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Bellows theorem: statement

Theorem (Sabitov, 1996)

The volume V of a polyhedron (of any genus) with edge lengths
`1, · · · , `e satisfies

V N +AN−1V N−1 + · · ·+A2V
2 +A1V +A0 = 0,

where the coefficients Ai are polynomials in Q[`21, · · · , `2e] and only
depend on the combinatorial structure of the polyhedron.

As the polyhedron flexes maintaining its edge lengths `i fixed, the
coefficients Ai remain the same. Hence the volume V is a root of
the same polynomial, and it can only take finitely many values.

Corollary (Bellows theorem)

The volume of a polyhedron is constant throughout any flexing.

Note: for the sake of the bellows theorem, it is not restrictive to
consider only polyhedra with triangular faces.
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Characteristic polynomial of a matrix

The characteristic polynomial of an n× n matrix A is

the monic degree-n polynomial cA(x) = det(xI−A).

Example:

The characteristic polynomial of the matrix

[
2 1
−1 0

]
is

det

(
x ·
[
1 0
0 1

]
−
[
2 1
−1 0

])
= det

[
x− 2 −1
1 x

]
= x2 − 2x+ 1

Lemma

The roots of cA(x) are precisely the eigenvalues of A.
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Frobenius companion matrix of a polynomial

The Frobenius companion matrix of the monic polynomial

P (x) = xn + an−1xn−1 + · · ·+ a1x+ a0 is the n× n matrix:

FP =




0 0 · · · 0 −a0
1 0 · · · 0 −a1
0 1 · · · 0 −a2
...

...
. . .

...
...

0 0 · · · 1 −an−1



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Frobenius companion matrix of a polynomial

Lemma

The eigenvalues of FP are precisely the roots of P (x).

Let us prove by induction on n that cFP
(x) = P (x).

cFP
(x) = det(xI−FP ) = det




x 0 · · · 0 a0
−1 x · · · 0 a1

...
...

. . .
...

...
0 0 · · · −1 x+ an−1


 =

x·det




x 0 · · · 0 a1
−1 x · · · 0 a2
...

...
. . .

...
...

0 0 · · · x an−2

0 0 · · · −1 x+ an−1



+(−1)n+1a0·det




−1 x 0 · · · 0
0 −1 x · · · 0
...

...
...

. . .
...

0 0 0 · · · x
0 0 0 · · · −1




= x · (xn−1 + an−1xn−2 + · · ·+ a2x+ a1) + (−1)n+1a0 · (−1)n−1
= xn + an−1xn−1 + · · ·+ a1x+ a0 = P (x)
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Kronecker product




Bmna· · ·B1ma
..
.

..
.

..

.
Bn1a· · ·B11a




=B⊗A

[
1 2
3 4

]
⊗

[
5 6
7 8

]
=



1 ·

[
5 6
7 8

]
2 ·

[
5 6
7 8

]

3 ·
[
5 6
7 8

]
4 ·

[
5 6
7 8

]


 =




5 6 10 12
7 8 14 16
15 18 20 24
21 24 28 32




Example:

If A is an m× n matrix and B is a p× q matrix,
the Kronecker product A⊗B is the mp× nq matrix:
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Kronecker product: mixed-product property

(A⊗B)(C⊗D) =



a11B . . . a1nB
...

. . .
...

am1B . . . amnB






c11D . . . c1pD
...

. . .
...

cn1D . . . cnpD




=




∑n
k=1 a1kck1BD . . .

∑n
k=1 a1kckpBD

...
. . .

...∑n
k=1 amkck1BD . . .

∑n
k=1 amkckpBD


= AC⊗BD

If the matrix products AC and BD are well defined, then:
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The sum of polynomial roots is a polynomial root

Lemma

If A and B are monic polynomials with coefficients in Q[`21, · · · , `2e],
there is a monic polynomial C with coefficients in Q[`21, · · · , `2e]
such that, if A(α) = 0 and B(β) = 0, then C(α+ β) = 0.

Let A and B be the Frobenius companion matrices of A and B.

Then there are vectors x and y such that Ax = αx and By = βy.

(A⊗ I+ I⊗B)(x⊗ y) = (A⊗ I)(x⊗ y) + (I⊗B)(x⊗ y)

(apply the mixed-product property)

= (Ax⊗ Iy)+(Ix⊗By) = (αx⊗y)+(x⊗βy) = (α+β)(x⊗y)

Hence α+ β is an eigenvalue of the matrix A⊗ I+ I⊗B,
and therefore α+ β is a root of its characteristic polynomial C.

