Hence they may not meet on a perimeter tour,/



Improved Algorithm: Correctness

/and one searcher may start spiraling toward the central area./



Improved Algorithm: Correctness

/and one searcher may start spiraling toward the central area./



Improved Algorithm: Correctness

/and one searcher may start spiraling toward the central area./



Improved Algorithm: Correctness

/If the other searcher spirals toward the central area too,/



Improved Algorithm: Correctness

/and they are both on a tour of the central area at the same time,/



Improved Algorithm: Correctness

/they see each other, because there is no hole around the center./



Improved Algorithm: Correctness

/Otherwise, they start spiraling in opposite directions./



Improved Algorithm: Correctness

/Otherwise, they start spiraling in opposite directions./



Improved Algorithm: Correctness

/Eventually, they perform the same tour or two “adjacent” tours./



Improved Algorithm: Correctness

/Since they go in opposite directions, they must meet./



Improved Algorithm: Correctness

/Since they go in opposite directions, they must meet./



Improved Algorithm: Correctness

/The meeting occurs whenever they reach the same triangle./



Improved Algorithm: Correctness

/Theorem: if there is no central hole, 2 searchers can meet./



Meeting with no Memory

/Suppose that searchers are memoryless./



Meeting with no Memory

/They must decide where to go based solely on their current view./



Meeting with no Memory

/But they can simulate memory by moving to certain points,/



Meeting with no Memory

/such as points at specific distances from some vertices./



Meeting with no Memory

d

/The visible vertex closest to a searcher is its virtual vertex./



Meeting with no Memory

d

/Its distance d from its virtual vertex represents its memory./



Meeting with no Memory

d

/As long as this distance is d, the data represented is the same./



Meeting with no Memory

2d/

/Also, d and d/2 represent the same data./



Meeting with no Memory

4d/

/So the searcher can get arbitrarily close to its virtual vertex/



Meeting with no Memory

4d/

/without “forgetting” anything./



Meeting with no Memory

/Searchers execute the previous Meeting algorithms/



Meeting with no Memory

/pretending to be exactly on their virtual vertices/



Meeting with no Memory

/and decoding d to retrieve their memory./



Meeting with no Memory

′d

/When they move to another vertex, they choose a distance d′/



Meeting with no Memory

′d

/representing the updated memory contents./



Meeting with no Memory

?

/Initially, searchers are located in arbitrary positions./



Meeting with no Memory

?

/So, the data they encode is arbitrary./



Meeting with no Memory

?

