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3D Art Gallery Problem

Given a polyhedron in R3, choose a (preferably small) set of
vertices or edges that collectively see its whole interior.

These are called vertex guards and edge guards.



Vertex-guarding polyhedra

The Art Gallery Problem for vertex guards may be unsolvable,
even in some orthogonal polyhedra:

Some points in the central region are invisible to all vertices!



Point-guarding polyhedra

So, we must consider point guards that do not lie on vertices.
But there are (orthogonal) polyhedra that require Ω(n

√
n) guards!

outer view cross section



Edge-guarding polyhedra

What about edge guards? They are strictly more powerful than
point guards: placing a guard on every edge solves the Art Gallery
Problem, because each internal point sees at least one edge.

Problem. Does every internal point see at least c > 1 edges?



Minimizing visible edges

Consider a cross-section of the polyhedron through any point p,
and triangulate it.

p

The point p sees at least 3 vertices of the cross section, which
correspond to 3 distinct edges of the polyhedron. Hence c ≥ 3.

Can we do better?



Minimizing visible edges

Note that every point in a tetrahedron sees exactly 6 edges.

So, c cannot be greater than 6. Actually, c = 6 is the best.

Theorem

In a polyhedron, every point sees at least 6 distinct edges.



Points that see no vertices

What if p does not see any vertex of the polyhedron?

outer view cross section

Problem. Can we prove that p necessarily sees more than 6 edges?



Spherical Occlusion Diagrams: introduction

Recall that, when polygons in R3 are orthographically projected
onto a sphere, their edges become arcs of great circle.
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If in an arrangement of polygons all vertices are occluded, then
their edges project into a “Spherical Occlusion Diagram”.



Spherical Occlusion Diagrams: introduction

In particular, this applies to polyhedra: if all vertices are occluded,
then the 1-skeleton projects into a Spherical Occlusion Diagram.

Problem. How many arcs does such a Diagram have at least?



Spherical Occlusion Diagrams: definition

A Spherical Occlusion Diagram, or just “Diagram”, is a finite
non-empty collection of arcs of great circle on the unit sphere.



Spherical Occlusion Diagrams: definition

All arcs in a Diagram must be internally disjoint.



Spherical Occlusion Diagrams: definition

The endpoints of every arc in a Diagram must lie on some other
arcs in the Diagram (we say that every arc “feeds into” two arcs).



Spherical Occlusion Diagrams: definition

No two arcs in a Diagram can share an endpoint.



Spherical Occlusion Diagrams: definition

All the arcs in a Diagram that feed into the same arc must reach it
from the same side.



Spherical Occlusion Diagrams: definition

All the arcs in a Diagram that feed into the same arc must reach it
from the same side.



Spherical Occlusion Diagrams: axioms

Diagram axioms:
1. If two arcs intersect,

one feeds into the other.
2. Each arc feeds into two arcs.
3. All arcs that feed into the same arc

reach it from the same side.



Spherical Occlusion Diagrams: basic properties

Theorem

No two arcs in a Diagram feed into each other.

Each arc in a Diagram is shorter than a great semicircle.

Every Diagram is connected.

A Diagram with n arcs partitions the sphere into n + 2
spherically convex regions (called “tiles”).



Spherical Occlusion Diagrams: swirls

clockwise

counterclockwise

swirl

swirl

A swirl in a Diagram is a cycle of arcs such that each arc feeds
into the next going clockwise or counterclockwise.



Swirl Graph

The Swirl Graph of a Diagram is an undirected multigraph on the
set of swirls. For each arc shared by two swirls, there is an edge in
the Swirl Graph.



Swirl Graph

Theorem

The Swirl Graph of a Diagram is a simple planar bipartite graph
with non-empty partite sets.
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Proof. Obviously the Swirl Graph is spherical, hence planar. The
bipartition is given by the clockwise and counterclockwise swirls...



Swirl Graph

Each edge in the Swirl Graph must connect a clockwise and a
counterclockwise swirl. So the Swirl Graph is bipartite.



Swirl Graph

To find a (counter)clockwise swirl, start anywhere and follow the
Diagram (counter)clockwise. Hence the partite sets are not empty.



Swirl Graph

Assume that the yellow swirl shares arcs a and b with another swirl.
The second swirl must be located in the highlighted spherical lune.

b

a

A

B

Since a goes upward, the second swirl must be in A. But b goes
downward, so the second swirl must be in B: contradiction.
Hence, the Swirl Graph is simple.



Hemisphere lemma

Lemma

In a Diagram, every hemisphere contains at least one full swirl.

H

Proof. Take any hemisphere H. Since the Diagram is connected
and tiles are convex, there is an arc crossing the boundary of H.



Hemisphere lemma

Lemma

In a Diagram, every hemisphere contains at least one full swirl.

Follow the Diagram clockwise starting from this arc. If we remain
in H, we eventually find a clockwise swirl fully contained in H.



Hemisphere lemma

Lemma

In a Diagram, every hemisphere contains at least one full swirl.

Otherwise, we find one arc whose clockwise endpoint is outside H.
But then, the other endpoint is in H. Reach that endpoint.



Hemisphere lemma

Lemma

In a Diagram, every hemisphere contains at least one full swirl.

Continuing in this fashion, we either find a clockwise swirl in H, or
eventually we enclose a region within H by going counterclockwise.



Hemisphere lemma

Lemma

In a Diagram, every hemisphere contains at least one full swirl.

In this case, starting from the boundary of the enclosed region and
following the Diagram counterclockwise, we eventually find a swirl.



More swirls

Corollary

Every Diagram has at least 4 swirls.

Proof. We already know that a Diagram has 2 swirls.



More swirls

Corollary

Every Diagram has at least 4 swirls.

Take a great circle that properly intersects both swirls.



More swirls

Corollary

Every Diagram has at least 4 swirls.

By the previous lemma, each hemisphere contains one new swirl.



Minimizing arcs (and swirls)

Theorem

Every Diagram has at least 8 arcs, and there exist Diagrams with
exactly 8 arcs (and exactly 4 swirls).

Proof. This is an example of a Diagram with 8 arcs and 4 swirls...



Minimizing arcs (and swirls)

We know that a Diagram has at least 4 swirls. Obviously, if they
do not share any arcs, then the Diagram has at least 12 arcs.



Minimizing arcs (and swirls)
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Since the Swirl Graph must be simple and bipartite, these 4 swirls
can share at most 4 arcs. Thus the Diagram has at least 8 arcs.



Minimizing visible edges

Theorem

In a polyhedron, every point that does not see any vertices sees at
least 8 distinct edges.

e
e

Proof. As we know, the corresponding diagram has at least 8 arcs.
Even if two arcs correspond to the same edge e of the polyhedron,
the great circle containing them must touch 7 more arcs.



Minimizing visible edges

This is an arrangement of 6 disjoint polygons, where the central
point does not see any vertices and sees exactly 8 edges:

The arrangement can be extended to a polyhedron with an internal
point that does not see any vertices and sees exactly 8 edges.



Conclusion and future work

We proved that a point in a polyhedron sees at least 6 edges.

If the point does not see any vertices, it sees at least 8 edges.

New problem. How many faces does a point see at least?

The unrestricted case is easy:

Theorem (Lusternik-Schnirelmann, 1930)

If the n-dimensional sphere is covered by n + 1 closed sets, one of
them contains a pair of antipodal points.

Corollary

In a polyhedron, every point sees at least 4 faces.
(The tetrahedron gives a matching lower bound.)

However, for points that see no vertices, we still have no answer.

Conjecture

In a polyhedron, if a point sees no vertices, it sees at least 8 faces.