The coefficients of C were obtained by adding and multiplying
coefficients of A and B, and thus they are in Q[`21, · · · , `2e].

The Bellows Theorem (Proof)
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Cayley-Menger determinant

Lemma

If x1, x2, x3, x4, x5 ∈ R3 and dij = ‖xi − xj‖, then

det




0 d212 d213 d214 d215 1
d221 0 d223 d224 d225 1
d231 d232 0 d234 d235 1
d241 d242 d243 0 d245 1
d251 d252 d253 d254 0 1
1 1 1 1 1 0



= 0.
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

= 0.

The matrix is the product of these two:

=




‖x1‖2 −2x11 −2x12 −2x13 1 0
‖x2‖2 −2x21 −2x22 −2x23 1 0
‖x3‖2 −2x31 −2x32 −2x33 1 0
‖x4‖2 −2x41 −2x42 −2x43 1 0
‖x5‖2 −2x51 −2x52 −2x53 1 0
1 0 0 0 0 0




=




1 1 1 1 1 0
x11 x21 x31 x41 x51 0
x12 x22 x32 x42 x52 0
x13 x23 x33 x43 x53 0

‖x1‖2 ‖x2‖2 ‖x3‖2 ‖x4‖2 ‖x5‖2 1
0 0 0 0 0 0




A B

e.g., ‖x1‖2−2x211 − 2x212 − 2x213 + ‖x1‖2= ‖x1 − x1‖2= 0
‖x3‖2−2x31x41 − 2x32x42 − 2x33x43 + ‖x4‖2= ‖x3 − x4‖2= d234
det(AB) = det(A) det(B) = 0 (A has an all-0 column)
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Sylvester matrix

Given two polynomials P (x) = anx
n + an−1xn−1 + · · ·+ a0 and

Q(x) = bmx
m + bm−1xm−1 + · · ·+ b0, their Sylvester matrix is:

SylP ,Q =




an bm
. . .

. . .
... an

...
b0 bm

a0

...
...

. . .
. . .

a0 b0




Example: deg(P ) = 4, deg(Q) = 3

SylP ,Q =




a4 0 0 b3 0 0 0
a3 a4 0 b2 b3 0 0
a2 a3 a4 b1 b2 b3 0
a1 a2 a3 b0 b1 b2 b3
a0 a1 a2 0 b0 b1 b2
0 a0 a1 0 0 b0 b1
0 0 a0 0 0 0 b0




The Bellows Theorem (Proof)



Elimination theory: single variable

Do two polynomials P (x) = anx
n + an−1xn−1 + · · ·+ a0 and

Q(x) = bmx
m + bm−1xm−1 + · · ·+ b0 have common roots?

If so, they have a common non-constant factor F (x):

P (x) = R(x) · F (x) with deg(R) < n

Q(x) = −S(x) · F (x) with deg(S) < m

P (x)
R(x) = F (x) = Q(x)

−S(x) , P (x) · S(x) +Q(x) ·R(x) ≡ 0





ansm−1 + bmrn−1 = 0
ansm−2 + an−1sm−1 + bmrn−2 + bm−1rn−1 = 0

... = 0
a0s0 + b0r0 = 0

The Bellows Theorem (Proof)
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Elimination theory: single variable

In matrix form,



an bm
. . .

. . .
... an

...
b0 bm

a0
...

...
. . .

. . .

a0 b0




·




sm−1
...
s0
rn−1

...
r0




= 0

with unknowns sm−1, · · · s0, rn−1, · · · , r0.

Equivalently, SylP ,Q · x = 0, where x is a non-zero vector.

Equivalently, det(SylP ,Q) = 0.

The Bellows Theorem (Proof)



Elimination theory: multiple variables

Example:
{

9x2 + 4y2 − 18x+ 16y − 11 = 0
x2 + y2 − 9 = 0

View these as polynomials in y with coefficients polynomials in x.
{

4 · y2 + 16 · y + 9x2 − 18x− 11 = 0
1 · y2 + 0 · y + x2 − 9 = 0

This system is solvable if and only if

det




4 0 1 0
16 4 0 1

9x2 − 18x− 11 16 x2 − 9 0
0 9x2 − 18x− 11 0 x2 − 9


 = 0

Which reduces to the single-variable polynomial equation

25x4 − 180x3 + 574x2 − 900x+ 625 = 0

The Bellows Theorem (Proof)
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Combinatorial structure of a polyhedron

Abstract polyhedron:
a set of triangular faces with a perfect matching between edges.

a

e f

b

f g

c

g h

d

h e

a

i j

b

j k

c

k l

d

l i

Topologically, this is a closed orientable 2-manifold with V
vertices, E edges, F faces, where the Euler-Poincaré formula holds:

V − E + F = 2− 2g,

where g is the genus of the polyhedron.
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Genus of a polyhedron

The genus of a polyhedron can be visualized as the number of
handles on its surface.

genus = 1 genus = 7

The Bellows Theorem (Proof)



Surgery of closed orientable 2-manifolds

Suppose that a circular cut is made on the surface of a closed
orientable 2-manifold, and the cut is patched with two disks.