/When a searcher changes virtual vertex,/



Meeting with no Memory

/it may discover that the map it is representing is wrong./



Meeting with no Memory

/If that happens, it goes to its virtual vertex,/



Meeting with no Memory

/which corresponds to resetting its own memory./



Meeting with no Memory

/After the first reset, the (partial) map will be correct./



Traveling Around Reflex Vertices

/Suppose the virtual vertex is reflex/



Traveling Around Reflex Vertices

/and the searcher has to move around it./



Traveling Around Reflex Vertices

/This may accidentally cause the virtual vertex to change./



Traveling Around Reflex Vertices

/So the searcher has to carefully devise a series of moves./



Traveling Around Reflex Vertices

/First it moves to the line perpendicular to the visible edge,/



Traveling Around Reflex Vertices

/maintaining its distance from the virtual vertex./



Traveling Around Reflex Vertices

/Then it moves to the extension of the visible edge,/



Traveling Around Reflex Vertices

/always maintaining the same distance./



Traveling Around Reflex Vertices

/If the other edge is not completely visible,/



Traveling Around Reflex Vertices

/it halves its distance from the virtual vertex/



Traveling Around Reflex Vertices

/until both its adjacent vertices are visible./



Representing Composite Data Structures

. . .34672345.0 . . .17838946.0

/We want to represent arbitrary data as a single real number./



Representing Composite Data Structures

. . .34672345.0 . . .17838946.0

/This boils down to “merging” two real numbers into one./



Representing Composite Data Structures

. . .34672345.0 . . .17838946.0

. . .3 4 6 7 2 3 4 5.0 1 7 8 3 6498

/A naive approach would be to interleave their digits./



Representing Composite Data Structures

. . .34672345.0 . . .17838946.0

. . .3 4 6 7 2 3 4 5.0 1 7 8 3 6498

/Unfortunately, this function is not computable by a real RAM,/



Representing Composite Data Structures

. . .34672345.0 . . .17838946.0

. . .3 4 6 7 2 3 4 5.0 1 7 8 3 6498

/because its discontinuities are everywhere dense in its domain./



Representing Composite Data Structures

34672345.0 17838946.0

3 4 6 7 2 3 4 5.0 1 7 8 3 6498

/However, if the numbers have finitely many digits,/



Representing Composite Data Structures

34672345.0 17838946.0

3 4 6 7 2 3 4 5.0 1 7 8 3 6498

/this function is computable with arithmetic operations only!/



Representing Composite Data Structures

0a+x1a+· · ·++1nx+1na+nxnath real root ofk

01+1nn(k a, a, a a,, . . . , ) ∈ Zn+2

/This allows us to represent (sequences of) algebraic numbers/



Representing Composite Data Structures

0a+x1a+· · ·++1nx+1na+nxnath real root ofk

01+1nn(k a, a, a a,, . . . , ) ∈ Zn+2

/and do exact computations on them with standard techniques./



Representing Composite Data Structures

y

x

/We stipulate that the polygon’s vertices are algebraic points/



Representing Composite Data Structures

y

x

/as expressed in some global coordinate system./



Virtual Coordinate Systems

y

x

/Unfortunately, each searcher has its own coordinate system,/



Virtual Coordinate Systems

y

x

/in which the vertices may not be algebraic points/



Virtual Coordinate Systems

y

x

/and may be impossible to memorize with our method!/



Virtual Coordinate Systems

y

x

/To cope with this, the searcher constructs a virtual system./



Virtual Coordinate Systems

y

x

/With its current virtual vertex as the origin/



Virtual Coordinate Systems

y

x

/and its next destination vertex at unit distance on the y axis./



Virtual Coordinate Systems

y

x

/In this coordinate system, all vertices are again algebraic,/



Virtual Coordinate Systems

y

x

/and therefore can be encoded as a single real number!/



Virtual Coordinate Systems

y

x

/When the searcher moves to another virtual vertex,/



Virtual Coordinate Systems

y

x

/it reconstructs the old coordinate system to decode all the data,/



Virtual Coordinate Systems

y

x

/then it constructs the new virtual coordinate system,/



Virtual Coordinate Systems

y

x

/converting the data into the new one,/



Virtual Coordinate Systems

y

x

/and computing the exact destination point accordingly./



Modifying Patrol Routes

/In our algorithms, a searcher may have to stop at points/



Modifying Patrol Routes

/that are not vertices of the polygon./



Modifying Patrol Routes

/But a searcher always has to stop close to its virtual vertex!/



Modifying Patrol Routes

/So we modify its patrol route, making it turn only at vertices./



Modifying Patrol Routes

/In the improved Meeting algorithm, this is more complicated,/



Modifying Patrol Routes

/because the augmented polygon has to be triangulated/



Modifying Patrol Routes

/and the triangle’s vertices are not always vertices of the polygon./



Modifying Patrol Routes

/Hence, along with triangles, we also use isosceles trapezoids,/



Modifying Patrol Routes

/and we make the k-tours turn only at vertices./



Modifying Patrol Routes

/and we make the k-tours turn only at vertices./



Preserving Total Visibility

/Searchers need to see the entire polygon during their patrol,/



Preserving Total Visibility

/otherwise they may be unable to tell if their map is correct./



Preserving Total Visibility

/They can do it if they visit all vertices,/



Preserving Total Visibility

/but now they are only getting close to their virtual vertices!/



Preserving Total Visibility

/This may prevent them from seeing the entire polygon./



Preserving Total Visibility

/An easy way to avoid this situation/



Preserving Total Visibility

/is to stop on the angle bisector of every vertex./



Preserving Total Visibility

/This may not be possible on every k-tour of the polygon./



Preserving Total Visibility

/But for every vertex, there is a k-tour where this is possible./



Preserving Total Visibility

/Theorem: our algorithms work also with memoryless searchers./



Results on the Meeting Problem

The following results hold even for memoryless searchers:

(assuming the polygon’s vertices are algebraic points)

If the polygon’s symmetricity is σ, then σ + 1 searchers are always
sufficient and sometimes necessary.

If the polygon’s center is not in a hole, 2 searchers are enough.

(this includes all polygons with no holes)

Destination points are geometrically constructible using a compass only.