The result is either one object with strictly lower genus or two
objects with equal or lower genus.

The Bellows Theorem (Proof)
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Volume of a tetrahedron

x

y
z

1
1

1

The volume of the tetrahedron is 1/6.
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Volume of a tetrahedron

x

y
z

1
1

1

)1, z1, y1x(
)2, z2, y2x(

)3, z3, y3x(

A linear map sends three vertices to three arbitrary points in R3.
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Volume of a tetrahedron

x

y
z

1
1

1

)1, z1, y1x(
)2, z2, y2x(

)3, z3, y3x(

In matrix form, this transformation is


x1 x2 x3
y1 y2 y3
z1 z2 z3



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Volume of a tetrahedron

x

y
z

)1, z1, y1x(
)2, z2, y2x(

)3, z3, y3x(

The (signed) volume of the transformed tetrahedron is the volume
of the initial tetrahedron multiplied by

det



x1 x2 x3
y1 y2 y3
z1 z2 z3



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Volume of a tetrahedron

x

y
z

)1, z1, y1x(
)2, z2, y2x(

)3, z3, y3x(

So, the (signed) volume of the new tetrahedron is the polynomial

1

6
(x1y2z3 + x2y3z1 + x3y1z2 − x1y3z2 − x2y1z3 − x3y2z1)
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Volume polynomial of a polyhedron

Consider a polyhedron, and assign a consistent orientation to each
of its faces: e.g., the vertices on a face are taken counterclockwise.
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Volume polynomial of a polyhedron

The volume of the polyhedron is the sum of the signed volumes of
the tetrahedra spanned by the origin and each face.

Front faces give a positive contribution, and back faces give a
negative contribution to the volume.

The Bellows Theorem (Proof)



Volume polynomial of a polyhedron

The volume of the polyhedron is the sum of the signed volumes of
the tetrahedra spanned by the origin and each face.

Front faces give a positive contribution, and back faces give a
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Volume polynomial of a polyhedron

The volume of the polyhedron is the sum of the signed volumes of
the tetrahedra spanned by the origin and each face.

Front faces give a positive contribution, and back faces give a
negative contribution to the volume.
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Volume polynomial of a polyhedron

The volume of the polyhedron is the sum of the signed volumes of
the tetrahedra spanned by the origin and each face.

Front faces give a positive contribution, and back faces give a
negative contribution to the volume.

The Bellows Theorem (Proof)



Volume polynomial of a polyhedron

If the coordinates of the n vertices are unknowns, the volume is a
polynomial in Q[x1, y1, z1, · · · , xn, yn, zn].

The Bellows Theorem (Proof)



Degenerate polyhedra

The definition of volume polynomial also applies to generalized
polyhedra with degenerate or intersecting faces, such as the
Bricard octahedra.

Note: we will need to include these degenerate polyhedra in our
theorem, because they may appear as a result of performing
surgery on non-degenerate polyhedra.
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Degenerate polyhedra

The definition of volume polynomial also applies to generalized
polyhedra with degenerate or intersecting faces, such as the
Bricard octahedra.

Note: we will need to include these degenerate polyhedra in our
theorem, because they may appear as a result of performing
surgery on non-degenerate polyhedra.
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Bellows theorem: re-statement

Theorem (Sabitov, 1996)

Given the combinatorial structure of a polyhedron, its volume
polynomial V ∈ Q[x1, y1, z1, · · · , xn, yn, zn] satisfies the identity

V N +AN−1V N−1 + · · ·+A2V
2 +A1V +A0 ≡ 0,

where Ai ∈ Q[`21, · · · , `2e] and `2k = (xi−xj)2 +(yi−yj)2 +(zi−zj)2
for every edge {(xi, yi, zi), (xj , yj , zj)} of the polyhedron.

The theorem expresses an algebraic identity among the unknowns
x1, y1, z1, · · · , xn, yn, zn that is satisfied algebraically after the
substitutions `2k := (xi−xj)2 + (yi−yj)2 + (zi−zj)2 are made.

Once we assign values to the edge lengths `i, the coefficients Ai

become numbers, and the polynomial is fixed.

When we also assign coordinates (xi, yi, zi) to the vertices
(matching the edge lengths `i), then also the volume V becomes a
number, which must be a root of the polynomial.
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Theorem (Sabitov, 1996)
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Bellows theorem: proof structure

We prove the theorem by induction on some parameters of the
combinatorial structure of the polyhedron P, in this order:

the genus

the total number of vertices

the degree of a specific vertex

The base case is when P is a tetrahedron.

In general, we perform surgery to reduce the complexity of P.

If surgery is not possible, we perform ad-hoc transformations
around a vertex and apply the Cayley-Menger determinant to
obtain equations which are then simplified using elimination theory.

The Bellows Theorem (Proof)
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We prove the theorem by induction on some parameters of the
combinatorial structure of the polyhedron P, in this order:

the genus

the total number of vertices

the degree of a specific vertex
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Base case: tetrahedron

For a tetrahedron, the polynomial equation is

V 2 =
1

144

[
`21`

2
5(`

2
2+`

2
3+`

2
4+`

2
6−`21−`25)+ `22`26(`21+`23+`24+`25−`22−`26)

+`23`
2
4(`

2
1+`

2
2+`

2
5+`

2
6−`23−`24)−`21`22`23−`22`24`25−`21`24`26−`23`25`26

]

1ℓ

2ℓ 3ℓ

4ℓ
5ℓ

6ℓ

After substituting the volume polynomial for V and
`2k := (xi−xj)2 + (yi−yj)2 + (zi−zj)2, one can check that all
similar monomials cancel out, i.e., this is an algebraic identity.

The Bellows Theorem (Proof)



Empty 3-cycles

If a cycle formed by 3 edges bounds no face, it is called empty.

If the polyhedron P an empty 3-cycle, we perform surgery on it.

If the result is a single polyhedron P ′, it must have smaller genus
than P, and so the inductive hypothesis applies to P ′.
But P and P ′ have the same volume polynomial and the same set
of edges. Hence the theorem is true for P.

The Bellows Theorem (Proof)



Empty 3-cycles

If a cycle formed by 3 edges bounds no face, it is called empty.

If the polyhedron P an empty 3-cycle, we perform surgery on it.

If the result is a single polyhedron P ′, it must have smaller genus
than P, and so the inductive hypothesis applies to P ′.
But P and P ′ have the same volume polynomial and the same set
of edges. Hence the theorem is true for P.
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Empty 3-cycles

If the result of the surgery are two polyhedra P ′ and P ′′, they have
equal or smaller genus than P and strictly fewer vertices.

So the inductive hypothesis holds for P ′ and P ′′.
Note that all the edges of P ′ and P ′′ are also edges of P.

Also, the volume polynomial of P is the sum of the volume
polynomials of P ′ and P ′′.

Recall:

Lemma

If A and B are monic polynomials with coefficients in Q[`21, · · · , `2e],
there is a monic polynomial C with coefficients in Q[`21, · · · , `2e]
such that, if A(α) = 0 and B(β) = 0, then C(α+ β) = 0.

Hence, if A and B are the polynomials for P ′ and P ′′, then C is
the polynomial for P.

The Bellows Theorem (Proof)



Empty 3-cycles

If the result of the surgery are two polyhedra P ′ and P ′′, they have
equal or smaller genus than P and strictly fewer vertices.

So the inductive hypothesis holds for P ′ and P ′′.
Note that all the edges of P ′ and P ′′ are also edges of P.

Also, the volume polynomial of P is the sum of the volume
polynomials of P ′ and P ′′.
Recall:

Lemma

If A and B are monic polynomials with coefficients in Q[`21, · · · , `2e],
there is a monic polynomial C with coefficients in Q[`21, · · · , `2e]
such that, if A(α) = 0 and B(β) = 0, then C(α+ β) = 0.

Hence, if A and B are the polynomials for P ′ and P ′′, then C is
the polynomial for P.
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No empty 3-cycles

Suppose there are no empty 3-cycles, and pick any vertex v.

We proceed by induction on the degree of v.

If v has degree 3, then there is an empty 3-cycle: contradiction.

v

So, v has degree at least 4.

The Bellows Theorem (Proof)



No empty 3-cycles

v

0p

1p

2p

3p

4p

5p

6p

7p

Consider the triangles incident to v (there are at least 4).
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No empty 3-cycles

v

0p

1p

2p

3p

4p

5p

6p

7p

Remove the triangles vp0p1 and vp1p2, and add vp0p2 and p0p1p2
(p0p2 is not an edge of P, or vp0p2 would be an empty 3-cycle).

The Bellows Theorem (Proof)



No empty 3-cycles

v
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1p
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3p

4p
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7p

Remove the triangles vp0p1 and vp1p2, and add vp0p2 and p0p1p2
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No empty 3-cycles

v

0p

1p

2p

3p

4p

5p

6p

7p

The new polyhedron P ′ has the same genus and number of
vertices as P, and v has lower degree.
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No empty 3-cycles

v

0p

1p

2p

3p

4p

5p

6p

7p

1D

Hence the inductive hypothesis applies to P ′, but its edges include
p0p2 = D1, and its polynomial has coefficients in Q[`21, · · · , `2e, D2

1].
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No empty 3-cycles

v

0p

1p

2p

3p

4p

5p

6p

7p

1D

The inductive hypothesis also holds on the tetrahedron vp0p1p2,
and its polynomial has coefficients in Q[`21, · · · , `2e, D2

1].

The Bellows Theorem (Proof)



No empty 3-cycles

v

0p

1p

2p

3p

4p

5p

6p

7p

1D

Since the difference between P and P ′ is the tetrahedron vp0p1p2,
by the Lemma the volume V of P satisfies Poly(V , `21, · · · , `2e, D2

1).
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No empty 3-cycles

v

0p

1p

2p

3p

4p

5p

6p

7p

1D

2D

3D5D

6D

4D

We can repeat the same reasoning with the other edges incident to
v, obtaining equations of the form Poly(V , `21, · · · , `2e, D2

i ).
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No empty 3-cycles

v

0p

1p

2p

3p

4p

5p

6p

7p

1D

2D

3D5D

6D

4D

We would like to eliminate the D2
i ’s from these polynomial

equations. Hence we need more equations involving them.
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No empty 3-cycles

v

0p

1p

2p

3p

4p

5p

6p

7p

4D

5R

3R

4R

The Cayley-Menger determinant applied to v, p0, pi−1, pi, pi+1

yields an equation of the form Poly(`21, · · · , `2e, D2
i , R

2
i−1, R

2
i , R

2
i+1).

The Bellows Theorem (Proof)



No empty 3-cycles

v
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The Cayley-Menger determinant applied to v, p0, pi−1, pi, pi+1

yields an equation of the form Poly(`21, · · · , `2e, D2
i , R
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i−1, R
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i , R
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i+1).

The Bellows Theorem (Proof)



Eliminating the extra diagonals

We have the following equations:

Poly(V , `21, · · · , `2e, D2
1)

Poly(V , `21, · · · , `2e, D2
2)

Poly(V , `21, · · · , `2e, D2
3)

Poly(V , `21, · · · , `2e, D2
4)

Poly(V , `21, · · · , `2e, D2
5)

Poly(V , `21, · · · , `2e, D2
6)

Poly(`21, · · · , `2e, D2
2, R

2
1, R

2
2, R

2
3)

Poly(`21, · · · , `2e, D2
3, R

2
2, R

2
3, R

2
4)

Poly(`21, · · · , `2e, D2
4, R

2
3, R

2
4, R

2
5)

Poly(`21, · · · , `2e, D2
5, R

2
4, R

2
5, R

2
6)

Poly(`21, · · · , `2e, D2
6, R

2
5, R

2
6, R

2
7)

Note that R2
1 and R2

7 are in `21, · · · , `2e, so they can be removed.
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Note that R2
2 = D2

1.
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Eliminating the extra diagonals

We have the following equations:

Poly(V , `21, · · · , `2e, D2
1)

Poly(V , `21, · · · , `2e, D2
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3, R
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6)

Apply elimination theory to variable R2
6 in the last two equations.
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Note that the determinant of the Sylvester matrix is a polynomial.

The Bellows Theorem (Proof)
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Eliminating the extra diagonals

We have the following equations:

Poly(V , `21, · · · , `2e, D2
1)
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1)

Apply elimination theory to variable D2
1 in the two equations.
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Eliminating the extra diagonals

We have the following equation:

Poly(V , `21, · · · , `2e)

This polynomial equation shows that the theorem is valid for P.

The Bellows Theorem (Proof)



One last check

We need to verify that the polynomials we obtain as determinants
of the Sylvester matrices are monic in V , and in particular not null!

This can be verified directly by expanding the determinants and
keeping track of the coefficients of the leading terms.

Checking it manually is tedious (Sabitov dedicates 12 pages to it),
but it is a mechanical manipulation of polynomials that could be
carried out by dedicated computer software.

The Bellows Theorem (Proof)


